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Abstract:    When the edges of a convex polygon are traversed along one direction, the interior of the convex polygon is always on 
the same side of the edges. Based on this characteristic of convex polygons, a new algorithm for computing the convex hull of a 
simple polygon is proposed in this paper, which is then extended to a new algorithm for computing the convex hull of a planar 
point set. First, the extreme points of the planar point set are found, and the subsets of point candidate for vertex of the convex hull 
between extreme points are obtained. Then, the ordered convex hull point sequences between extreme points are constructed 
separately and concatenated by removing redundant extreme points to get the convex hull. The time complexity of the new planar 
convex hull algorithm is O(nlogh), which is equal to the time complexity of the best output-sensitive planar convex hull algorithms. 
Compared with the algorithm having the same complexity, the new algorithm is much faster. 
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INTRODUCTION 
 

Convex hull problem is one of the classical 
problems in computational geometry. The convex hull 
algorithm has wide practical use in areas such as 
computer graphics, image processing, design auto-
mation and pattern recognition (O′Rourke, 1998). 
Two-dimensional convex hull problems are divided 
into two categories, one is based on polygons, and the 
other on planar point sets. The convex hull of a simple 
polygon P is the smallest convex polygon containing 
P, whose vertices must be vertex of P. The convex 
hull of a planar point set S is the smallest convex 
polygon containing S, whose vertices must be point of 
S.  The convex hull problem of a simple polygon is a 
special case of the convex hull problem of a planar 
point set.  

Since Sklansky (1972) first proposed linearly 
convex hull algorithm of a simple polygon, many 

convex hull algorithms have been proposed 
(McCallum and Avis, 1979; Yao, 1981; Lee, 1983; 
Kirkpatrick and Seidel, 1986; Melkman, 1987; 
Bhattacharya and Sen, 1997; Levcopoulos et al., 2002; 
Joswig and Ziegler, 2004). Yao (1981) showed that 
Ω(nlogn) is the lower bound of the convex hull 
problem for the worst-case input. Kirkpatrick and 
Seidel (1986) proved an Ω(nlogh) lower bound exists 
when both input and output sizes were considered, 
and proposed an O(nlogh) optimal algorithm based on 
the prune-and-search technique. Although Sklansky 
was the first one to give the convex hull algorithm, 
unfortunately his algorithm has deficiencies. 
McCallum and Avis (1979) gave the first correct 
convex hull algorithm of a simple polygon. Melkman 
(1987) made a significant breakthrough by proposing 
an online convex hull algorithm of a 2D simple poly-
line which greatly simplifies the logic of the algo-
rithm. The modified algorithm uses a double-ended 
queue to store an incremental hull for the vertices 
already processed. Convex hull algorithms are also 
investigated in China these years (Kong and Cai, 
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1994; Cui et al., 1997; Wu et al., 1997; Jin et al., 1998; 
Wang et al., 1998; Liu, 2002).  

Inspired by one of the characteristics of convex 
polygons, i.e., “edge same-side characteristic” (it 
would be explained later), we propose a new algo-
rithm for computing the convex hull of a simple 
polygon, which is very simple and efficient. After that, 
we extend it to a new algorithm for computing the 
convex hull of a planar point set. 
 
 
RELATED CONCEPTION 
 

In this section, we give a description about re-
lated concepts on convex hull problem.  
Definition 1    Let a point pi∈ú

2 or ú3 (i=1, 2, …, n), 
suppose the point set 
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The smallest convex polygon containing S is called 
the convex hull of S. 
Definition 2    Let Pi(xi, yi) (i=1, 2, …, n) be n vertices 
of a polygon. If for any i, j, i≠j, i, j=1,2, …, n, edge 
PiPi+1 and edge PjPj+1 are either neighbored with one 
shared end point or separated, then the polygon is 
called a simple polygon. 
Definition 3    Let A=(xa, ya), B=(xb, yb) and C=(xc, yc) 
be three different points in the XY plane, denote the 
directed straight line joining A and B (from A to B) by 
L(AB), the orientation test function for discrimination 
of C with respect to L(AB) is as follows: 
 

( , , ) ( )( ) ( )( ).b a c a c a b aS A B C x x y y x x y y= − − − − −  (2) 
 

(1) If S>0, then C lies to the left of L(AB); 
(2) If S=0, then C lies on L(AB); 
(3) If S<0, then C lies to the right of L(AB). 

Definition 4    A point sequence composed of all the 
vertices of the convex hull of a simple polygon or a 
planar point set is called a convex hull point sequence. 
While the elements of the point sequence are arranged 
along one direction (clockwise or counterclockwise), 
it is called an ordered convex hull point sequence. 
Definition 5    For a simple polygon P with a point 
sequence as Pi(xi, yi) (i=1, 2, …, n), suppose xmax= 

max(xi), xmin=min(xi), ymax=max(yi), ymin=min(yi), and 
PLD=(xmin, ymin), PLU=(xmin, ymax), PRD=(xmax, ymin), 
PRU=(xmax, ymax), the former four points are called 
corner points of the simple polygon, the rectangle 
composed of the four corner points is called rectan-
gular encasing box of the simple polygon. The eight 
extreme points of the simple polygon are defined as 
follows: 

(a) Among points with xi=xmin, denote the one 
with the maximum coordinate y by M1; 

(b) Among points with xi=xmin, denote the one 
with the minimum coordinate y by M8; 

(c) Among points with xi=xmax, denote the one 
with the maximum coordinate y by M4; 

(d) Among points with xi=xmax, denote the one 
with the minimum coordinate y by M5; 

(e) Among points with yi=ymin, denote the one 
with the maximum coordinate x by M6; 

(f) Among points with yi=ymin, denote the one 
with the minimum coordinate x by M7; 

(g) Among points with yi=ymax, denote the one 
with the maximum coordinate x by M3; 

(h) Among points with yi=ymax, denote the one 
with the minimum coordinate x by M2. 

Definitions of the four corner points, rectangular 
encasing box and the eight extreme points of a simple 
polygon are also applicable to a planar point set. Line 
segments M1M2, M3M4, M5M6 and M7M8 divide the 
rectangular encasing box of a planar point set into five 
sub-regions, as shown in Fig.1. A point in one of the 
sub-regions from I to IV may be a vertex on the 
convex hull. 
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Fig.1  Sub-regions of the rectangular encasing box
of a planar point set 
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NEW ALGORITHM FOR COMPUTING CONVEX 
HULL OF SIMPLE POLYGON 
 

For convenience, we mention a polygon instead 
of a simple polygon. According to Definition 1 and 
Definition 5, it is obvious that Mi (i=1, 2, …, 8) of a 
polygon must be vertices of the convex hull of the 
polygon, and line segments M8M1, M2M3, M4M5 and 
M6M7 are edges of the convex hull of the polygon. 
Therefore, we could first compute the ordered convex 
hull point sequences between Mi and Mi+1 (i=1, 3, 5, 7) 
separately, then we could concatenate them sequen-
tially by removing redundant Mi to get the convex hull 
of the polygon. The convex hull problem is then 
transformed to the problem of computing the ordered 
convex hull point sequences between Mi and Mi+1 (i=1, 
3, 5, 7). 

The integrated algorithm to compute the convex 
hull CH of a given polygon P is as follows: 
Algorithm 1    CHULL_SP(CH, P) 

Step 1: Find out extreme points Mi (i=1, 2, …, 8) 
of P, denote the point sequences between M2i−1 and 
M2i by Qi (i=1, 2, 3, 4), set i=1. 

Step 2: Call ORD_CHULL_SP(M2i−1, M2i, Qi, Hi) 
to compute the ordered convex hull point sequence Hi 
between Mi and Mi+1. 

Step 3: If i<4, then i=i+1, goto Step 2; otherwise, 
continue. 

Step 4: CH=H1∪H2∪H3∪H4. 
ORD_CHULL_SP in Algorithm 1 is a procedure 

to compute the ordered convex hull point sequences 
between Mi and Mi+1 (i=1, 3, 5, 7) of a simple polygon. 
For convenience of explanation, we give some de-
notations. For a point V, V(x) and V(y) denote its 
standard cartesian coordinates. For two different 
points A and B, denote the ray emanating from A to B 
by R(AB), denote the directed straight line joining A 
and B by L(AB). Denote the ordered convex hull point 
sequence between Mi and Mi+1 (along clockwise di-
rection) by H={H1, H2, …, Hr} (r≥2), H1=Mi, Hr=Mi+1. 
According to Definitions 4 and 5, it is known that 
only points which lie to the left side of the directed 
line joining Mi and Mi+1 (i=1, 3, 5, 7) can possibly be 
points in the ordered convex hull point sequence of 
the polygon. So we just need to consider the convex 
vertices that lie to the left of the directed line joining 
Mi and Mi+1 (i=1, 3, 5, 7), and we call them candi-
dates.  

As the topological structures of point sequences 
between Mi and Mi+1 are the same, computation of the 
ordered convex hull point sequence between M1 and 
M2 is used as an illustration of the procedure. The 
ordered convex hull point sequences between other 
neighboring extreme points can be computed by 
analogy with it.  

If M1=M2, then the result is simply M1. So we 
would consider the general condition, i.e., M1 and M2 
are two different points. Suppose the point sequence 
between M1 and M2 is Q. If Q is null, then H={M1, 
M2}. If Q is not null, then for each point V in Q, first to 
check if it is a candidate: if it is, continue to judge if it 
could be a vertex on the convex hull and update H 
properly if necessary; otherwise, go ahead. Suppose V 
is the current candidate, if V is the first candidate in Q, 
just add it immediately after M1 in H. A candidate that 
is not the first candidate is called a subsequent can-
didate. How to judge whether the subsequent candi-
dates could be vertices on the convex hull or not and 
how to update H properly are the key issues of the 
algorithm. 

We now give the important conceptions used in 
our algorithm. Assume H={H1, H2, …, Hr} (r≥2) is 
current ordered convex hull point sequence between 
M1 and M2. The points in H have properties as follows: 
if m<n, then Hm(x)<Hn(x), Hm(y)<Hn(y). The directed 
polyline sequentially connecting the points in H and 
M2 is called “Active-Polyline”. The Active-Polyline 
divides the corresponding sub-region IV of the rec-
tangular encasing box of P into two parts. The part 
that lies to the left of the Active-Polyline is called 
“Active-Region” (not including the borders). R(HjHj+1) 
(j=1, 2, …, r−1) divide the active region into many 
sub Active-Regions related to Hj (j=1, 2, …, r). The 
shadow region in Fig.2 is the sub Active-Region re-
lated to Hj, and the points in which all lie to the right 
of R(Hj−1Hj) and on or to the left of R(HjHj+1). We call 
 
 
 
 
 
 
 
 
 
 Fig.2  Sub Active-Region of Hj between M1 and M2 
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such sub Active-Region related to Hj “sub Active- 
Region of Hj”, and denote it by AR(Hj). R(Hj−1Hj) and 
R(HjHj+1) are called “forward border” and “backward 
border” of AR(Hj) respectively. Especially, the sub 
Active-Region lie on or to the left of R(H1H2) is called 
“sub Active-Region of H1”, denoted by AR(H1); the 
sub Active-Region that lies to the right of R(Hr−1Hr) 
and to the left of R(HrM2) is called “sub Active-   
Region of Hr”, denoted by AR(Hr). According to the 
definition of AR(Hj), given a point V∈AR(Hi) (l≤i≤u) 
and Hj (l≤j≤u), we could have such conclusions: if V 
lies to the right of R(Hj−1Hj) and to the left of or on 
R(HjHj+1), then V∈AR(Hj); if V(x)<Hj(x) or V(x)≥Hj(x) 
and V lies to the left of or on R(Hj−1Hj), then V∈AR(Hi) 
(l≤i≤j−1); otherwise, V∈AR(Hi) (j+1≤i≤u). 

The algorithm proposed in this paper is based on 
one of the characteristics of convex polygons, i.e., 
when the edges of a convex polygon are traversed 
along one direction, the interior of the convex poly-
gon is always on the same side of the edges. We call 
this characteristic “edge same-side characteristic”. In 
this paper, we assume that the edges of a convex 
polygon are traversed along clockwise direction, and 
the interior of the convex polygon is always on the 
right of these edges. If current candidate V lies in 
Active-Region, i.e., V lies to the left of the Ac-
tive-Polyline, the edge same-side characteristic of the 
convex hull is not kept, which implies that V is one 
vertex on the convex hull, and that H needs to be 
updated to keep the edge same-side characteristic of 
the convex hull. 

The algorithm to compute the ordered convex 
hull point sequence between M1 and M2 is given as 
follows:  
Algorithm 2    ORD_CHULL_SP(M1, M2, Q, H) 

Step 1: If M1=M2, then let H={M1}, end; other-
wise, if Q=∅, then let H={M1, M2}, end; if Q≠∅, 
suppose Q={Q1, …, Qs}, s≥1, let H={M1}, r=1, i=1, 
V=Q1, continue. 

Step 2: If IsCand(V)=1, then call DEAL_ 
CAND_SP(V); otherwise, continue. 

Step 3: i=i+1, if i≤s, then let V=Qi, go to Step 2; 
otherwise, continue. 

Step 4: r=r+1, Hr=M2. 
IsCand(V) in Algorithm 2 is a function to judge 

whether V is a candidate or not. Suppose the direction 
to traverse a polygon is clockwise, V1 and V2 are 

neighboring vertices of V along the direction, ac-
cording to the definition of a candidate: if S(M1, M2, 
V)>0 and S(V1, V, V2)<0, then IsCand(V)=1; other-
wise, IsCand(V)=0. The procedure DEAL_CAND_ 
SP(V, H) in Algorithm 2 is a procedure to deal with a 
candidate V (See Algorithm 3). 
Algorithm 3    DEAL_CAND_SP(V, H) 

Step 1: If r=1, then let r=r+1, Hr=V, quit; oth-
erwise, continue. 

Step 2: If IN_AVR_SP(V, H)=0, then keep H 
unchanged, quit; otherwise, let j=IN_AVR_SP(V, H), 
continue. 

Step 3: If V(x)≥Hr(x), let r=j+1, Hr=V, quit; oth-
erwise, continue. 

Step 4: If S(V, M2, Hr)>0, then let W=Hr, r=j+1, 
Hr=V, r=r+1, Hr=W, quit; otherwise, let r=j+1, Hr=V, 
quit. 

IN_AVR_SP(V, H) in Step 2 of Algorithm 3 is a 
procedure to verify which sub Active-Region V lies in 
(See Algorithm 4). If V lies to the left of the Ac-
tive-Polyline, then V lies in Active-Region. Let j=IN_ 
AVR_SP(V, H): if j=0, then V does not lie in the Ac-
tive-Region, thus there is no need to update H; oth-
erwise, AR(Hj) is the sub Active-Region where V lies 
in, and H needs to be updated.  
Algorithm 4    IN_AVR_SP(V, H) 

Step 1: If V(x)=Hr(x), go to Step 2; If 
Hr(x)<V(x)<M2(x), go to Step 3; otherwise, go to Step 
5. 

Step 2: If V(y)>Hr(y), go to Step 4; otherwise, 
return 0. 

Step 3: If S(Hr−1, Hr, V)≥0, go to Step 4; if S(Hr−1, 
Hr, V)<0 and S(Hr, M2, V)>0, return r; otherwise, 
return 0. 

Step 4: Let l=1, u=r−1, j=FIND_SAR(V, l, u, H). 
Step 5: If S(Hr−1, Hr, V)>0，go to Step 4; oth-

erwise, return 0. 
FIND_SAR(V, l, u, H) in Algorithm 4 is a func-

tion to find AR(Hj) where V lies in and returns j, i.e., to 
find Hj between Hl and Hu, such that S(Hj−1, Hj, V)<0 
and S(Hj, Hj+1, V)≥0 [Especially, if S(H1, H2, V)≥0, 
then j=1]. Note that if V(x)<Hr(x) and V lies on or to 
the right of L(Hr−1Hr), as Q is a partial point sequence 
of a simple polygon, it is not possible that V lies in 
Active-Region; otherwise, the line joining V and Hr 

would intersect with the polygon itself—this contra-
dict with Definition 2, so return 0 under this condition 
in Step 5. 
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NEW ALGORITHM FOR COMPUTING CONVEX 
HULL OF PLANAR POINT SET 
 

As a simple polygon is a special case of a planar 
point set, the algorithm in the former section could be 
extended to a new algorithm for computing the con-
vex hull of a planar point set. 

The main differences between a planar point set 
and a simple polygon are: (1) there is no convex ver-
tex or concave vertex in a planar point set; (2) the 
subsets are not naturally separated by extreme points; 
(3) the points in a planar point set would not have all 
properties which are possessed by the vertices of a 
simple polygon. So the extension is not straightfor-
ward. The definition for a candidate is revised as a 
point lying to the left of L(MiMi+1) (i=1, 3, 5, 7). The 
subsets of candidates lying in sub-regions I to IV 
(excluding the borders) in Fig.1 are called candidate 
subsets between Mi and Mi+1 (i=7, 5, 3, 1) respectively. 
Given a planar point set, we need first to find out the 
extreme points. For each remaining point V, if it sat-
isfies one of the inequalities, i.e., S(Mi, Mi+1, V)>0 
(i=1, 3, 5, 7), it is put into corresponding candidate 
subset between Mi and Mi+1. 

The integrated algorithm to compute the convex 
hull CH of a planar point set PS is as follows: 
Algorithm 5   CHULL_PPS(CH, PS) 

Step 1: Find out extreme points Mi (i=1, 2, …, 8) 
of PS, denote the candidate subsets between M2i−1 and 
M2i by Qi (i=1, 2, 3, 4), set i=1. 

Step 2: Call ORD_CHULL_PPS(M2i−1, M2i, Qi, 
Hi) to compute the ordered convex hull point se-
quence Hi between Mi and Mi+1. 

Step 3: If i<4, then i=i+1, goto Step 2; otherwise, 
continue. 

Step 4: CH=H1∪H2∪H3∪H4. 
ORD_CHULL_PPS in Algorithm 5 is a proce-

dure to compute the ordered convex hull point se-
quences between Mi and Mi+1 (i=1, 3, 5, 7) of a planar 
point set. Similarly, computing of the ordered convex 
hull point sequence between M1 and M2 is used as an 
illustration. Suppose the sub-candidate collection 
between M1 and M2 is Q. The algorithm to compute 
the ordered convex hull point sequence H between M1 
and M2 is given as follows: 
Algorithm 6    ORD_CHULL_PPS(M1, M2, Q, H) 

Step 1: If M1=M2, then let H={M1}, end; other-
wise, if Q=∅, then let H={M1, M2}, end; if Q≠∅, 

suppose Q={Q1, …, Qs}, s≥1, let H={M1}, r=1, i=1, 
V=Q1, continue. 

Step 2: Call DEAL_CAND_PPS(V, H), i=i+1. 
Step 3: If i≤s, then let V=Qi, go to Step 2; oth-

erwise, continue. 
Step 4: r=r+1, Hr=M2. 
DEAL_CAND_PPS(V, H) in Algorithm 6 is a 

procedure to deal with a point V in Q (see Algorithm 
7).  In order to explain this procedure, the concept of 
“the inverse Active-Region” needs to be introduced 
first. The definition of Active-Region is unchanged, 
and a sub Active-Region of Hj mentioned before is 
called “a sequential sub Active-Region of Hj” with 
the denotation still being AR(Hj), and FIND_SAR(V, l, 
u, H), a function to find the sequential sub Active- 
Region where V lies in is unchanged. The shadow 
region in Fig.3 is an inverse sub Active-Region re-
lated to Hj (j=2, …, r−1), and the points in which lie to 
the right of R(HjHj−1) and lie on or to the left of 
R(Hj+1Hj). We call such sub Active-Region related to 
Hj “inverse sub Active-Region of Hj”, and denote it 
by IAR(Hj). R(Hj+1Hj) and R(HjHj−1) are called “for-
ward border” and “backward border” of IAR(Hj) re-
spectively. According to the definition of IAR(Hj), 
given a point V∈IAR(Hi) (l≤i≤u) and Hj (l≤j≤u), we 
could conclude that if V lies to the right of R(HjHj−1) 
and to the left of or on R(Hj+1Hj), then V∈IAR(Hj); if 
V(y)≥Hj(y) or V(y)<Hj(y) and V lies to the right of 
R(Hj+1Hj), then V∈IAR(Hi) (j+1≤i≤u); otherwise, 
V∈IAR(Hi) (l≤i≤j−1). Here we adopt FIND_ISAR(V, l, 
u, t, H), a function to find the inverse sub Active- 
Region where V lies in, i.e., to find Hk between Hl and 
Hu, such that S(Hk, Hk−1, V)<0 and S(Hk+1, Hk, V)≥0, 
return k, IAR(Hk) is the inverse sub Active-Region 
where V lies in. If S(Hk+1, Hk, V)=0, then V lies on the 
forward border of IAR(Hk), let t=1; otherwise, let t=0. 
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Fig.3  Inverse sub Active-Region of Hj between M1 and M2
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Algorithm 7    DEAL_CAND_PPS(V, H) 
Step 1: If r=1, then let r=r+1, Hr=V, quit; oth-

erwise, call IN_AVR_PPS(V, m, n, t, H). 
Step 2: If m=0, then keep H unchanged, quit; if 

n=0, go to Step 3; if n>0, go to Step 5. 
Step 3: If V(x)≥Hr(x), then let r=m+1, Hr=V, quit; 

otherwise, continue. 
Step 4: If S(V, M2, Hr)>0, then let W=Hr, r=m+1, 

Hr=V, r=r+1, Hr=W, quit; otherwise, let r=m+1, Hr=V, 
quit. 

Step 5: If t=0, let r=r−n+m+2, to delete points 
after Hm and before Hn in H, insert V immediately 
before Hn in H, quit; if t=1, let r=r−n+m+1, to delete 
points after Hm and before Hn+1 in H, insert V imme-
diately before Hn+1 in H, quit. 

IN_AVR_PPS(V, m, n, t, H) in Step 1 of Algo-
rithm 7 is a procedure to verify which sub Ac-
tive-Region V lies in (see Algorithm 8): if m=0, then V 
does not lie in Active-Region; if m>0, then AR(Hm) is 
the sequential sub Active-Region where V lies in; if 
n>0, then IAR(Hn) is the inverse sub Active-Region 
where V lies in; if t=1, then V lies on the forward 
border of IAR(Hn); if t=0, then V does not lie on the 
forward border of IAR(Hn). 

For a point in a planar point set, there are two 
conditions to be discussed: (1) V(x)≥Hr(x) or V(x)< 
Hr(x) and V lies to the left of L(Hr−1Hr); (2) V(x)<Hr(x) 
and V lies on or to the right of L(Hr−1Hr). According to 
condition (1), if V lies in Active-Region, then we only 
need to find out the sequential sub Active-Region 
where V lies in, with the procedure just like Step 1 to 
Step 5 in IN_AVR_SP(V, H). According to condition 
(2), if V lies in Active-Region, then we need to find 
both sequential and inverse sub Active-Region where 
V lies in. In Step 5 of Algorithm 4, if V(x)<Hr(x) and V 
lies on or to the right of L(Hr−1Hr), owing to the 
definition of a simple polygon, the possibility of V 
being in Active-Region is excluded. However, it is 
not suitable for a planar point set. For a planar point 
set, we need first to find out Hj, such that 
Hj(x)<V(x)≤Hj+1(x); if V lies on or to the right of 
L(Hj−1Hj), then V does not lie in Active-Region; oth-
erwise, V lies in Active-Region. If we certify that V is 
in Active-Region, we need to further find both the 
sequential sub Active-Region and inverse sub Ac-
tive-Region where V lies in, to update H properly. 

 

Algorithm 8    IN_AVR_PPS(V, m, n, t, H) 
Step 1: If V(x)=Hr(x), let n=0, go to Step 2; if 

Hr(x)<V(x)<M2(x), let n=0, go to Step 3; otherwise, go 
to Step 5. 

Step 2: If V(y)>Hr(y), go to Step 4; otherwise, let 
m=0, quit. 

Step 3: If S(Hr−1, Hr, V)≥0, go to Step 4; if S(Hr−1, 
Hr, V)<0 and S(Hr, M2, V)>0, then let m=r, quit; oth-
erwise, let m=0, quit. 

Step 4: Let l=1, u=r−1, m=FIND_SAR(V, l, u, H), 
quit. 

Step 5: If S(Hr−1, Hr, V)>0, let n=0, go to Step 4. 
otherwise, to find Hj such that Hj(x)<V(x)≤Hj+1(x): if 
S(Hj, Hj+1, V)≤0, then let m=0, n=0, quit; otherwise, 
call FIND_AVR_PPS(V, j, m, n, t, H).  

FIND_AVR_PPS(V, j, m, n, t, H) in Algorithm 8 
is a procedure to verify the sequential and inverse sub 
Active-Region where V lies in according to the loca-
tion of V (See Algorithm 9). Assume that V lies in the 
sub Active-Region with shadow in Fig.4, which is 
divided into sub-regions I to IV (not including the 
segmental lines) by two straight lines Hj−1Hj and 
Hj+1Hj+2. G is the common point of Hj−1Hj and 
Hj+1Hj+2. Note that for j=r−2, only sub-regions I and 
III exist; for j=1, if V lies to the left of R(H3H2), V lies 
in region I; if V lies to the right of R(H3H2), V lies in 
region II.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 gives the values for m, n and t according 
to the location of V. For expressions like l=j+2, u=r−1: 
if they occur in the column of m, then m= 
FIND_SAR(V, l, u, H); if they occur in the column of 
n, then n=FIND_ISAR(V, l, u, t, H), and t is also 
computed. 

 

Hj−1 

Hj 

Hj+1 

Hj+2 
Hj+4

Hj+3 

Hj−2 

I 

II IV 

Fig.4 Four sub-regions divided by Hj−1Hj and Hj+1Hj+2

in Active-Region of  Hj(x)<V(x)≤Hj+1(x) 

III 
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Algorithm 9    FIND_AVR_PPS(V, j, m, n, t, H) 

Step 1: If j=1, then let m=1, go to Step 2; if j=r−2, 
then let n=r−1, if S(Hr−1, Hr, V)=0, let t=1, if S(Hr−1,Hr, 
V)<0, let t=0, go to Step 3; otherwise,  go to Step 4. 

Step 2: If S(H3, H2, V)=0, then let n=2, t=1, quit; 
if S(H3, H2, V)>0, then let n=2, t=0, quit; otherwise, 
let l=3, u=r−1, n=FIND_ISAR(V, l, u, t, H), quit. 

Step 3: If S(Hr−3, Hr−2, V)<0, then let m=r−2, quit; 
if S(Hr−3, Hr−2, V)=0, then let m=r−3, quit; otherwise, 
let l=1. u=r−3, m=FIND_SAR(V, l, u, H), quit. 

Step 4: Get the values of m, n and t according to 
Table 1. 
 
 
COMPUTING COMPLEXITY ANALYSIS 
 

We analyze the time complexity of the algorithm 
for computing the convex hull of a planar point set. 
Suppose n is the number of points in a planar point set 
and h is the number of vertices on the convex hull of 
the planar point set. The total time complexity of Step 
1, Step 3 and Step 4 in Algorithm 5 is O(n). The time 
complexity of Step 2 in Algorithm 5 is mainly influ-
enced by the update of H and the procedure of search 
for the sub Active-Regions where the candidates lie in. 
As a candidate can be added to the ordered convex 
hull point sequence at most once, so the deletion of it, 
the time complexity of update of H is O(n). We now 
just analyze the time complexity of the search proce-  
 

 
 

 
 
 

dure for the sub Active-Region where one candidate 
lies in. The search steps in the search procedure are 
analyzed as follows: (1) Step 5 of Algorithm 8, to find 
Hj between Hl and Hu, such that Hj(x)<V(x)≤Hj+1(x), 
according to the properties that the points in the or-
dered convex hull point sequence have, a binary 
search method could be used; (2) The two functions 
FIND_SAR(V, l, u, H) and FIND_ISAR(V, l, u, t, H) in 
Algorithm 9 are remaining search steps, according to 
the conclusions drawn ahead, a binary search method 
could also be used. The time complexity of search 
steps is O(logh). The time complexity of the search 
procedure for the sub Active-Regions where the can-
didates lie in is O(nlogh). So the time complexity of 
the algorithm for computing the convex hull of a 
planar point set proposed in this paper is O(nlogh).  
 
 
EXPERIMENTAL RESULTS 
 

We have compared our strategy with the ran-
domized hull algorithm proposed by Bhattacharya 
and Sen (1997). We ran experiments for different 
distributions which were adopted by Binay, and the 
averge is also computed on the basis of 15 trials. The 
experimented planar point sets have 50 000 points. 
The running CPU time (on IBM Thinkpad T40) sta-
tistics are shown in Table 2 (for upper hull). We 
mention our algorithm as ordered hull. 
 
 
CONCLUSION 
 

For the algorithms of planar convex hull prob-
lem, the central consideration is the location of a point 
in a planar subdivision. It is said in the bible of 
computational geometry (Preparata and Shamos, 
1985) toward the problem: from the viewpoint of 
query time, the ability to use binary search is more 
important than the minimization of the size of the set 
to be searched. In other words, the fundamental idea 
is to create new geometric objects to permit binary  
 

 
 
 
 
 

Table 1  Values of m, n, t 

Location of V m n t 
S1=0, S2=0 j−1 j+1 1 
S1=0, S2<0 j−1 j+1 0 
S1=0, S2>0 j−1 l=j+2, u=r−1  
S1<0, S2=0 j j+1 1 
S1<0, S2<0 j j+1 0 
S1<0, S2>0 j l=j+2, u=r−1  
S1>0, S2=0 l=1, u=j−1 j+1 1 
S1>0, S2<0 l=1, u=j−1 j+1 0 
S1>0, S2>0 l=1, u=j−1 l=j+2, u=r−1  

S1=S(Hj−1, Hj, V); S2=S(Hj+1, Hj+2, V) 

Table 2  Comparing the average performance of the ordered hull and randomized hull for various distributions

Strategy Uniform in box 
(12) 

Uniform in disc 
(33) 

Uniform in annulus
(45) 

Uniform in circle 
(16 385) 

Customized
(9) 

Randomized hull 5.939 6.269 5.238 1.816 28.546 
Ordered hull   0.0582   0.0670   0.0700   0.5020     0.0500 

      The number in the parenthesis is the value of h(average) 
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search. The sequential sub Active-Regions and in-
verse sub Active-Regions are just such new geometric 
objects created by our algorithm. Comparison of our 
algorithm with those of a planar point set whose time 
complexity is also O(nlogh) (Kirkpatrick and Seidel, 
1986; Bhattacharya and Sen, 1997) shows that both  
need to separate the planar point set between extreme 
points into sub sets iteratively according to certain 
conditions, and that both need to compare the slopes 
of segments. While for the new algorithm proposed in 
this paper, there is no need to separate the sub can-
didate collections between extreme points, and only 
the orientation test function is used throughout the 
procedure. The new algorithm is simple and easy to 
implement. From the experimental results, it is ob-
vious that our algorithm is much faster. Moreover, as 
the points in the ordered convex hull algorithm are 
computed sequentially in our algorithm, it is easier to 
implement the space-efficient planar convex hull 
algorithm (Brönnimann et al., 2004; Brönnimann and 
Chan, 2006) based on the new planar convex hull 
algorithm than other algorithms with the same time 
complexity. 
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