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Abstract:    Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-
ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-
pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent 
components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in 
time-frequency domain. 
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INTRODUCTION 
 

Noise emission from diesel engine is a compli-
cated acoustic signal with many different components 
mainly caused by combustion and mechanism opera-
tions. The rapid rise of pressure in the cylinder caused 
by combustion of fuel near the top dead center (TDC) 
transmits to the engine structure surface and forms an 
important part of the total noise emission. The com-
bustion can also cause the vibration of cylinder head, 
connection rods and crankshaft, with the vibration 
being also an important source of engine noise.  All 
The air-borne noise emission induced by combustion 
in cylinders is usually called combustion-induced 
noise. Otherwise, the movements of engine me-
chanical systems including the rotation of the crank-
shaft, the operation of valves, the injection of fuel, 
and the piston slap, are also main factors contributing 
to the noise radiation of the engine.  

It is very important to separate the different 
sources of noise from the engine for the purpose of 
diagnosis and main noise source identification. Con-

tinuous wavelet transform (CWT) was applied to 
analyze the acoustic signals from diesel engine for the 
purpose of noise source identification (Hao and Han, 
2004). The characteristic of noise signals in 
time-frequency domain can supply more information 
than FFT, although it is difficult to separate different 
noise sources distinctively due to the high speed op-
eration of the engine and the superposition of differ-
ent noise source in frequency domain. 

Independent component analysis (ICA) sepa-
rates the statistically independent sources by a finite 
set of observations recorded by sensors (Comon, 
1994). Due to its blind source separation ability, ICA 
was applied to separate the artifacts in MEG data, 
reduce the noise in image, and etc. (Hyvärinen and 
Oja, 2000). Noise from diesel engine was separated 
into different components (Li et al., 2001) by a se-
quential ICA model. 

In this paper ICA was applied to analysis the 
acoustic signals of a one cylinder diesel engine. The 
diesel engine’s noise signals were separated into 
several different independent components (ICs). Then 
FFT and CWT was used to process different ICs. 
From the characteristic of the ICs in both time and 
frequency domain, the ICs were identified to be dif-
ferent noise sources of diesel engine. 
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BASIC PRINCIPLES OF ICA  
 
Mathematical model  

The aim of ICA is to separate the source vectors 
from the observed vectors, when both the source 
vectors and the process of source vector being mixed 
are unknown. The linear ICA model without noise is 
formulated as follow: 

 
  x=As,                                 (1) 

 
where s1, s2, …, sm are row vectors of unknown in-
dependent sources. A is an unknown m×n matrix, and 
x1, x2, …, xm are observation vectors got by sensors. 
The task of ICA is to find an estimation inverse ma-
trix W of mixing matrix A, 
 

 W≈A−1,                                    (2) 
to make  

y=Wx≈A−1x,                              (3) 
 

with y being the estimation of source vector. The 
starting point for ICA is a very simply assumption 
that the source components are statistically inde-
pendent. It means that the probability density function 
(PDF) of independent sources must behave non- 
Gaussian distribution.  

 
Numerical simulation 

There are many different algorithms in use in-
cluding negentropy, information maximization, 
maximum likehood and high-order cumulant in ICA. 
The FastICA algorithm is fixed point algorithm in-
vented by Hyvärinen in 1997, for estimating signals 
Gaussianity with its four-order cumulant. Then fixed 
point algorithm was improved in 1999 by estimating 
the signals Gaussianity with negentropy instead of 
four-order cumulant (Hyvärinen, 1999). The algo-
rithms are used to measure the Gaussianity of signals 
by its negentropy J(y): 

 
 gauss( ) ( ) ( ),J H H= −y y y                   (4) 

 
where, H is the entropy of y, ygauss is a Gaussian ran-
dom variable with the same covariance vector as y. A 
Gaussian variable has the largest entropy among all 
random variables of equal variance. A big Negen-
tropy value of y means that PDF of y is far from 

Gaussian distribution. Negentropy can be estimated 
by higher-order moments and also usually by 
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v is a Gaussian variable of zero mean and unit vari-
ance, and G is any non-quadratic function. The fol-
lowing functions had proved very useful:  
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here G is selected as y4, and based on fixed-point 
iterations method, the maximum J(y) was found. 
Because of its high efficiency in calculation and 
convergence, FastICA is now widely used. 

To validate the ability of ICA in blind source 
separation, a numerical simulation was given as fol-
lows. A set of artificial signals were chosen as source 
vectors, which include two sinuous signals of differ-
ent frequency, and a sinuous signal multiplied by an 
exponentially decaying function. The last signal is a 
rectangular signal. The four signals’ amplitude is 
nearly the same. Fig.1 shows the source vectors and 
artificial signals mixed by a random matrix A whose 
element is distributed randomly between 0 and 1.  

Then FastICA was applied to separate the mixed 
vectors. Fig.2 shows the results of ICA. A property of 
ICA is that the separated signals have different vari-
ances from original ones which mean that the energy 
information of sources is distorted. Another property 
is the permutation of the source order. 

From Fig.2 we can conclude that: ICA can re-
cover well the source vectors from the mixed obser-
vations vectors, but with distorted source energy and 
a permutation. 

 
 

ENGINE NOISE SOURCE SEPARATION 
 

Noise measurement  
The engine noise test was carried out in a 

semi-anechoic laboratory with acoustic wedges on all 
the surfaces except the ground. The background 
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sound pressure level is below 25 dBA. The tested 
engine is a single-cylinder four-stroke diesel engine, 
mounted in the test room center. The microphone and 
amplifier are made in Denmark by B&K Company. 
Four microphones were used to sample the signals, 
and three microphones were mounted 1 m away 
around except the rear end of the engine. Another 
microphone is put 10 cm over the cylinder head. The 
sampling frequency is 25 kHz. During the measure-

ment, the revolution speed of the diesel engine was 
2200 r/min, and the power was nearly 22 kW.  
 
Engine acoustic signal statistical property 

As mentioned, ICA requires that the source 
signals are non-Gaussian distributed. So it is neces-
sary to study the distributions of acoustic signals from 
the tested diesel engine. In the linear ICA model, the 
mixing process was proposed as a linear transforma-
tion, the distribution of the observation signals has the 
same distribution as the source ones. So it is enough 
to measure the Gaussianity of observation signals to 
decide the distribution of source signals. A conven-
ient way to estimate the Gaussianity of signals is to 
calculate the normalized kurtosis values. The normal 
kurtosis is defined as follow: 

 
4( ) ( ) / 3kurtosis E µ σ −= −y y ,               (6) 

 
where E(·) represents the expected value of vectors. 
And y is the measured vector, µ is the mean of y, σ2 is 
the deviation of y. The Gaussian distributed signal has 
a kurtosis value near 0, and the signal with kurtosis 
value greater than 0 is labelled as supper-Gaussian 
and if less than 0 the signal is called sub-Gaussian 
signal. The kurtosis values of 50 acoustic signals from 
tested engine were calculated, Fig.3 shows the statis-
tically distribution of the acoustic signals’ kurtosis 
values. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Among the 50 kurtosis values, only 4 values 
were greater than 0, the other 46 values were less than 
0. The result indicates that most of the acoustic sig-
nals from the tested engine are sub-Gaussian distrib-
uted. It means the tested engine acoustic data satisfy 
the basic requirement of ICA. 
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Fig.3  The kurtosis value of acoustic signals 

y 1
 

y 2
 

y 3
 

y 4
 

10
0

−10
2
0

−2

5
0

−5
5
0

−5
0 200 400 600 800 1000

Fig.2  Separated source 

Fig.1  The source vectors and the mixed vectors. (a)
Source vectors; (b) Mixed vectors 
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Fig.5  ICs in frequency domain. (a) IC1; (b) IC2; (c) IC3 
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Fig.4  ICs in time domain. (a) IC1; (b) IC2; (c) IC3 
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Engine noise separation 
FastICA was applied to process the signals 

sampled several times by the 3 microphones around 
the engine with 3 independent components (ICs) 
separated from the raw acoustic emissions though the 
sequences of the 3 ICs were not always the same. 
Fig.4 shows the ICs in time domain. IC3 shows an 
obvious different characteristic in both time domain 
and frequency domain from the other two. The peaks 
of 36 Hz, 72 Hz obviously dominate in the whole 
frequency domain (Fig.5). As the revolution speed of 
the tested engine is 2200 r/min, the basic order fre-
quency of inertia force of rotation components is 
nearly 36 Hz; the second order is 72 Hz. These fre-
quencies strictly coincide with the frequencies of IC3. 
So we can conclude that IC3 is mechanical noise 
caused by the inertia force generated by the rotation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the crank shaft system and other rotation compo-
nents. 

The spectra of IC1 and IC2 overlap badly, the 
main energy of the two ICs is concentrated around 
1000 Hz. In practice, a diesel engine has many reso-
nance frequencies. Most of the resonance frequencies 
of engine components are between 800 Hz and 3000 
Hz. Usually, the frequencies of excitation of both 
combustion and mechanical excitation are also 
mainly within 3000 Hz. Hence, both the combustion 
induced noise and mechanical noise have important 
components within the resonant band of the diesel 
engine. This makes it difficult to distinguish IC1 and 
IC2 in the frequency domain. 

 
Wavelet transform 

It is difficult to distinguish IC1 and IC2 in fre-
quency domain. The information on IC1 and IC2 in 
time domain is difficult to discriminate. CWT has 
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been proved to be a powerful tool in time-frequency 
analysis and feature extraction (Lin and Qu, 2000) 
and is more suitable for analyze non-stationary 
acoustical signal from engine then FFT. The CWT of 
signals x(t) is defined as: 

 

,( , ) ( ) dx a bW a t x t tψ ∗= ∫ ,                (7) 

 
ψ is the mother wavelet, * stands for complex conju-
gate, a is the scales factor and b is the translation 
factor. It is important to choose a proper wavelet 
function as a mother wavelet of CWT. A guiding 
principle is to choose a wavelet whose shape in time 
domain is similar to the physical signals (Zheng and 
Li, 2002). Here complex Morlet wavelet, which is 
widely used in CWT because of its ability for 
time-frequency localization, was selected as a mother 
wavelet in CWT. Complex Morlet wavelet is defined 
by: 
 

                
2

0j / 2( ) e et tg t ω −= .                     (8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Fourier transform of complex Morlet wave-
let is 

 
2

0( ) / 2( ) 2 eG ω ωω − −= π .                (9) 
 

The amplitude of wavelet coefficient represents 
the similarly of daughter wavelet with the physical 
signal. Fig.6 is the contour map of amplitude of the 
wavelet coefficient of IC1 and IC2. The wavelet co-
efficients in the white area of the graph are larger then 
the ones in the black area.  

The results of CWT show the difference between 
IC1 and IC2. Both IC1 and IC2 have nearly the same 
distribution in frequency domain. But the main en-
ergy of IC1 centered around the top dead center and 
IC2 about 10° crank angle behind IC1 (Fig.7). Fuel 
combustion in cylinder occurs usually at nearly the 
top dead center. The rapid rise of pressure in cylinder 
causes vibration of the engine block and other com-
ponents, and then the vibration transmits to the engine 
surface to form the air-borne noise. So the combus-
tion noise usually also occurs around TDC. After 
combustion begins, the piston moves rapidly from 
one side of cylinder liners to the other side under the 
high pressure and speed. The excitation of piston slap 
can also induce an obvious noise radiation (Liu and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.6  Cwt contour map of ICs; (a) IC1; (b) IC2 
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Fig.7  The gas force (a) and the piston slap (b) 
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Randall, 2005). The piston slap occurs after the com-
bustion starts; the noise caused by the piston slap also 
follows the combustion induced noise emission. So 
IC2 is the noise component induced by the piston 
slap. 
 
Correlation coefficient  

Usually, the combustion-induced noise is the 
most important component in the diesel engine’s 
overall acoustic signal, especially in the signal sam-
pled over the cylinder head. So the signals over the 
cylinder head can seem to be “copies” of combus-
tion-induced noise, though piston slap noise is in-
cluded in the data. Correlation coefficient is the 
measurement of similarly of two samples. If two 
signals have a big correlation coefficient, they have 
more property in common. The correlation coeffi-
cients between three ICs and the acoustic signal 
sampled over the cylinder head are presented in Table 
1. 

 
 
 
 
 
 
 
 
 
Among the three ICs, IC1 has the maximum 

correlation coefficient with the signals sampled over 
the cylinder head. The result also proved that IC1 is 
the noise component induced by combustion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 

Using ICA, the engine noise was effectively 
separated into several different ICs. The information 
from FFT and CWT results of ICs can reveal that the 
different IC is the different source of engine noise. 
ICA is a powerful tool for noise source separation and 
diagnosis of engine.  
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Table 1  The correlation coefficient between ICs
and the acoustic signals sampled over the cylinder

Type Correlation coefficient 

IC1 0.6808 
IC2 0.1317 

IC3 0.1446 

 


