
Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1210

A new algorithm for computing the convex hull
of a planar point set*

LIU Guang-hui†, CHEN Chuan-bo

(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
†E-mail: aaalgh@263.net

Received Nov. 7, 2006; revision accepted May 14, 2007

Abstract: When the edges of a convex polygon are traversed along one direction, the interior of the convex polygon is always on
the same side of the edges. Based on this characteristic of convex polygons, a new algorithm for computing the convex hull of a
simple polygon is proposed in this paper, which is then extended to a new algorithm for computing the convex hull of a planar
point set. First, the extreme points of the planar point set are found, and the subsets of point candidate for vertex of the convex hull
between extreme points are obtained. Then, the ordered convex hull point sequences between extreme points are constructed
separately and concatenated by removing redundant extreme points to get the convex hull. The time complexity of the new planar
convex hull algorithm is O(nlogh), which is equal to the time complexity of the best output-sensitive planar convex hull algorithms.
Compared with the algorithm having the same complexity, the new algorithm is much faster.

Key words: Computational geometry, Convex hull, Extreme points, Ordered convex hull point sequence
doi:10.1631/jzus.2007.A1210 Document code: A CLC number: TP391

INTRODUCTION

Convex hull problem is one of the classical
problems in computational geometry. The convex hull
algorithm has wide practical use in areas such as
computer graphics, image processing, design auto-
mation and pattern recognition (O′Rourke, 1998).
Two-dimensional convex hull problems are divided
into two categories, one is based on polygons, and the
other on planar point sets. The convex hull of a simple
polygon P is the smallest convex polygon containing
P, whose vertices must be vertex of P. The convex
hull of a planar point set S is the smallest convex
polygon containing S, whose vertices must be point of
S. The convex hull problem of a simple polygon is a
special case of the convex hull problem of a planar
point set.

Since Sklansky (1972) first proposed linearly
convex hull algorithm of a simple polygon, many

convex hull algorithms have been proposed
(McCallum and Avis, 1979; Yao, 1981; Lee, 1983;
Kirkpatrick and Seidel, 1986; Melkman, 1987;
Bhattacharya and Sen, 1997; Levcopoulos et al., 2002;
Joswig and Ziegler, 2004). Yao (1981) showed that
Ω(nlogn) is the lower bound of the convex hull
problem for the worst-case input. Kirkpatrick and
Seidel (1986) proved an Ω(nlogh) lower bound exists
when both input and output sizes were considered,
and proposed an O(nlogh) optimal algorithm based on
the prune-and-search technique. Although Sklansky
was the first one to give the convex hull algorithm,
unfortunately his algorithm has deficiencies.
McCallum and Avis (1979) gave the first correct
convex hull algorithm of a simple polygon. Melkman
(1987) made a significant breakthrough by proposing
an online convex hull algorithm of a 2D simple poly-
line which greatly simplifies the logic of the algo-
rithm. The modified algorithm uses a double-ended
queue to store an incremental hull for the vertices
already processed. Convex hull algorithms are also
investigated in China these years (Kong and Cai,

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project (No. 2004AA420100) supported by the National Hi-Tech
Research and Development Program (863) of China

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1211

1994; Cui et al., 1997; Wu et al., 1997; Jin et al., 1998;
Wang et al., 1998; Liu, 2002).

Inspired by one of the characteristics of convex
polygons, i.e., “edge same-side characteristic” (it
would be explained later), we propose a new algo-
rithm for computing the convex hull of a simple
polygon, which is very simple and efficient. After that,
we extend it to a new algorithm for computing the
convex hull of a planar point set.

RELATED CONCEPTION

In this section, we give a description about re-
lated concepts on convex hull problem.
Definition 1 Let a point pi∈ú

2 or ú3 (i=1, 2, …, n),
suppose the point set

1 1

| , 1, 0, , 1,2,..., .
n n

i i i
i i

S s s p i nλ λ λ λ
= =

 = = ≡ ≥ ∈ =

∑ ∑
(1)

The smallest convex polygon containing S is called
the convex hull of S.
Definition 2 Let Pi(xi, yi) (i=1, 2, …, n) be n vertices
of a polygon. If for any i, j, i≠j, i, j=1,2, …, n, edge
PiPi+1 and edge PjPj+1 are either neighbored with one
shared end point or separated, then the polygon is
called a simple polygon.
Definition 3 Let A=(xa, ya), B=(xb, yb) and C=(xc, yc)
be three different points in the XY plane, denote the
directed straight line joining A and B (from A to B) by
L(AB), the orientation test function for discrimination
of C with respect to L(AB) is as follows:

(, ,) ()() ()().b a c a c a b aS A B C x x y y x x y y= − − − − − (2)

(1) If S>0, then C lies to the left of L(AB);
(2) If S=0, then C lies on L(AB);
(3) If S<0, then C lies to the right of L(AB).

Definition 4 A point sequence composed of all the
vertices of the convex hull of a simple polygon or a
planar point set is called a convex hull point sequence.
While the elements of the point sequence are arranged
along one direction (clockwise or counterclockwise),
it is called an ordered convex hull point sequence.
Definition 5 For a simple polygon P with a point
sequence as Pi(xi, yi) (i=1, 2, …, n), suppose xmax=

max(xi), xmin=min(xi), ymax=max(yi), ymin=min(yi), and
PLD=(xmin, ymin), PLU=(xmin, ymax), PRD=(xmax, ymin),
PRU=(xmax, ymax), the former four points are called
corner points of the simple polygon, the rectangle
composed of the four corner points is called rectan-
gular encasing box of the simple polygon. The eight
extreme points of the simple polygon are defined as
follows:

(a) Among points with xi=xmin, denote the one
with the maximum coordinate y by M1;

(b) Among points with xi=xmin, denote the one
with the minimum coordinate y by M8;

(c) Among points with xi=xmax, denote the one
with the maximum coordinate y by M4;

(d) Among points with xi=xmax, denote the one
with the minimum coordinate y by M5;

(e) Among points with yi=ymin, denote the one
with the maximum coordinate x by M6;

(f) Among points with yi=ymin, denote the one
with the minimum coordinate x by M7;

(g) Among points with yi=ymax, denote the one
with the maximum coordinate x by M3;

(h) Among points with yi=ymax, denote the one
with the minimum coordinate x by M2.

Definitions of the four corner points, rectangular
encasing box and the eight extreme points of a simple
polygon are also applicable to a planar point set. Line
segments M1M2, M3M4, M5M6 and M7M8 divide the
rectangular encasing box of a planar point set into five
sub-regions, as shown in Fig.1. A point in one of the
sub-regions from I to IV may be a vertex on the
convex hull.

M6

M8

M1

M3

M4

M5

M7

PLU PRU

PRD

M2

PLD

V

III

II I

IV

Fig.1 Sub-regions of the rectangular encasing box
of a planar point set

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1212

NEW ALGORITHM FOR COMPUTING CONVEX
HULL OF SIMPLE POLYGON

For convenience, we mention a polygon instead
of a simple polygon. According to Definition 1 and
Definition 5, it is obvious that Mi (i=1, 2, …, 8) of a
polygon must be vertices of the convex hull of the
polygon, and line segments M8M1, M2M3, M4M5 and
M6M7 are edges of the convex hull of the polygon.
Therefore, we could first compute the ordered convex
hull point sequences between Mi and Mi+1 (i=1, 3, 5, 7)
separately, then we could concatenate them sequen-
tially by removing redundant Mi to get the convex hull
of the polygon. The convex hull problem is then
transformed to the problem of computing the ordered
convex hull point sequences between Mi and Mi+1 (i=1,
3, 5, 7).

The integrated algorithm to compute the convex
hull CH of a given polygon P is as follows:
Algorithm 1 CHULL_SP(CH, P)

Step 1: Find out extreme points Mi (i=1, 2, …, 8)
of P, denote the point sequences between M2i−1 and
M2i by Qi (i=1, 2, 3, 4), set i=1.

Step 2: Call ORD_CHULL_SP(M2i−1, M2i, Qi, Hi)
to compute the ordered convex hull point sequence Hi
between Mi and Mi+1.

Step 3: If i<4, then i=i+1, goto Step 2; otherwise,
continue.

Step 4: CH=H1∪H2∪H3∪H4.
ORD_CHULL_SP in Algorithm 1 is a procedure

to compute the ordered convex hull point sequences
between Mi and Mi+1 (i=1, 3, 5, 7) of a simple polygon.
For convenience of explanation, we give some de-
notations. For a point V, V(x) and V(y) denote its
standard cartesian coordinates. For two different
points A and B, denote the ray emanating from A to B
by R(AB), denote the directed straight line joining A
and B by L(AB). Denote the ordered convex hull point
sequence between Mi and Mi+1 (along clockwise di-
rection) by H={H1, H2, …, Hr} (r≥2), H1=Mi, Hr=Mi+1.
According to Definitions 4 and 5, it is known that
only points which lie to the left side of the directed
line joining Mi and Mi+1 (i=1, 3, 5, 7) can possibly be
points in the ordered convex hull point sequence of
the polygon. So we just need to consider the convex
vertices that lie to the left of the directed line joining
Mi and Mi+1 (i=1, 3, 5, 7), and we call them candi-
dates.

As the topological structures of point sequences
between Mi and Mi+1 are the same, computation of the
ordered convex hull point sequence between M1 and
M2 is used as an illustration of the procedure. The
ordered convex hull point sequences between other
neighboring extreme points can be computed by
analogy with it.

If M1=M2, then the result is simply M1. So we
would consider the general condition, i.e., M1 and M2
are two different points. Suppose the point sequence
between M1 and M2 is Q. If Q is null, then H={M1,
M2}. If Q is not null, then for each point V in Q, first to
check if it is a candidate: if it is, continue to judge if it
could be a vertex on the convex hull and update H
properly if necessary; otherwise, go ahead. Suppose V
is the current candidate, if V is the first candidate in Q,
just add it immediately after M1 in H. A candidate that
is not the first candidate is called a subsequent can-
didate. How to judge whether the subsequent candi-
dates could be vertices on the convex hull or not and
how to update H properly are the key issues of the
algorithm.

We now give the important conceptions used in
our algorithm. Assume H={H1, H2, …, Hr} (r≥2) is
current ordered convex hull point sequence between
M1 and M2. The points in H have properties as follows:
if m<n, then Hm(x)<Hn(x), Hm(y)<Hn(y). The directed
polyline sequentially connecting the points in H and
M2 is called “Active-Polyline”. The Active-Polyline
divides the corresponding sub-region IV of the rec-
tangular encasing box of P into two parts. The part
that lies to the left of the Active-Polyline is called
“Active-Region” (not including the borders). R(HjHj+1)
(j=1, 2, …, r−1) divide the active region into many
sub Active-Regions related to Hj (j=1, 2, …, r). The
shadow region in Fig.2 is the sub Active-Region re-
lated to Hj, and the points in which all lie to the right
of R(Hj−1Hj) and on or to the left of R(HjHj+1). We call

 Fig.2 Sub Active-Region of Hj between M1 and M2

AR(Hj)

H2

Hj−1

Hj

Hj+1
Hr

M2

M1

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1213

such sub Active-Region related to Hj “sub Active-
Region of Hj”, and denote it by AR(Hj). R(Hj−1Hj) and
R(HjHj+1) are called “forward border” and “backward
border” of AR(Hj) respectively. Especially, the sub
Active-Region lie on or to the left of R(H1H2) is called
“sub Active-Region of H1”, denoted by AR(H1); the
sub Active-Region that lies to the right of R(Hr−1Hr)
and to the left of R(HrM2) is called “sub Active-
Region of Hr”, denoted by AR(Hr). According to the
definition of AR(Hj), given a point V∈AR(Hi) (l≤i≤u)
and Hj (l≤j≤u), we could have such conclusions: if V
lies to the right of R(Hj−1Hj) and to the left of or on
R(HjHj+1), then V∈AR(Hj); if V(x)<Hj(x) or V(x)≥Hj(x)
and V lies to the left of or on R(Hj−1Hj), then V∈AR(Hi)
(l≤i≤j−1); otherwise, V∈AR(Hi) (j+1≤i≤u).

The algorithm proposed in this paper is based on
one of the characteristics of convex polygons, i.e.,
when the edges of a convex polygon are traversed
along one direction, the interior of the convex poly-
gon is always on the same side of the edges. We call
this characteristic “edge same-side characteristic”. In
this paper, we assume that the edges of a convex
polygon are traversed along clockwise direction, and
the interior of the convex polygon is always on the
right of these edges. If current candidate V lies in
Active-Region, i.e., V lies to the left of the Ac-
tive-Polyline, the edge same-side characteristic of the
convex hull is not kept, which implies that V is one
vertex on the convex hull, and that H needs to be
updated to keep the edge same-side characteristic of
the convex hull.

The algorithm to compute the ordered convex
hull point sequence between M1 and M2 is given as
follows:
Algorithm 2 ORD_CHULL_SP(M1, M2, Q, H)

Step 1: If M1=M2, then let H={M1}, end; other-
wise, if Q=∅, then let H={M1, M2}, end; if Q≠∅,
suppose Q={Q1, …, Qs}, s≥1, let H={M1}, r=1, i=1,
V=Q1, continue.

Step 2: If IsCand(V)=1, then call DEAL_
CAND_SP(V); otherwise, continue.

Step 3: i=i+1, if i≤s, then let V=Qi, go to Step 2;
otherwise, continue.

Step 4: r=r+1, Hr=M2.
IsCand(V) in Algorithm 2 is a function to judge

whether V is a candidate or not. Suppose the direction
to traverse a polygon is clockwise, V1 and V2 are

neighboring vertices of V along the direction, ac-
cording to the definition of a candidate: if S(M1, M2,
V)>0 and S(V1, V, V2)<0, then IsCand(V)=1; other-
wise, IsCand(V)=0. The procedure DEAL_CAND_
SP(V, H) in Algorithm 2 is a procedure to deal with a
candidate V (See Algorithm 3).
Algorithm 3 DEAL_CAND_SP(V, H)

Step 1: If r=1, then let r=r+1, Hr=V, quit; oth-
erwise, continue.

Step 2: If IN_AVR_SP(V, H)=0, then keep H
unchanged, quit; otherwise, let j=IN_AVR_SP(V, H),
continue.

Step 3: If V(x)≥Hr(x), let r=j+1, Hr=V, quit; oth-
erwise, continue.

Step 4: If S(V, M2, Hr)>0, then let W=Hr, r=j+1,
Hr=V, r=r+1, Hr=W, quit; otherwise, let r=j+1, Hr=V,
quit.

IN_AVR_SP(V, H) in Step 2 of Algorithm 3 is a
procedure to verify which sub Active-Region V lies in
(See Algorithm 4). If V lies to the left of the Ac-
tive-Polyline, then V lies in Active-Region. Let j=IN_
AVR_SP(V, H): if j=0, then V does not lie in the Ac-
tive-Region, thus there is no need to update H; oth-
erwise, AR(Hj) is the sub Active-Region where V lies
in, and H needs to be updated.
Algorithm 4 IN_AVR_SP(V, H)

Step 1: If V(x)=Hr(x), go to Step 2; If
Hr(x)<V(x)<M2(x), go to Step 3; otherwise, go to Step
5.

Step 2: If V(y)>Hr(y), go to Step 4; otherwise,
return 0.

Step 3: If S(Hr−1, Hr, V)≥0, go to Step 4; if S(Hr−1,
Hr, V)<0 and S(Hr, M2, V)>0, return r; otherwise,
return 0.

Step 4: Let l=1, u=r−1, j=FIND_SAR(V, l, u, H).
Step 5: If S(Hr−1, Hr, V)>0，go to Step 4; oth-

erwise, return 0.
FIND_SAR(V, l, u, H) in Algorithm 4 is a func-

tion to find AR(Hj) where V lies in and returns j, i.e., to
find Hj between Hl and Hu, such that S(Hj−1, Hj, V)<0
and S(Hj, Hj+1, V)≥0 [Especially, if S(H1, H2, V)≥0,
then j=1]. Note that if V(x)<Hr(x) and V lies on or to
the right of L(Hr−1Hr), as Q is a partial point sequence
of a simple polygon, it is not possible that V lies in
Active-Region; otherwise, the line joining V and Hr

would intersect with the polygon itself—this contra-
dict with Definition 2, so return 0 under this condition
in Step 5.

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1214

NEW ALGORITHM FOR COMPUTING CONVEX
HULL OF PLANAR POINT SET

As a simple polygon is a special case of a planar
point set, the algorithm in the former section could be
extended to a new algorithm for computing the con-
vex hull of a planar point set.

The main differences between a planar point set
and a simple polygon are: (1) there is no convex ver-
tex or concave vertex in a planar point set; (2) the
subsets are not naturally separated by extreme points;
(3) the points in a planar point set would not have all
properties which are possessed by the vertices of a
simple polygon. So the extension is not straightfor-
ward. The definition for a candidate is revised as a
point lying to the left of L(MiMi+1) (i=1, 3, 5, 7). The
subsets of candidates lying in sub-regions I to IV
(excluding the borders) in Fig.1 are called candidate
subsets between Mi and Mi+1 (i=7, 5, 3, 1) respectively.
Given a planar point set, we need first to find out the
extreme points. For each remaining point V, if it sat-
isfies one of the inequalities, i.e., S(Mi, Mi+1, V)>0
(i=1, 3, 5, 7), it is put into corresponding candidate
subset between Mi and Mi+1.

The integrated algorithm to compute the convex
hull CH of a planar point set PS is as follows:
Algorithm 5 CHULL_PPS(CH, PS)

Step 1: Find out extreme points Mi (i=1, 2, …, 8)
of PS, denote the candidate subsets between M2i−1 and
M2i by Qi (i=1, 2, 3, 4), set i=1.

Step 2: Call ORD_CHULL_PPS(M2i−1, M2i, Qi,
Hi) to compute the ordered convex hull point se-
quence Hi between Mi and Mi+1.

Step 3: If i<4, then i=i+1, goto Step 2; otherwise,
continue.

Step 4: CH=H1∪H2∪H3∪H4.
ORD_CHULL_PPS in Algorithm 5 is a proce-

dure to compute the ordered convex hull point se-
quences between Mi and Mi+1 (i=1, 3, 5, 7) of a planar
point set. Similarly, computing of the ordered convex
hull point sequence between M1 and M2 is used as an
illustration. Suppose the sub-candidate collection
between M1 and M2 is Q. The algorithm to compute
the ordered convex hull point sequence H between M1
and M2 is given as follows:
Algorithm 6 ORD_CHULL_PPS(M1, M2, Q, H)

Step 1: If M1=M2, then let H={M1}, end; other-
wise, if Q=∅, then let H={M1, M2}, end; if Q≠∅,

suppose Q={Q1, …, Qs}, s≥1, let H={M1}, r=1, i=1,
V=Q1, continue.

Step 2: Call DEAL_CAND_PPS(V, H), i=i+1.
Step 3: If i≤s, then let V=Qi, go to Step 2; oth-

erwise, continue.
Step 4: r=r+1, Hr=M2.
DEAL_CAND_PPS(V, H) in Algorithm 6 is a

procedure to deal with a point V in Q (see Algorithm
7). In order to explain this procedure, the concept of
“the inverse Active-Region” needs to be introduced
first. The definition of Active-Region is unchanged,
and a sub Active-Region of Hj mentioned before is
called “a sequential sub Active-Region of Hj” with
the denotation still being AR(Hj), and FIND_SAR(V, l,
u, H), a function to find the sequential sub Active-
Region where V lies in is unchanged. The shadow
region in Fig.3 is an inverse sub Active-Region re-
lated to Hj (j=2, …, r−1), and the points in which lie to
the right of R(HjHj−1) and lie on or to the left of
R(Hj+1Hj). We call such sub Active-Region related to
Hj “inverse sub Active-Region of Hj”, and denote it
by IAR(Hj). R(Hj+1Hj) and R(HjHj−1) are called “for-
ward border” and “backward border” of IAR(Hj) re-
spectively. According to the definition of IAR(Hj),
given a point V∈IAR(Hi) (l≤i≤u) and Hj (l≤j≤u), we
could conclude that if V lies to the right of R(HjHj−1)
and to the left of or on R(Hj+1Hj), then V∈IAR(Hj); if
V(y)≥Hj(y) or V(y)<Hj(y) and V lies to the right of
R(Hj+1Hj), then V∈IAR(Hi) (j+1≤i≤u); otherwise,
V∈IAR(Hi) (l≤i≤j−1). Here we adopt FIND_ISAR(V, l,
u, t, H), a function to find the inverse sub Active-
Region where V lies in, i.e., to find Hk between Hl and
Hu, such that S(Hk, Hk−1, V)<0 and S(Hk+1, Hk, V)≥0,
return k, IAR(Hk) is the inverse sub Active-Region
where V lies in. If S(Hk+1, Hk, V)=0, then V lies on the
forward border of IAR(Hk), let t=1; otherwise, let t=0.

M2

M1

IAR(Hj)

H2

Hj−1

Hj
Hj+1

Hr

Fig.3 Inverse sub Active-Region of Hj between M1 and M2

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1215

Algorithm 7 DEAL_CAND_PPS(V, H)
Step 1: If r=1, then let r=r+1, Hr=V, quit; oth-

erwise, call IN_AVR_PPS(V, m, n, t, H).
Step 2: If m=0, then keep H unchanged, quit; if

n=0, go to Step 3; if n>0, go to Step 5.
Step 3: If V(x)≥Hr(x), then let r=m+1, Hr=V, quit;

otherwise, continue.
Step 4: If S(V, M2, Hr)>0, then let W=Hr, r=m+1,

Hr=V, r=r+1, Hr=W, quit; otherwise, let r=m+1, Hr=V,
quit.

Step 5: If t=0, let r=r−n+m+2, to delete points
after Hm and before Hn in H, insert V immediately
before Hn in H, quit; if t=1, let r=r−n+m+1, to delete
points after Hm and before Hn+1 in H, insert V imme-
diately before Hn+1 in H, quit.

IN_AVR_PPS(V, m, n, t, H) in Step 1 of Algo-
rithm 7 is a procedure to verify which sub Ac-
tive-Region V lies in (see Algorithm 8): if m=0, then V
does not lie in Active-Region; if m>0, then AR(Hm) is
the sequential sub Active-Region where V lies in; if
n>0, then IAR(Hn) is the inverse sub Active-Region
where V lies in; if t=1, then V lies on the forward
border of IAR(Hn); if t=0, then V does not lie on the
forward border of IAR(Hn).

For a point in a planar point set, there are two
conditions to be discussed: (1) V(x)≥Hr(x) or V(x)<
Hr(x) and V lies to the left of L(Hr−1Hr); (2) V(x)<Hr(x)
and V lies on or to the right of L(Hr−1Hr). According to
condition (1), if V lies in Active-Region, then we only
need to find out the sequential sub Active-Region
where V lies in, with the procedure just like Step 1 to
Step 5 in IN_AVR_SP(V, H). According to condition
(2), if V lies in Active-Region, then we need to find
both sequential and inverse sub Active-Region where
V lies in. In Step 5 of Algorithm 4, if V(x)<Hr(x) and V
lies on or to the right of L(Hr−1Hr), owing to the
definition of a simple polygon, the possibility of V
being in Active-Region is excluded. However, it is
not suitable for a planar point set. For a planar point
set, we need first to find out Hj, such that
Hj(x)<V(x)≤Hj+1(x); if V lies on or to the right of
L(Hj−1Hj), then V does not lie in Active-Region; oth-
erwise, V lies in Active-Region. If we certify that V is
in Active-Region, we need to further find both the
sequential sub Active-Region and inverse sub Ac-
tive-Region where V lies in, to update H properly.

Algorithm 8 IN_AVR_PPS(V, m, n, t, H)
Step 1: If V(x)=Hr(x), let n=0, go to Step 2; if

Hr(x)<V(x)<M2(x), let n=0, go to Step 3; otherwise, go
to Step 5.

Step 2: If V(y)>Hr(y), go to Step 4; otherwise, let
m=0, quit.

Step 3: If S(Hr−1, Hr, V)≥0, go to Step 4; if S(Hr−1,
Hr, V)<0 and S(Hr, M2, V)>0, then let m=r, quit; oth-
erwise, let m=0, quit.

Step 4: Let l=1, u=r−1, m=FIND_SAR(V, l, u, H),
quit.

Step 5: If S(Hr−1, Hr, V)>0, let n=0, go to Step 4.
otherwise, to find Hj such that Hj(x)<V(x)≤Hj+1(x): if
S(Hj, Hj+1, V)≤0, then let m=0, n=0, quit; otherwise,
call FIND_AVR_PPS(V, j, m, n, t, H).

FIND_AVR_PPS(V, j, m, n, t, H) in Algorithm 8
is a procedure to verify the sequential and inverse sub
Active-Region where V lies in according to the loca-
tion of V (See Algorithm 9). Assume that V lies in the
sub Active-Region with shadow in Fig.4, which is
divided into sub-regions I to IV (not including the
segmental lines) by two straight lines Hj−1Hj and
Hj+1Hj+2. G is the common point of Hj−1Hj and
Hj+1Hj+2. Note that for j=r−2, only sub-regions I and
III exist; for j=1, if V lies to the left of R(H3H2), V lies
in region I; if V lies to the right of R(H3H2), V lies in
region II.

Table 1 gives the values for m, n and t according
to the location of V. For expressions like l=j+2, u=r−1:
if they occur in the column of m, then m=
FIND_SAR(V, l, u, H); if they occur in the column of
n, then n=FIND_ISAR(V, l, u, t, H), and t is also
computed.

Hj−1

Hj

Hj+1

Hj+2
Hj+4

Hj+3

Hj−2

I

II IV

Fig.4 Four sub-regions divided by Hj−1Hj and Hj+1Hj+2

in Active-Region of Hj(x)<V(x)≤Hj+1(x)

III

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1216

Algorithm 9 FIND_AVR_PPS(V, j, m, n, t, H)

Step 1: If j=1, then let m=1, go to Step 2; if j=r−2,
then let n=r−1, if S(Hr−1, Hr, V)=0, let t=1, if S(Hr−1,Hr,
V)<0, let t=0, go to Step 3; otherwise, go to Step 4.

Step 2: If S(H3, H2, V)=0, then let n=2, t=1, quit;
if S(H3, H2, V)>0, then let n=2, t=0, quit; otherwise,
let l=3, u=r−1, n=FIND_ISAR(V, l, u, t, H), quit.

Step 3: If S(Hr−3, Hr−2, V)<0, then let m=r−2, quit;
if S(Hr−3, Hr−2, V)=0, then let m=r−3, quit; otherwise,
let l=1. u=r−3, m=FIND_SAR(V, l, u, H), quit.

Step 4: Get the values of m, n and t according to
Table 1.

COMPUTING COMPLEXITY ANALYSIS

We analyze the time complexity of the algorithm
for computing the convex hull of a planar point set.
Suppose n is the number of points in a planar point set
and h is the number of vertices on the convex hull of
the planar point set. The total time complexity of Step
1, Step 3 and Step 4 in Algorithm 5 is O(n). The time
complexity of Step 2 in Algorithm 5 is mainly influ-
enced by the update of H and the procedure of search
for the sub Active-Regions where the candidates lie in.
As a candidate can be added to the ordered convex
hull point sequence at most once, so the deletion of it,
the time complexity of update of H is O(n). We now
just analyze the time complexity of the search proce-

dure for the sub Active-Region where one candidate
lies in. The search steps in the search procedure are
analyzed as follows: (1) Step 5 of Algorithm 8, to find
Hj between Hl and Hu, such that Hj(x)<V(x)≤Hj+1(x),
according to the properties that the points in the or-
dered convex hull point sequence have, a binary
search method could be used; (2) The two functions
FIND_SAR(V, l, u, H) and FIND_ISAR(V, l, u, t, H) in
Algorithm 9 are remaining search steps, according to
the conclusions drawn ahead, a binary search method
could also be used. The time complexity of search
steps is O(logh). The time complexity of the search
procedure for the sub Active-Regions where the can-
didates lie in is O(nlogh). So the time complexity of
the algorithm for computing the convex hull of a
planar point set proposed in this paper is O(nlogh).

EXPERIMENTAL RESULTS

We have compared our strategy with the ran-
domized hull algorithm proposed by Bhattacharya
and Sen (1997). We ran experiments for different
distributions which were adopted by Binay, and the
averge is also computed on the basis of 15 trials. The
experimented planar point sets have 50 000 points.
The running CPU time (on IBM Thinkpad T40) sta-
tistics are shown in Table 2 (for upper hull). We
mention our algorithm as ordered hull.

CONCLUSION

For the algorithms of planar convex hull prob-
lem, the central consideration is the location of a point
in a planar subdivision. It is said in the bible of
computational geometry (Preparata and Shamos,
1985) toward the problem: from the viewpoint of
query time, the ability to use binary search is more
important than the minimization of the size of the set
to be searched. In other words, the fundamental idea
is to create new geometric objects to permit binary

Table 1 Values of m, n, t

Location of V m n t
S1=0, S2=0 j−1 j+1 1
S1=0, S2<0 j−1 j+1 0
S1=0, S2>0 j−1 l=j+2, u=r−1
S1<0, S2=0 j j+1 1
S1<0, S2<0 j j+1 0
S1<0, S2>0 j l=j+2, u=r−1
S1>0, S2=0 l=1, u=j−1 j+1 1
S1>0, S2<0 l=1, u=j−1 j+1 0
S1>0, S2>0 l=1, u=j−1 l=j+2, u=r−1

S1=S(Hj−1, Hj, V); S2=S(Hj+1, Hj+2, V)

Table 2 Comparing the average performance of the ordered hull and randomized hull for various distributions

Strategy Uniform in box
(12)

Uniform in disc
(33)

Uniform in annulus
(45)

Uniform in circle
(16 385)

Customized
(9)

Randomized hull 5.939 6.269 5.238 1.816 28.546
Ordered hull 0.0582 0.0670 0.0700 0.5020 0.0500

 The number in the parenthesis is the value of h(average)

Liu et al. / J Zhejiang Univ Sci A 2007 8(8):1210-1217 1217

search. The sequential sub Active-Regions and in-
verse sub Active-Regions are just such new geometric
objects created by our algorithm. Comparison of our
algorithm with those of a planar point set whose time
complexity is also O(nlogh) (Kirkpatrick and Seidel,
1986; Bhattacharya and Sen, 1997) shows that both
need to separate the planar point set between extreme
points into sub sets iteratively according to certain
conditions, and that both need to compare the slopes
of segments. While for the new algorithm proposed in
this paper, there is no need to separate the sub can-
didate collections between extreme points, and only
the orientation test function is used throughout the
procedure. The new algorithm is simple and easy to
implement. From the experimental results, it is ob-
vious that our algorithm is much faster. Moreover, as
the points in the ordered convex hull algorithm are
computed sequentially in our algorithm, it is easier to
implement the space-efficient planar convex hull
algorithm (Brönnimann et al., 2004; Brönnimann and
Chan, 2006) based on the new planar convex hull
algorithm than other algorithms with the same time
complexity.

References
Bhattacharya, B.K., Sen, S., 1997. On a simple, practical,

optimal, output-sensitive randomized planar convex hull
algorithm. Journal of Algorithms, 25(1):177-193. [doi:10.
1006/jagm.1997.0869]

Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison,
J., Toussaint, G., 2004. Space-efficient planar convex hull
algorithms. Theor. Computer Sci., 321(1):25-40. [doi:10.
1016/j.tcs.2003.05.004]

Brönnimann, H., Chan, T.M., 2006. Space-efficient algorithms
for computing the convex hull of a simple polygonal line
in linear time. Comput. Geom., 34(2):75-82. [doi:10.1016/
j.comgeo.2005.11.005]

Cui, G.H., Hong, F., Yu, X.X., 1997. A class of optimal algo-
rithms for determine the convex hull of a set of nodes in a
plane. Chin. J. Computers, 20(4):330-334 (in Chinese).

Jin, W.H., He, T., Liu, X.P., Tang, W.Q., Tang, R.X., 1998. A
fast convex hull algorithm of planar point set based on
sorted simple polygon. Chin. J. Computers, 21(6):533-
539 (in Chinese).

Joswig, M., Ziegler, G.M., 2004. Convex hulls, oracles, and
homology. J. Symb. Comput., 38:1247-1259. [doi:10.
1016/j.jsc.2003.08.006]

Kirkpatrick, D.G., Seidel, R., 1986. The ultimate planar convex
hull algorithm? SIAM J. Computers, 15(1):287-299.
[doi:10.1137/0215021]

Kong, X.S., Cai, H.X., 1994. An algorithm for finding the
convex hull of a simple polygon using active double line
testing. Chin. J. Computers, 17(8):596-600 (in Chinese).

Lee, T.D., 1983. On finding the convex hull of a simple poly-
gon. Int. J. Comp. & Inf., 12(2):87-98.

Levcopoulos, C., Lingas, A., Mitchell, J.S.B., 2002. Adaptive
Algorithms for Constructing Convex Hulls and Triangu-
lations of Polygonal Chains. 8th Scandinavian Workshop
on Algorithm Theory. Turku, FL, p.80-89.

Liu, J.Y., 2002. Discussion on an O(n) time algorithm for the
convex hull of a planar point set. Chin. J. Computers,
25(6):670-672 (in Chinese).

McCallum, D., Avis, D., 1979. A linear algorithm for finding
the convex hull of a simple polygon. Inf. Processing Lett.,
9:201-206. [doi:10.1016/0020-0190(79)90069-3]

Melkman, A.A., 1987. On-line construction of the convex hull
of a simple polygon. Inf. Processing Lett., 25(1):11-12.
[doi:10.1016/0020-0190(87)90086-X]

O′Rourke, J., 1998. Computational Geometry in C (2nd Ed.).
Cambridge University Press, Cambridge.

Preparata, F.P., Shamos, M.I., 1985. Computational Geometry:
An Introduction. Springer-Verlag, New York, p.45-46.

Sklansky, J., 1972. Measuring concavity on a rectangular
mosaic. IEEE Trans. on Comput., C-21(12):1355-1364.
[doi:10.1109/T-C.1972.223507]

Wang, Z.Q., Hong, J.Z., Xiao, L.J., 1998. An optimal real time
algorithm for determine the convex hull of a set of points
in a plane. Chin. J. Computers, 21(Suppl.):351-356 (in
Chinese).

Wu, Z.H., Ye, C.Q., Pan, Y.H., 1997. An improved algorithm
of convex hull computing. J. Computer-Aided Design &
Computer Graphics, 9(1):9-13 (in Chinese).

Yao, C.A., 1981. A lower bound to finding convex hulls. J.
ACM, 28(4):780-787. [doi:10.1145/322276.322289]

