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Abstract:   This paper analyses a key problem in the quantification of pulse diagnosis. Due to the subjectivity and fuzziness of 
pulse diagnosis, quantitative methods are needed. To extract the parameters of pulse signals, the prerequisite is to detect the corners 
of pulse signals correctly. Up to now, the pulse parameters are mostly acquired by marking the pulse corners manually, which is an 
obstacle to modernize pulse diagnosis. Therefore, a new automatic parameters extraction approach for pulse signals using wavelet 
transform is presented. The results testified that the method we proposed is feasible and effective and can detect corners of pulse 
signals accurately, which can be expected to facilitate the modernization of pulse diagnosis. 
 
Key words:  Pulse signal, Feature extraction, Complex wavelet transform, Quantitative diagnosis 
doi:10.1631/jzus.2007.A1283                     Document code:  A                    CLC number: TP391 
 
 
INTRODUCTION 
 

Pulse diagnosis is one of the most important 
examinations. Doctors diagnose the patient by feeling 
the pulse beating at the measuring point of the radial 
artery, which requires long experiences and a high 
level of skill. Traditional pulse diagnosis is subjective 
and deficient in quantitative criteria of diagnosis. 
Therefore, quantitative methods are needed. Although 
much effort is being spent on pulse analysis (Lee et al., 
1993; Yoon et al., 2000; Wang and Cheng, 2005; Xu 
et al., 2006; Xu and Zhang, 2007), there is still no 
efficient and effective method of automatic pulse 
parameters computation. In the pioneering works, 
pulse signal corners were mostly marked manually 
and the parameters were extracted by ocular esti-
mation, which undoubtedly impeded the moderni-
zation of pulse classification and its applications in 
clinic. 

Pulse signal is a kind of weak, nonstationary, 
low-frequency signal and can be easily contaminated 
by background noises, such as the uncontrollable 
movements of body limbs. The pulse parameters are 
computed based on the corners of pulse signals (Fei, 
2003). So the first step is to detect the corners of pulse 
signals. An attractive tool for analyzing the local 
behavior of such signals is wavelet transform (WT), 
which can decompose signals into elementary build-
ing blocks that are well localized both in space and 
frequency (Mallat and Zhong, 1992). Corners are 
locations where the curvature changes sharply and are 
regarded as the most descriptive features and can be 
characterized by the modulus of their WTs (Lee et al., 
1995). Recently, several corner detection techniques 
based on WT (Lee et al., 1995; Quddus and Fahmy, 
1999; Sun et al., 2004) have been proposed and ap-
plied in some domains, such as object recognition 
(Sun et al., 2004). In traditional corner detection 
methods based on WT, the scale s and modulus 
threshold t need to be determined by the trial-and- 
error method, which is often deficient and time- 
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consuming. In order to detect the characteristic points 
of pulse signals effectively, a new pulse parameter 
extraction approach is proposed and tested in this 
work. 
 
 
CHARACTERISTICS OF PULSE SIGNAL 
 

Generally, pulse signals are classified according 
to seven factors: depth, width, length, frequency, 
rhythm and strength. Fig.1 is an example of pulse 
signal obtained through a pulse transducer. As the 
contact pressure of pulse transducer increases, the 
amplitude of the pulse signal first increases, reaching 
a maximum point, and then decreases. Therefore, one 
period of pulse signal is composed of three parts: SP, 
EF and FG (Fig.1). The main pulse parameters (Fei, 
2003) that need to be detected are marked by the 
dashed lines in Fig.1, where P′, E′, F′, G′, K′ and L′ are 
the projections of P, E, F, G, K and L onto the x axis, 
respectively. These parameters are listed as follows: 
P1 represents the optimal contact pressure, under 
which the maximum amplitude of pulse signal is 
attained; hsp represents the height of SP, shown as PP′; 
hef represents the height of EF, shown as KK′; hfg 
represents the height of FG, shown as LL′; hff repre-
sents the height of the starting point of FG, shown as 
FF′; hee represents the height of the starting point of 
EF, shown as EE′; C1 represents the periodicity of the 
pulse signal; A1 represents the dimension of the pulse 
signal in one cycle. 

These parameters are meaningful in medicine 
(Fei, 2003; Wang and Cheng, 2005) and testified to be 
effective in pulse analysis. Other characteristics can 
be computed through these parameters. Fig.1 shows  
 

 
 
 
 
 
 
 
 
 
 
 
 

that the characteristic parameters are computed based 
on the seven corners of pulse signal, marked as S, P, E, 
K, L, G and S1, respectively. 
 
 
NOISE REDUCTION OF PULSE SIGNAL 
 

To reduce the disturbance of background noise 
in pulse signals, we use the wavelet decomposi-
tion-reconstruction algorithm. For the original pulse 
signal fr(x), wavelet decomposition coefficients are 
given by     
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where h0(n) and h1(n) represent a pair of filter banks; 
( )j
kc  and ( )j

kd  represent the coarse coefficients and 
detail coefficients in resolution j, respectively. 

On the other hand, with these multiscale repre-
sentations, the original signal f(x) can be recon-
structed through 
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The pulse signal f(x) corresponds to the low 

frequency of the non-stationary signal fr(x) and 
represents the main outline of signal; the background 
noise corresponds to the high frequency and repre-
sents the detail. Therefore, the wavelet decomposition 
coefficients of the background noise mainly concen-
trate on ( ) .j

kd  Based on this fact, the algorithm of 
noise reduction can be described step by step as fol-
lows: 

Step 1: Select one wavelet function ψ(x) and 
decide the wavelet decomposition layer J. 

Step 2: Decompose the pulse signal fr(x) by 
wavelet ψ(x) in each layer according to Eq.(1) and get 
the wavelet coefficient cj and dj, where j=1,2,..,J. 

Step 3: Decide the optimum scale α, assign null 
to detail coefficient dα and reconstruct the pulse sig-
nal f(x) from the coarse coefficient cα according to 
Eq.(2). 

Step 4: Set threshold value T and compute sig-
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Fig.1  Characteristic parameters of the pulse signal

0         50            100          150            200        250 

y 

x 

P 

P′ 

E 

F 

G 

L 

E′ F′ G′ K′ L′  S S1 

* 

* 
* 

* 

* 

* K K 
* 

* 

* 

L 

* 



Wang et al. / J Zhejiang Univ Sci A   2007 8(8):1283-1289 1285

nal-to-noise ratio κ. When κ<T, select another 
wavelet function ψ(x) and repeat Step 2 and Step 3. 
When κ>T, the signal f(x) is taken as a net signal and 
used for the subsequent processing. 

The selection of wavelet function and the deci-
sion of wavelet decomposition layer is the key in the 
algorithm. By simulation, we found that smooth and 
symmetric wavelet function, such as Mexican Hat 
wavelet, can reduce noise effectively and preserve the 
important information of the pulse signal at the same 
time. In addition, we found that the optimum scale α 
is 4. 

 
 

PARAMETER EXTRACTION 
 
Let ψ(x) be a complex-valued wavelet, the con-

tinuous wavelet transform of the pulse signal f(x) with 
respect to the wavelet ψ(x) is defined as 
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where ψα(x)=[αψ(x/α)]−1 and ( )a xψ  denotes the 
complex conjugate of ψα(x). 

We choose the second derivative of the Gaussian 
function θδ(x), which has two vanishing moments 
(Mallat and Hwang, 1992), as the real-valued wavelet 
ψr(x): 
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The modulus maxima of the wavelet transform 

correspond to the curvature of high order. Then the 
real wavelet transform of f(x) is written as 
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We turn the real-valued wavelet ψr(x) into 

complex-valued wavelet by means of Hilbert trans-
form H (Tu and Hwang, 2005): 
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The frequency response of ψ(x) is expressed as 
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where χ(0, ∞)(ξ) denotes the Heaviside step function, 
which is equal to 1 when ξ>0 and equal to 0 otherwise. 
K0 denotes a normalization constant. 

Let ψ(x)=ψr(x)+jψi(x), whose real part is shown 
as Eq.(5). By Eq.(6), we obtain the imaginary part: 
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By Eq.(8), the following equation can be inferred: 
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Then the complex wavelet transform of f(x) is 
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Suppose Re(f *ψσ(x)) is the real part of Wf 

c and 
Im(f *ψσ(x)) is the imaginary part. The wavelet 
transform modulus maxima can be found by 
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The corners of the pulse signal correspond to 

these modulus maxima. Fig.2 shows a sample of pulse 
signal and corresponding real-valued and com-
plex-valued wavelet transforms computed according 
to Eq.(5) and Eq.(10), respectively. 

The parameters hsp, hef, hfg, hff, hee can be com-
puted based on the corners directly. The parameter C1 
can be extracted by computing the distance between 
two adjacent modulus maxima. Suppose PSS1 is the 
close region when the two points S and S1 (Fig.1) are 
jointed by a beeline, then the parameter A1 is the 
amount of pixels included in PSS1, which can be ex-
pressed by 

 
 

1

1
( , )

1.
x y PSS

A
∈

= ∑                          (12) 

 



Wang et al. / J Zhejiang Univ Sci A   2007 8(8):1283-1289 1286

EXPERIMENTS AND RESULTS  
 

Our experiments will verify three objectives: (1) 
The proposed approach can detect the characteristics 
of the pulse signals accurately; (2) The proposed 
approach is not influenced by the scale s or modulus 
threshold t, so it is not necessary any more to decide 
these two parameters, which is a bottleneck in signal 
processing; (3) The performance of the proposed 
method is superior to the conventional techniques 
based on real-valued wavelet transform in the corner 
detection of pulse signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to testify the three objectives, several 
pulse signal samples gathered in clinic were em-
ployed in our experiments.     

Fig.3 and Fig.4 show two characteristic detec-
tion examples using the proposed approach. Fig.3a is 
an original pulse signal sample without reducing 
background noise. Fig.3b shows the result obtained 
by our method. Firstly, the background noise is 
eliminated by selecting Mexican hat wavelet as the 
filter and setting scale to 4. Secondly, the features are 
extracted, shown by “*”. Fig.3c is an intercept of 
Fig.3b, which is approximately one periodic time. We  
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

140      180        220       260       300      340

Fig.3  Characteristic detection results based on the proposed method—Example 1 
(a) The original pulse signal; (b) Corner detection result; (c) Characteristics label 
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Fig.2  A pulse signal sample and the corresponding wavelet transform 

(a) Pulse signal sample; (b) Real-valued wavelet; (c) The wavelet expressed in Eq.(10)  
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Fig.4  Characteristic detection results based on the proposed method—Example 2 
(a) The original pulse signal; (b) Corner detection result; (c) Characteristics label 
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label these features in Fig.3c by the same letters as 
those shown in Fig.1. The points P, E, K and the 
points F, L in Fig.3c are respectively overlapping, 
which is common in clinic (Fei, 2003).   

Fig.4 can be explained in alike manner. From 
this experiment, it can be seen that the background 
noises are eliminated effectively and the seven char-
acteristics are located exactly, which validates the 
first objective. 

The influence of modulus threshold t on the de-
tection results is depicted in Fig.5. In addition, to 
further evaluate the validity of our algorithm, we draw 
a comparison between the real-valued wavelet and the 
proposed method.  In this experiment, the scale is set 
to 0.5, at which most characteristics can be detected.  

In Figs.5a~5c, we detect the same characteristics, 
which demonstrate that the modulus threshold t has 
no influence on the corner detection in our method. 
Fig.5d gives the detection result based on real-valued 
wavelet when t=0. It shows that the corners detected 
are too many to be labelled. The reason is that the 
modulus of real-valued wavelet is oscillatory (Mallat  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and Hwang, 1992). To confine the number of the 
detection corners, t should be set higher. When t=10, 
the corners are still much more than 7, as shown in 
Fig.5e. As illustrated in Fig.5f, while t=20, the num-
ber of corners is near to 7, but the position is located 
incorrectly. This experiment testifies that the pro-
posed algorithm outperforms the conventional real- 
valued wavelet based method in the characteristic 
detection of pulse signals. 

To explore the influence of scale s on the detec-
tion results, we design another experiment. We set s 
to different values and compare the results detected 
by our method with the conventional real-valued 
wavelet. The results are shown in Fig.6, which indi-
cates that s  has no influence on the corner detection 
in our algorithm. For real-valued wavelet, Fig.6c 
shows that when s=0.5, the corners detected are ex-
cessive and it is difficult to decide which ones are 
useful; when s=1.5, the number of the corners is near 
to that in Fig.6a, but the corners are not the charac-
teristics that we needed. This experiment further 
validates the second and third objectives. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  The comparison of characteristic detection results based on real-valued wavelet and the proposed method
under different modulus thresholds when the scale is equal to 0.5. *: Characteristic points. (a) Proposed method, t=0;
(b) Proposed method, t=10; (c) Proposed method, t=20; (d) Real-valued wavelet, t=0; (e) Real-valued wavelet, t=10;
(f) Real-valued wavelet, t=20 
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The following experiment is constructed for il-
lustrating the advantages of the proposed method over 
real-valued wavelet method in more detail. We set 
s=1.5 and t=10, at which the real-valued wavelet 
method can achieve the best detection result. Fig.7 
shows a periodicity of two representative pulse signal 
samples. The former is a double-humped pulse signal 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and the latter is a triple-humped pulse signal. It can be 
seen that the seven characteristic points shown in 
Fig.1 are all detected and labelled accurately based on 
the proposed method, as shown in Figs.7a and 7c. In 
Fig.7b, the characteristic points P, E and K are not 
detected. In Fig.7c, the characteristic points S, K are 
missed and P, L depart from their accurate positions. 
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at different scales when the modulus threshold is equal to zero. *: Characteristic points. (a) Proposed method,
s=0.5; (b) Proposed method, s=1.5; (c) Real-valued wavelet, s=0.5; (d) Real-valued wavelet, s=1.5 
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CONCLUSION 
 
In this paper, we present a method to realize the 

extraction of the pulse signal parameters automati-
cally. The proposed method can eliminate the back-
ground noises effectively and detect the characteris-
tics of pulse signals accurately. In addition, our 
method is not influenced by the modulus threshold or 
the scale, which makes it more convenient to use.  

Further work is needed to extend the findings to 
extract more representative features of pulse signal, 
which could be very helpful for pulse classification 
and expected to facilitate popular applications of 
pulse diagnosis. 
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