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Abstract:    The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. 
For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the 
spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The 
proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the 
retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral 
medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion. 
Comparing with hue-intensity-saturation (HIS), discrete wavelet transform (DWT), wavelet-based sharpening and wavelet-à trous 
transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data 
fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in 
any aspect ratio between the pixels of MRI and PET images. 
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INTRODUCTION 
 

In medicine, the use of multi-modality images 
representing various functions has become a more 
general practice. Images of different modalities, when 
fused together, provide essential information for 
clinical diagnosis and prognosis. Good image quality 
can provide more reliable patient information, which 
can then be used for accurate clinical decision making. 
With the availability of multisensor images in many 
fields, fusion has emerged as a new and promising 
research area (Goshtasby and Nikolov, 2007). Mul-
tisensor image fusion generates a single image con-
taining a more accurate description than any indi-
vidual source image. 

Image fusion algorithms can be categorized into 
low, mid, and high levels. In some literature, this is 
referred to as pixel, feature, and symbolic levels. 
Pixel-level algorithms work either in the spatial do-

main or in the transform domain (Toet, 1990; Nikolov 
et al., 2001; Goshtasby, 2005). Although the pixel- 
level fusion is a local operation, the transform domain 
algorithms create the fused image globally. By 
changing a single coefficient in the transformed fused 
image, all (or a whole neighborhood of) image values 
in the spatial domain will change. As a result, in the 
process of enhancing properties in some image areas, 
undesirable artifacts may be created in other image 
areas. Zheng et al.(2007) described a method to re-
duce artifacts by minimizing the ratio of the spatial 
frequency error. Algorithms working in the spatial 
domain have the ability to focus on the desired area, 
with no effect in other areas. Multiresolution analysis 
is a popular method in the pixel-level fusion. Burt 
(1984) and Burt and Kolczynski (1993) used filters 
with increasing spatial extent to generate a sequence 
of images (pyramid) from each image, separating 
information observed at different resolutions. Then at 
each position in the transform image, the value in the 
pyramid showing the highest saliency was taken. An 
inverse transform of the composite image was used to 
create the fused image.  
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Petrovic and Xydeas (2004) used intensity 
gradients as a saliency measure. In a similar manner, 
various wavelet transforms can be used to fuse images. 
The discrete wavelet transform (DWT) has been used 
in many applications to fuse images. More recently, 
the dual-tree complex wavelet transform (DT-CWT), 
first proposed by Kingsbury (1999), was shown by 
Nikolov et al.(2001) and Lewis et al.(2004) to out-
perform most other grey-scale image fusion methods. 

While considerable work has been done at the 
pixel-level image fusion, less work has been done at 
feature-level image fusion and symbolic-level image 
fusion. Feature-based algorithms typically segment 
the images into regions and fuse the regions using 
their various properties. Feature-based algorithms are 
usually less sensitive to signal-level noise. Toet (1990) 
first decomposed each input image into a set of per-
ceptually relevant patterns. The patterns were then 
combined to create a composite image containing all 
relevant patterns. Nikolov et al.(2000) developed a 
technique that fuses images based on their multi-scale 
edge representations, using the wavelet transform 
proposed by Mallat and Zhong (1992). Another 
mid-level fusion algorithm was developed by Piella 
(2003), in which images are first segmented and the 
obtained regions are then used to guide the mul-
tiresolution analysis. High-level fusion algorithms 
combine image descriptions, for instance, in the form 
of relational graphs. 

In this study, low-resolution multispectral posi-
tron emission tomography (PET) images are fused 
with a high-resolution panchromatic MRI images to 
achieve optimal resolution in the spatial and spectral 
domains. Several methods have existed to modulate 
lower resolution panchromatic images, such as the 
HIS, PCA and DWT, etc. However, those methods 
normally improve the spatial resolution while dis-
torting the spectral composite, or preserve the spectral 
information while degrading the spatial structure. The 
retina-based fusion technique can better preserve the 
spectral and spatial information than others. Visual 
and statistical analyses showed that the proposed ret-
ina model significantly improves the fusion quality 
compared to conventional fusion techniques. 
 
 
GENERAL IMAGE FUSION METHODS 
 
Fusion with HIS transform 

The widespread use of the HIS transform to 

merge images is based on its ability to separate the 
spectral information of an RGB composition in its 
two components, H and S, while isolating most of the 
spatial information in the I component (Choi, 2006). 
Several algorithms have been developed to allow the 
conversion of the color values (RGB) into values of 
intensity, hue, and saturation. Whatever algorithm is 
chosen, the HIS transform is always applied to an 
RGB composite. This implies that the fusion will be 
applied to groups of three bands of the multispectral 
image. As a result of this transformation, we obtain 
the new intensity, hue, and saturation components. 
The panchromatic image then replaces the intensity 
image. Before doing this, in order to minimize the 
modification of the spectral information of the fused 
multispectral image with respect to the original mul-
tispectral image, the histogram of the panchromatic 
image is matched with that of the intensity image. 
Applying the inverse transform, we obtain the fused 
RGB image, with the spatial detail of the panchro-
matic image being incorporated into it. 
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where I is the intensity component, H the hue com-
ponent, S the saturation component, V1 and V2 the 
intermediate variables. Fusion is performed by re-
placing I with MRI image. Finally, the fused image is 
obtained by performing the inverse HIS transform 
(Fig.1). The HIS transform based image fusion algo-
rithm can preserve the same spatial resolution as the 
source panchromatic image but seriously distort the 
spectral information in the source multispectral image. 
 
 
 
 
 
 
 
 
 Fig.1  HIS fusion diagram 
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Fusion with DWT 
One of the most widely used multiresolution 

strategies is the DWT. DWT is a linear transformation 
highly useful in the area of signal processing, where 
one of its principal applications consists in separating 
datasets into distinct frequency components, which 
are then represented on common scales. There are 
different forms of calculating the DWT in fusion 
algorithms. One of the most widely used algorithms is 
the pyramidal algorithm of (Mallat and Zhong, 1992), 
due to the high spectral quality of its resulting image, 
although its low anisotropic characteristic produces 
problems for the fusion of images with a high content 
of borders being not horizontal, vertical or diagonal. 

Zhou et al.(1998) developed a DWT-based fu-
sion algorithm to merge multispectral and panchro-
matic images. The source panchromatic image and 
each spectral band of the source multispectral image 
are decomposed into an orthogonal wavelet repre-
sentation at a given coarser resolution, which consists 
of a low-frequency approximation image and a set of 
high-frequency images. Band-by-band, the fused 
images are derived by performing the inverse DWT 
using the approximation image from each band of the 
source multispectral image and detail images from the 
source panchromatic image (Fig.2). The performance 
of this fusion algorithm is better than those based on 
the HIS transform. 
 
 
 
 
 
 
 
 
 
 
Wavelet-based sharpening 

The wavelet transform is a mathematical tool 
extensively used in image analysis and image fusion. 
Different wavelet-based pansharpening methods are 
available in (Nunez et al., 1999). In wavelet-based 
sharpening, the high frequency detail coefficients are 
obtained from the high spatial resolution panchro-
matic image and are combined with the spectral in-
formation obtained from the multispectral image 
through a combination model. The HIS transform or 

PCA transform is applied to the multispectral image 
as a preprocessing step. The intensity component (or 
the first principal component) is then used in the 
combination model. The process flow diagram of the 
wavelet-based sharpening technique is shown in 
Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The multispectral image bands are first trans-
formed into the HIS domain. The panchromatic image 
is histogram-matched with the intensity component. 
The histogram of the intensity component (I) is 
matched to the low-resolution approximation of the 
panchromatic image in the wavelet domain. The his-
togram-matched I component replaces the low- 
resolution component. The inverse wavelet transform 
is performed to obtain a fused intensity component 
where the high frequency details are added to the 
intensity component. The hue and saturation com-
ponents are resampled to the size of the sharpened 
intensity band. The inverse HIS transformation is 
applied to get back to the RGB image domain. 
 
Fusion with the wavelet-à trous algorithm 

A wavelet à trous (“with holes”) algorithm has 
been proposed by Joshi et al.(2006). This algorithm 
differs from the pyramidal ones in that it is redundant, 
which implies that between two successive levels, 
there is no dyadic spatial compression of the original 
image, but rather the image size is maintained. The 
basis of the pyramid represents the original image 
and each of its levels is a decomposed, compressed 
version of the image represented at the previous level. 
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In this way, spatial resolution and image size decrease 
from one level to the next. However, in wavelet à 
trous the spatial resolution decreases from one level 
to the next, but not the image size, which is constant 
for all levels. Comparative studies have shown that 
both the spatial and the spectral qualities of the fused 
images through the à trous algorithm are better than 
the ones provided by the Mallat algorithm. 

The wavelet à trous algorithm consists basically 
in the application of consecutive convolutions be-
tween the image under analysis and a scaling function 
at distinct successive levels. One of the most widely 
used scaling functions for the computation of the à 
trous algorithm is the B3 Spline. If the original image 
without succession is represented by Ij(x,y), the 
wavelet coefficients for the level j+n, Cj+n(x,y), are 
obtained by the difference between the corresponding 
two consecutively decomposed images, Ij+n−1(x,y) and 
Ij+n(x,y), as shown in the following equation: 
 

1( , ) ( , ) ( , ).j n j n j nC x y I x y I x y+ + + −= −            (4) 
 

To carry out image synthesis, from a successive 
level j+n, an additive criterion should be applied in 
which all the coefficients obtained are added to the 
last successive level of the original image, as repre-
sented by: 
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If Ij+n(x,y) represents the successively decom-

posed planes that contain the low-frequency infor-
mation of the original image, and Cj+n(x,y) represents 
its respective wavelet coefficients, which contain the 
high-frequency information, then it is possible to 
plant an image fusion scheme. In this scheme, the 
low-frequency information contained in a multispec-
tral image is fused with the high-frequency informa-
tion contained in the wavelet coefficients of a high-   
resolution spatial image (panchromatic), to obtain a 
high spatial resolution multispectral image (Garzelli 
and Nencini, 2005). 

 
 

RETINA MODEL 
 

The retina is a thin layer of neural tissue in the 

back of the eye. It can be decomposed into five layers: 
three layers of cell bodies and two layers of synaptic 
interconnections between the neurons. This structural 
form is depicted in Fig.4. Light enters from the gan-
glion cell layer side first, and must penetrate all cell 
types before reaching the rods and cones. This is 
because the pigment-bearing membranes of the pho-
toreceptors have to be in contact with the eye’s pig-
ment epithelial layer (Kolb, 1991). The photorecep-
tors’ cell bodies are located in the outer nuclear layer 
of the retina. The synaptic terminals of the photore-
ceptors make contact with the dendritic fields of the 
bipolar cells and horizontal cells in the outer plexi-
form layer (OPL). The cell bodies of the bipolar and 
horizontal cells are located in the inner nuclear layer. 
The horizontal cells make connections with the cells 
in the outer nuclear layer. The bipolar cells, however, 
make connections onto the dendrites of the ganglion 
cells within the inner plexiform layer (IPL). Since 
only the bipolar cells link the signals in the outer and 
inner plexiform layers, all the visual signals must go 
through the bipolar cells. Another class of cells lo-
cated in the inner nuclear layer is the amacrine cells. 
These cells have no identifiable axons, only dendrites. 
The dendritic fields of the amacrine and ganglion 
cells connect in the inner plexiform layer. The retinal 
ganglion cell bodies are located in the ganglion cell 
layer, and their dendritic fields connect with the axon 
terminals of the bipolars as well as with the dendritic 
fields of the amacrine cells.  

Totally, OPL properties are generated by the 
synaptic triad, which is composed of three kinds of 
interconnected cells (Kolb, 1991): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.4  A thin piece of retina is enlarged in a photomi-

crograph revealing its layers (Kolb, 1991) 
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 (1) The cone cells constitute a layer of the 
transduction and regularization processing. The 
transduction converts luminance into electrochemical 
potentials aimed at the downstream layers. The 
regularization consists in filtering input signals with a 
light low-pass frequencies filtering. The cone cells are 
defined by their shapes (midget, diffuse, …), their 
types of response (on, off) and their functions (spec-
tral sensibilities: red, green, and blue colors). More-
over their behaviors depend locally on the luminance 
intensity and contrast. 

(2) The horizontal cells constitute a layer of 
strong regularization processing. The output response 
performs from the cone cells output to elaborate a 
spatial average of the image intensity. 

(3) The bipolar cells make the difference be-
tween the horizontal (luminance average) and the 
cone outputs. Therefore bipolar cells estimate the 
local contrasts of the image intensity to increase vis-
ual indices. As cone cells, the bipolar cells are various. 
We observe bipolar cells are classified also by their 
shapes (midget, diffuse, …), their types of response 
(bipolar on, off, …), and their functions (contrast 
estimation: red/green, blue/green+red, …). 

The bipolar axons transmit the OPL outputs to 
the IPL area. The IPL processing is assumed by gan-
glion cells: 

The ganglion cells have a receptive field organ-
ized as concentric circles. The ganglion cells are 
classified as bipolar cells by their shapes (midget, 
diffuse, ...), their types of response (on, off, on+off), 
and their functions (spatial contrast estimation and 
luminance estimation) (Kolb, 1991). 

The biological computational processes of the 
human retina motivate our image fusion architectures. 
The three different cone cells in the retina are sensi-
tive to the short, medium, and long wavelengths of the 
visible spectrum. If the retina was simply to transmit 
opposite-contrast images directly from the photore-
ceptors to the brain, the resulting vision would 
probably be coarse-grained and blurry. Further proc-
essing in the retina defines precise edges to images 
and allows us to focus on fine details. The honing of 
the image starts at the first synaptic level in the retina, 
where horizontal cells receive input from the cones.  

The biological retina not only converts optical 
information into electrical signals but performs con-
siderable processing on the visual signal before 

transmitting it to higher visual system levels. Image 
fusion can incorporate the processing principles of 
human vision system. This paper presents a mul-
tiresolution data fusion scheme, based on retinal 
visual channels decomposition, motivated by ana-
lytical results obtained from retina based image 
analysis. The energy packing the spectral features is 
distributed in the lower frequency subbands, while the 
spatial features and edges are distributed in the higher 
frequency subbands (Ghassemian, 2001b). By adding 
the high-scale spatial features (extracted from an MRI 
image) to the low-scale spatial features (from PET 
image), the visual-channel procedure enhances the 
multispectral images (see Fig.5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The computer retina model presented is based on 
Difference-of-Gaussian (DoG) operator (Ghassemian, 
2001a), which described some of the receptive field 
properties of the ganglion cells. It consists of two 
Gaussians with different variances at position (x,y) and 
can generally be written as: 
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filtering of the visual sequence taking place respec-
tively in light receptors (

c
,Gσ  or center signal) and 

horizontal cells (
s
,Gσ  or surrounding signal). Both 

filters are spatially low-pass. Filter 
s

Gσ  is more nar-

row than 
c

Gσ  in the frequency domain, which means 

σs>σc. It corresponds to the biological fact that hori-
zontal cells develop their signal with more synapses 
and more cellular integrations than receptors, and are 
linked to their neighboring horizontal cells through 
strongly coupling gap junctions.  

In summary, the outputs from these photore-
ceptors are oppositely enhanced within band by cen-
ter-surround spatial opponent processes at the bipolar 
cells. In later stages (ganglion cells in retina) these 
signals are oppositely enhanced by center-surround 
processes between the different bands.  

Ultimately, we can represent the function of this 
model by (Ghassemian, 2001b): 
 

1 1 2 2( , ) ( , ) ( , ) ( , ) ( , ),f x y h x y f x y h x y f x y= ⊗ + ⊗  (8) 
 
where f1(x,y) is the high-resolution image, h1(x,y) is 
the high-pass filter (photoreceptors cells), f2(x,y) is 
the low-resolution image and h2(x,y) is the low-pass 
filter (horizontal cells). This allows to generate a 
spatially enhancing multispectral image f(x,y), by 
adding the high-resolution spatial features to f2(x,y). 
 
 
EXPERIMENTAL RESULTS 
 

The widespread use of multi-sensor and mul-
tispectral images in medical diagnostics has increased 
the importance of assessing the quality of different 
fusion techniques and relating it to human or com-
puter performance. Better quality assessment tools 
are needed to compare results obtained by different 
fusion techniques and to derive the optimal parame-
ters of these techniques. Often the ideally fused image 
is not known or is very difficult to construct. This 
makes it impossible to compare fused images to a 
gold standard. In applications where the fused images 
are for human observation, the performance of fusion 
algorithms can be measured in terms of improvement 
in user performance in tasks like detection, recogni-
tion, tracking, or classification. This approach re-
quires a well-defined task for which quantitative 

measurements can be made to characterize human 
performance. However, this is usually time consum-
ing and often means expensive experiments with 
human subjects. 

In recent years, a number of computational im-
age fusion quality assessment metrics have been 
proposed (Wang et al., 2005). Metrics that accurately 
relate to human observer performance are of great 
value but are very difficult to design and, thus, are not 
yet available at present. In order to objectively com-
pare different image fusion algorithms, what we also 
need is publicly available multispectral or multi- 
sensor datasets that can be used to benchmark existing 
and new algorithms. 

In this experiment, multispectral PET image is 
fused with the MRI data. The tests data consist of 
multispectral PET dataset images and panchromatic 
MRI dataset images. The image size is 256×256 pix-
els. The multispectral images are registered to the 
corresponding panchromatic images. All images were 
downloaded from Harvard University Medical School 
site (http://www.med.harvard.edu/AANLIB/home. 
html). The brain images are of three groups (normal 
axial, normal coronal and mild Alzeimer’s disease 
images). Each PET image consists of three multis-
pectral bands (red, green, and blue) and MRI image 
has a bond. The retina-based method is compared 
with the HIS, DWT, wavelet-based sharpening and à 
trous wavelet transform methods. Visual evaluation 
of the spectral composite images indicates that the 
HIS, DWT, wavelet-based sharpening and à trous 
wavelet transform methods change spectral of the 
composite images, which means the spectral features 
are distorted by these methods (Figs.6~8). The image 
fusion algorithms should not distort the spectral 
characteristics of the original multispectral data. 

A good fusion scheme should preserve the 
spectral characteristics of the source multispectral 
image as well as the high spatial resolution charac-
teristics of the source panchromatic image. In this 
paper, two evaluation criteria are used for quantitative 
assessment of the fusion performance. The spectral 
quality of a P·Q fused image can be measured by the 
discrepancy Dk at each band (Li et al., 2005): 
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Fig.7  Original normal coronal images and fused images (Dataset 2). (a) PET image; (b) MRI image;
(c) HIS; (d) DWT; (e) Wavelet-based sharpening; (f) Wavelet-à trous; (g) Retina (proposed method) 

(a)                                         (b)                                         (c)                                         (d) 

(e)                                         (f)                                          (g) 

Fig.8  Original mild Alzeimer’s disease images and fused images (Dataset 3). (a) PET image; (b) MRI image;
(c) HIS; (d) DWT; (e) Wavelet-based sharpening; (f) Wavelet-à trous; (g) Retina (proposed method) 

(a)                                         (b)                                        (c)                                         (d) 

(e)                                         (f)                                          (g) 

(a)                                         (b)                                         (c)                                         (d) 

(e)                                          (f)                                          (g) 
Fig.6  Original normal axial images and fused images (Dataset 1). (a) PET image; (b) MRI image;
(c) HIS; (d) DWT; (e) Wavelet-based sharpening; (f) Wavelet-à trous; (g) Retina (proposed method)
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where fk(x,y) and gk(x,y) are the pixel values of the 
fused and original multispectral images at position 
(x,y), respectively; in this paper P=Q=256. A small 
discrepancy implies a good fusion result. For the 
spatial quality, we use the average gradient to evalu-
ate the performance of the fused image (Ghassemian, 
2001a), i.e., 
 

2211
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where fk(x,y) is the pixel value of the fused image at 
position (x,y). The average gradient reflects the clarity 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In this paper we present a multiresolution image 
fusion scheme, based on retinal visual channels de-
composition. Basically, after the registration steps, the 
high-frequency part of the MR, which would be un-
recoverable by the set PET acquisition system, is 
extracted and added to the PET image. This paper 
introduces a new application of the human vision 
system model in multispectral medical image fusion. 
The presented computer retina model is based on 
Difference-of-Gaussian operator. The proposed 
method is compared with the HIS, DWT, wavelet- 

of the fused image. It can be used to measure the 
spatial resolution of the fused image, i.e., a larger 
average gradient means a higher spatial resolution. 

Table 1 shows the spectral discrepancies be-
tween the images obtained by different fusion algo-
rithms and the source multispectral image. The av-
erage gradients of the images obtained by different 
fusion algorithms are shown in Table 2. From these 
two tables, we can conclude that the proposed algo-
rithm can preserve high spatial resolution character-
istics of the source panchromatic image. In addition, 
the spectral distortion introduced to the proposed 
fusion method is less than those of the traditional 
algorithms based on the HIS, DWT, wavelet-based 
sharpening and à trous wavelet transform methods. 
Results showed that it preserves more spectral fea-
tures with less spatial distortion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
based sharpening and à trous wavelet transform 
methods. Results showed that the retina-based image 
fusion method preserves more spectral and spatial 
features than other fusion techniques. 
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The proposed algorithm 4.72 5.77 5.44 5.31 4.87 6.34 5.82 5.68 3.41 4.53 4.22 4.05

 

Table 2  Average gradients of the fused images 
Dataset 1 Dataset 2 Dataset 3 Algorithm 

R G B Avg. R G B Avg. R G B Avg.
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The proposed algorithm 3.98 4.40 5.78 4.72 4.08 4.71 5.77 4.85 3.18 3.90 4.73 3.93
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