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Abstract:    The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this 
paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general frame-
work for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. 
Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the 
discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved 
using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and 
the effectiveness of the results. 
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INTRODUCTION 
 

Recurrent neural networks (RNNs) have been a 
subject of intense research activities over the decades 
and have found extensive applications in pattern 
recognition, image processing, association, system 
identification and control, etc. As dynamic systems, 
RNNs frequently need to be analyzed for stability. In 
practical applications, time delays, either constant or 
time-varying, are often encountered in various engi-
neering, biological and economical systems. And the 
existence of time delays frequently causes oscillation, 
divergence or instability in neural networks. In recent 
years, the stability of RNNs with delay has been in-
vestigated by many researchers and many results on 
this topic have been reported in (Liao et al., 2002; 

Cao and Wang, 2003; Zeng et al., 2005; Liang and 
Cao, 2006) and references therein. Besides time-de-
layed features of such neural networks, there might 
also be some uncertainties such as perturbations and 
component variations, which might lead to very 
complex dynamical behavior. In the design of neural 
networks, it is important to ensure that systems be 
stable in the presence of these uncertainties. The ro-
bust stability of RNNs with various structures were 
considered (Ji et al., 2004; Singh, 2006; 2007), but 
they did not provide any information about the tran-
sient responses and decay rates (i.e. exponential 
convergence rates) of the system’s states. The expo-
nential stability property is particularly important 
when the exponential convergence rate is used to 
determine the speed of neural computations. The 
exponential stability property guarantees that, what-
ever transformation occurs, the networks’ ability to 
rapidly store the activity pattern is left invariant by 
self-organization. Thus, it is not only theoretically 
interesting but also practically important to determine 
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the exponential stability for recurrent neural networks 
in general. The global robust exponential stability for 
cellular neural networks with time delay was inves-
tigated in (Gau et al., 2007). Ding and Huang (2006) 
studied the global exponential stability of delayed 
BAM neural network with uncertainties. In (Ou, 
2007), a class of RNNs was concerned for global 
robust exponential stability, which can include Hop-
field type neural networks and cellular neural net-
works. 

It is noteworthy that all of the above results ob-
tained take the form of linear matrix inequality (LMI). 
Recently, LMI-based techniques have been success-
fully used to tackle various stability problems for 
neural networks. The main advantage of the 
LMI-based approaches is that the LMI stability con-
ditions can be solved numerically using the effective 
interior-point algorithm (Boyd et al., 1994; Gahinet et 
al., 1995). 

The existing results regarding robust exponential 
stability for delayed neural networks pertain to a 
special neural network model (Gau et al., 2007; Ding 
and Huang, 2006), or a class of neural network mod-
els (Ou, 2007). Most of the special neural network 
models, such as recurrent multilayer perceptrons 
(RMLP), CGNN, BAM, etc. are not included in the 
model described in (Ou, 2007). Furthermore, almost 
all the researches on this topic just focus on the 
continuous-time case. In most practical applications, 
however, discrete iteration process rather than con-
tinuous version is used. Generally speaking, the sta-
bility analysis of continuous-time case is not neces-
sarily applicable to the discrete-time case. Therefore, 
the detailed analysis for discrete-time case is also 
necessary and important. This paper is supposed to 
solve the aforementioned problems. 

Standard neural network model (SNNM) is a 
novel recurrent neural network model (Liu, 2006a; 
2007). Like the nominal model in linear robust con-
trol theory, SNNM can be applied to either 
non-delayed systems or delayed systems. Most ex-
isting delayed (or non-delayed) recurrent neural 
networks can be transformed into SNNMs to be 
analyzed in a unified way. So SNNM provides a 
general framework to facilitate the stability analysis 
of RNNs. SNNM has been successfully used in sta-
bility analysis and controller synthesis for RNNs (Liu 
and Yan, 2003; Liu, 2006a; 2006b; 2007; Yan et al., 

2004; Zhang and Liu, 2005). This paper is concerned 
with the problem of global robust exponential stabil-
ity for discrete-time SNNM with and without delays. 
Based on the Lyapunov-Krasovskii stability theory 
and S-Procedure, two sufficient conditions of global 
robust exponential stability for discrete-time SNNM 
are derived. The stability criteria are characterized in 
the form of a set of LMIs which allow for the appli-
cation of convex optimization algorithms to be pos-
sible.  

Notation: Throughout this paper, ℜn denotes the 
n dimensional Euclidean space, and ℜn×m is the set of 
all n×m real matrices, I denotes identity matrix of 
appropriate order, λM(A) and λm(A) denote the 
maximal and minimal eigenvalue of a square matrix A, 
respectively. ||x|| denotes the Euclidean norm of the 
vector x, and ||A|| denotes the induced norm of the 

matrix A, that is T
M ( ).λ=A A A  The notations 

X>Y and X≥Y, where X and Y are matrices of the 
same dimensions, mean that the matrix X−Y is posi-
tive definite and positive semi-definite, respectively. 
If X∈ℜp and Y∈ℜq, C(X; Y) denotes the space of all 
continuous functions mapping ℜp→ℜq. 
 
 
STANDARD NEURAL NETWORK MODEL 
 

In linear robust control theory, systems with 
uncertainty can be transformed into a standard form, 
known as linear fractional transformation (LFT) 
(Chandrasekharan, 1996). Similar to the LFT, and 
referring to (Rios-Patron, 2000), SNNM can be used 
to describe a class of intelligent systems. The SNNM 
represents a neural network model as the intercon-
nection of a linear dynamic system and static 
nonlinear operators consisting of bounded activation 
functions. In this paper, only discrete-time SNNM is 
concerned, similar architecture and results for con-
tinuous-time case can also be achieved. A dis-
crete-time SNNM is shown in Fig.1. The block Φ is a 
block diagonal operator composed of nonlinear acti-
vation functions φi(ξi(⋅)), which are typically con-
tinuous, differentiable, monotonically increasing, 
slope-restricted, and bounded. The matrix N repre-
sents a linear mapping between the inputs and outputs 
of the time delay z−1I and the operator Φ. The vectors 
ξ(⋅) and φ(ξ(⋅)) are the input and output of the  
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nonlinear operator Φ, respectively. The block D 
represents the delayed element. κ(⋅) is the time- 
varying delay satisfying 0<κ(⋅)≤h, where h is an in-
teger representing the maximal delay.  

If N in Fig.1 is partitioned as  
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the discrete-time SNNM can be depicted as a linear 
difference inclusion (LDI): 
 

( 1) ( ) ( ( )) ( ( )),
( ) ( ) ( ( )) ( ( )),

d

d

k k k k k
k k k k k

κ
κ

+ = + − +
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ξ Cx C x D ξ

φ
φ

  (2) 

 
with the initial condition function 
 

x(k)=ϖ(k), ∀k∈[−h, 0],                 (3) 
 
where x∈ℜn is the state vector, A, Ad∈ℜn×n, B∈ℜn×L, 
C, Cd∈ℜL×n and D∈ℜL×L are the corresponding 
state-space matrices, ξ∈ℜL is the input of nonlinear 
operator Φ, φ∈C(ℜL; ℜL) is the output of nonlinear 
operator Φ satisfying φ(0)=0, L∈ℜ is the number of 
nonlinear activation functions (that is, the total 
number of neurons in the hidden layers and output 
layer of the neural network). 

In this paper, we assume that the activation 
functions in the SNNM satisfy the sector conditions 
φi(ξi(k))/ξi(k)∈[qi, ui], i.e., [φi(ξi(k))−qiξi(k)]⋅[φi(ξi(k)) 
−uiξi(k)]≤0. ui>qi≥0, i=1, …, L, and the delays in 
SNNM are constant, i.e., κ(⋅)=h>0. Since x=0, ξ=0 is 
a solution of Eq.(2), there exists at least one equilib-
rium point located at the origin, i.e., xeq=0, ξeq=0.  
 

MAIN RESULTS 
 

In this section, the discrete-time SNNM with 
structured uncertainties and constant time delay in 
state is concerned: 
 

( 1) ( ) ( ) ( ) ( )
                ( ) ( ( )),

( ) ( ) ( ) ( ) ( )
                ( ) ( ( )),

d d

d d

k k k h
k

k k k h
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 = + ∆ + + ∆ −
 + + ∆
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ξ C C x C C x
D D ξ

φ
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 (4) 

 
where ∆A, ∆B, ∆Ad, ∆C, ∆D, ∆Cd denote the para-
metric uncertainties in A, B, Ad, C, D and Cd, respec-
tively, and are assumed to satisfy 
 

1 2 3

1 2 3

[     ] ( )[     ],
[   ] ( )[     ],

d x x x x

d q q q q

k
k

∆ ∆ ∆ =
 ∆ ∆ ∆ =

A B A H F E E E
C D C H F E E E

     (5) 

 
where Hx, Hq, Exi and Eqi (i=1,2,3) are some known 
constant matrices of appropriate dimensions that 
represent the structure of uncertainties, and F(k), 
representing the parameter uncertainty, is an unknown 
real valued time-varying matrix with appropriate 
dimension satisfying 
 

FT(k)F(k)≤I.                           (6) 
 
Remark 1    The uncertainty structure satisfying both 
Eqs.(5) and (6) has been widely adopted in robust 
control and filtering for uncertain systems and part of 
the reason can be found in (Khargonekar et al., 1990). 
Definition 1    Uncertainties, which satisfy Eqs.(5) 
and (6), are defined as admissible uncertainties. 
Definition 2    If there exist γ>0 and f(γ)>0 such that 
 

||x(k)||≤ f(γ)e−γk,                        (7) 
 
then SNNM Eq.(4) is said to be exponentially stable 
at the equilibrium point, where γ is called the 
exponential convergence rate. 
Definition 3    The SNNM Eq.(4) is said to be glob-
ally robustly exponentially stable if it is globally ex-
ponentially stable with respect to all admissible un-
certainties. 

Before stating the main results, the following 
lemmas are needed: 

 

Fig.1 Discrete-time standard neural network model 
(SNNM) with time delay 

N 

x(k) x(k+1) 
z−1I 

x(k−κ(k)) 

Φ 
φ(ξ(k)) ξ(k) 

D 
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Lemma 1 (Khargonekar et al., 1990)    For any given 
matrices H and E, ε>0, and a time-varying matrix F(k) 
satisfying FT(k)F(k)≤I, we have  
 

T T 1 T T( ) ( ) .k k ε ε−+ ≤ +H F E E F H H H E E    (8) 
 
Lemma 2 (Schur complement) (Boyd et al., 1994) 

Given constant symmetric matrices 1 2
T
2 3

,
 
 
 

S    S
S =

S   S
 

where T
1 1 ,=S S  T

3 3 .=S S  Then the following ine-
qualities are equivalent: 
 

(1) S<0; 
(2) S1<0, T 1

3 2 1 2
−−S S S S <0; 

(3) S3<0, 1 T
1 2 3 2

−−S S S S <0. 
 
Lemma 3 (Xie and de Souza, 1992)    Given any 
matrices X, Y and Z with appropriate dimensions and 
Y>0. Then, we have 
 

XTZ+ZTX≤XTYXT+ZTY−1Z.               (9) 
 
Lemma 4    (S-Procedure) (Boyd et al., 1994)    Let T0, 
T1, …, Tp be symmetric matrices. If there exist τi≥0 
(i=1, 2, …, p) such that  
 

0
1

,
p

i i
i

τ
=

− <∑ 0T T                      (10) 

 

then T
0 < 0x T x  ∀x≠0 such that T

i ≤ 0x T x  (i=1, 
2, …, p). 
Theorem 1    The SNNM described by Eqs.(4)~(6) is 
globally robustly exponentially stable if there exist 
symmetric positive definite matrices R and Γ, di-
agonal positive semi-definite matrices Λ and T, and 
positive scalars ε1, ε2, such that the following LMI 
holds: 
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The sub-matrices of M are 
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Moreover, 
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where 2 22
M2 ( )[e ( 1) (0) ].γΠ λ −= − +UΛ ξ ξ  

Proof    For simplicity, denote x(k) as xk, x(k−h) as xk,h, 
ζ(k) as ζk, ζi(k) as ζk,i, φ(ξ(k)) as φk, φi(ξi(k)) as φk,i,   
and A  = A+∆A, dA = Ad+∆Ad, B = B+∆B, C = C+ 

∆C, dC = Cd+∆Cd, D = D+∆D. Then SNNM Eq.(4) 
can be rewritten as: 
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Choose the following positive definite Lyapunov 
functional: 
 

1
2 T 2 T
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where P=PT>0, Γ≥0, and λi>0, i=1, 2, …, L. The time 
derivative of V(xk, ξk) along the trajectories of Eq.(13) 
takes the form: 
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iC  and iD  are the ith row of the matrices C  and ,D  

respectively. ,d iC  is the ith row of the matrix ,dC  

R=e2γP, Λ=diag(λ1, λ2, …, λL), and Λ≥0. 
The sector conditions, , , , ,( )( )k i i k i k i i k iq uφ ξ φ ξ− −  

0,≤  can be rewritten as follows: 
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which is equivalent to  
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Rewrite Eq.(16) in the matrix form: 
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where dij is the element of matrix D  at the ith row 
and jth column.  

By the S-Procedure, if there exist τi≥0 (i=1, 2, …, 
L), such that the following inequality (18) holds, 
where T=diag(τ1, τ2, …, τL) and T≥0, then T0 is 
negative definite (i.e., ∆V(xk,ξk)<0).  In other words, 
Eq.(18) is a sufficient condition for the global 
asymptotical stability of the origin of system (4). 
Eq.(18) can be rewritten as Eq.(19). 
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In view of Lemma 3, the second term of the left 
side of Eq.(18) is positive semi-definite. Therefore, if 
Eq.(20) holds, then Eq.(18) holds. Using the Schur 
complement lemma, Eq.(20) is equivalent to Eq.(21). 

Since Ã=A+∆A, Ãd =Ad+∆Ad, B = B+∆B, C = 
C+∆C, dC = Cd+∆Cd, D =D+∆D, then we will obtain 
Eq.(22). By Lemma 1, Eq.(22) is equivalent to Eq.(23) 
(as shown at the top of the next page). 

Using the well-known Schur complement lemma, 
the above condition can be rearranged as Eq.(11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is known that if Eq.(11) holds, then ∆V(x(k))<0, i.e., 
V(x(k))≤V(x(0)). Furthermore, 
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In Eq.(24), 

0
sup ( )
h θ

θ
− ≤ ≤

=Ω x . Meanwhile, 
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From Eqs.(24) and (25), Eq.(12) can be obtained. The 
proof of Theorem 1 is completed. 

A non-delayed SNNM with structured uncer-
tainties can be represented as: 
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and 
FT(k)F(k)≤I.                          (28) 

 
Like Theorem 1, the following corollary can be ob-
tained: 
Corollary 1    The SNNM described in Eqs.(26)~(28) 
is globally robustly exponentially stable if there exist 
a symmetric matrix R, diagonal semi-positive definite 
matrices Λ and T, and positive scalars ε1, ε2, such that 
the following LMI condition holds: 
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Proof    The proof of Corollary 1 follows the steps of 
proof of Theorem 1, and choosing the Lyapunov 
functional in the form 
 

1
2 T 2

1 0

( , ) e 2 e ( ( )) ( ).
L k

k j
k k k k i i i i

i j

V j jγ γλ φ ξ ξ
−

= =

= ∑ ∑＋x ξ x Px  (31) 

 
 
ROBUST EXPONENTIAL STABILITY OF 
DISCRETE-TIME BAM NETWORKS 
 

In this section, the robust exponential stability 
for discrete-time BAM neural network described by 
the following model is concerned: 
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where v(k)=[v1(k), v2(k), …, vn(k)]T, u(k)=[u1(k), 
u2(k), …, un(k)]T are the activations of neurons. 
M=diag(m1, m2, …, mn), E=diag(e1, e2, …, en) denote 
the neuron charging time constants and decay rates, 
respectively. W1 = (1)( )ij n nw ×  and W2 = (2)( )ij n nw ×  are the 

synaptic connection strengths. ∆M=diag(∆m1, 
∆m2, …, ∆mn), ∆E=diag(∆e1, ∆e2, …, ∆en), ∆W1= 

(1)( ) ,ij n nw ×∆  ∆W2 = (2)( )ij n nw ×∆  indicate the parametric 

uncertainties of M, E, W1, W2, respectively. J and U 
are the exogenous inputs. Time delays τ and σ cor-
respond to the finite speeds of the axonal transmission 
of signals. g(u(k−τ))=[g1(u1(k−τ1)), g2(u2(k−τ2)), …, 
gn(un(k−τn))]T, f(v(k−σ))=[f1(v1(k−σ1)), f2(v2(k−σ2)), …, 
fn(vn(k−σn))]T respectively represent the activation 
functions of the neurons and the propagational func-
tions, satisfying the sector conditions. 

The parametric uncertainties in system (32) sat-
isfy: 
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and 
FT(k)F(k)≤I. 

 
Assume that SNNM system (32) has an equilib-

rium point (u*, v*). Let *ˆ( ) ( ) ,k k= −u u u ˆ( )k =v  
*( ) ,k −v v  system (32) can be transformed into: 

 
1 1

2 2

ˆ ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ( )),
ˆˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ( )),

k k k

k k k

τ

σ

+ = + ∆ + + ∆ −


+ = + ∆ + + ∆ −

v M M v W W g u

u E E u W W f v
 

(34) 
where  
 

 * *ˆ ˆ( ( )) ( ( ) ) ( ),k tτ τ− = − + −g u g u u g u  
* *ˆ ˆ( ( )) ( ( ) ) ( ).k kσ σ− = − + −f v f v v f v  

Let  
x(k)=[v1(k), …, vn(k), u1(k), …, un(k)]T, 

   T
1 1̂

ˆˆ ˆ( ) [ ( ),  ...,  ( ),  ( ),  ...,  ( )] ,n ng g f f⋅ = ⋅ ⋅ ⋅ ⋅φ   

  
,

    
 

=  
 

0
0
M

A
E

1

2

   
,

 
 

=  
 

0
0

W
B

W
 C=02n×2n, D=02n×2n, 

     Ad=02n×2n, Cd=I2n×2n, ∆Ad=02n×2n, ∆Cd=I2n×2n, 

1

1

    ( )  
,

        ( )     
v v

u u

k
k

    
∆ =     

    

0 00
0 0 0
H EF

A
H F E

  

2

2

     ( )  
,

        ( )    
v v

u u

k
k

    
∆ =     

    

0   00
0 0 0
H EF

B
H F E

 

∆C=02n×2n, ∆D=02n×2n,    L=2n.  
 

The system (32) is transformed into the form of 
SNNM system (4). Therefore, Theorem 1 can be used 
to analyze the robust exponential stability for system 
(32).  

As a numerical example, considering the fol-
lowing discrete-time BAM neural network: 
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With the above transformation, system (35) can 

be transformed into the SNNM system (4) with 
 

A=diag(0.2, 0.2, 0.1, 0.1), 
  0         0         0      0.125

   0         0      0.125      0
,

   0    0.05     0          0
0.05     0         0          0

 
 
 =
 −
 
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B   

2

  0        0        0    0.01
   0        0      0.02    0

,
   0    0.02    0      0
0.01       0        0      0

x

 
 
 =
 −
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 

E  

Ex1=diag(0.04, 0.08, 0.01, 0.03),  
Hx=diag(0.10, 0.15, 0.10, 0.15),  
Ad=C=D=Hq=Ex3=Eq1=Eq2=Eq3=04×4,  
Cd=U=I4×4, Q=04×4. 
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Using the MATLAB LMI toolbox, the optimal 
solution for the convex optimization problem (11) 
with γ=0.25 can be obtained: 

 
P=diag(0.6482, 0.6395, 0.6676, 0.6590),  
Γ=diag(0.2386, 0.2346, 0.2571, 0.2538),  
Λ=diag(0.0191, 0.0191, 0.0191, 0.0191),  
T=diag(0.1237, 0.1237, 0.1237, 0.1237),  
ε1=0.3619, ε2=0.3669. 

 
So, the BAM system (35) is globally robustly 

exponentially stable with convergence rate γ=0.25. 
 
 
CONCLUSION 
 

In this work, the problem of robust exponential 
stability for discrete-time standard neural network 
models (SNNMs) has been studied in detail. The 
criteria obtained in this paper are derived by means of 
Lyapunov functionals and S-Procedure, and possess 
the structure of LMI, so they can be easily solved 
using MATLAB LMI toolbox. SNNM provides a 
general framework to facilitate the stability analysis 
of RNNs. The last example illustrates how a BAM 
neural network is transformed into SNNM and how it 
is analyzed using the presented approach. 
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