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Abstract:    A non-local denoising (NLD) algorithm for point-sampled surfaces (PSSs) is presented based on similarities, 
including geometry intensity and features of sample points. By using the trilateral filtering operator, the differential signal of each 
sample point is determined and called “geometry intensity”. Based on covariance analysis, a regular grid of geometry intensity of 
a sample point is constructed, and the geometry-intensity similarity of two points is measured according to their grids. Based on 
mean shift clustering, the PSSs are clustered in terms of the local geometry-features similarity. The smoothed geometry intensity, 
i.e., offset distance, of the sample point is estimated according to the two similarities. Using the resulting intensity, the noise 
component from PSSs is finally removed by adjusting the position of each sample point along its own normal direction. Ex-
perimental results demonstrate that the algorithm is robust and can produce a more accurate denoising result while having better 
feature preservation. 
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INTRODUCTION 
 

Point-sampled models without topological con-
nectivity are normally generated by sampling the 
boundary surface of physical 3D objects with 
3D-scanning devices. Despite the steady improve-
ment in scanning accuracy, undesirable noise is in-
evitably introduced from various sources such as 
local measurements and algorithmic errors. Thus, 
noisy models need to be denoised or smoothed before 
performing any subsequent geometry processing such 
as simplification, reconstruction and parameterization. 
It remains a challenge to remove the inevitable noise 
while preserving the underlying surface features in 
computer graphics. In particular, fine features are 
often lost if no special treatment is provided. 

In recent years, a variety of point-based denois-
ing and smoothing approaches have been introduced, 
and they can be roughly categorized into the follow-
ing four groups: 

(1) Spectral techniques. The techniques of spec-
tral filters in image setting were generalized to 
point-based surfaces, for example, Pauly and Gross 
(2001) created a spectral decomposition of a point 
cloud and denoised it by manipulation of the spectral 
coefficients. 

(2) Interpolation or approximation approaches. 
The raw point clouds are interpolated or approxi-
mated with smooth surfaces such as extremal surfaces 
(Amenta and Kil, 2004), implicit surfaces (Carr et al., 
2001; Samozino et al., 2006; Daniels II et al., 2007), 
moving least-squares (MLS) surfaces (Mederos et al., 
2003; Weyrich et al., 2004; Dey and Sun, 2005; 
Lipman et al., 2006; Daniels II et al., 2007) and local 
parametric surfaces (Pauly et al., 2003), etc. 

(3) Statistical techniques. Based on robust sta-
tistics, the smoothing techniques for point-sampled 
surfaces (PSSs) were introduced. Pauly et al.(2004) 
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proposed a framework for analyzing shape uncer-
tainty and variability in point-sampled geometry 
based on statistical data analysis, which can be ap-
plied to reconstruct surfaces in the presence of noise. 
Schall et al.(2005) developed a method for robust 
filtering of a given noisy point set using a mean shift 
based clustering procedure. Positions on a smooth 
surface were found by moving every sample to 
maximum likelihood positions. Jenke et al.(2006) 
showed how to generate a smooth point cloud from a 
given noisy one using Bayesian statistics.  

(4) Extension of 2D filters to 3D ones. The 2D 
filters were directly extended into 3D settings to 
smooth PSSs by applying local position estimating 
iteratively or non-iteratively, isotropically or anisot-
ropically, based on statistics, differential geometry 
theory, approximation theory, etc. 

The last group is more attractive since it is sim-
ple and straightforward. Techniques for image 
smoothing such as Laplacian, bilateral and trilateral 
filtering, moreover, commonly act as foundations for 
3D surface denoising algorithms. 

In this paper, we introduce a non-local denoising 
(NLD) method for PSSs inspired by a non-local algo-
rithm for image denoising (Buades et al., 2005) which 
presents remarkable results. Unlike the non-local im-
age filter, our filter computes the denoised position of 
a vertex as a weighted average of the vertices in its 
vicinity with similar geometry features which are 
determined by mean shift clustering. The non-local 
approach defines the intensity similarity of two points 
by comparing regions of the surface around the ver-
tices rather than using only their positions and some-
times normals locally. This yields a more accurate 
denoising result of the surface and improves the re-
moval of higher-level noises compared to previous 
state-of-the- art filtering techniques. Moreover, fine 
geometry features are better preserved. An example of 
the effectiveness of our approach is presented in Fig.1. 
In this paper all the point models are rendered by using 
a point-based rendering technique.  

The rest of this paper is organized as follows. In 
Section 2, we briefly review the related works. In 
Section 3, we briefly overview the non-local means 
approach of Buades, Coll, and Morel. We present our 
similarity-based method for denoising PSSs in Section 
4. We compare our method with two denoising tech-
niques in Section 5. Section 6 concludes the paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

RELATED WORKS 
 
Earlier methods such as Laplacian (Pauly et al., 

2002b) for denoising PSSs are isotropic, which result 
commonly in point drifting and oversmoothing. So 
the anisotropic methods were introduced. Clarenz et 
al.(2004) presented a PDE-based surface fairing ap-
plication within the framework of processing point- 
based surface via PDEs. Lange and Polthier (2005) 
proposed a new method for anisotropic fairing of a 
point-sampled surface based on the concept of ani-
sotropic geometric mean curvature flow. Based on 
dynamic balanced flow, Xiao et al.(2006) presented a 
novel approach for fairing point-sampled geometry. 
Other methods have also been proposed for denoising 
the PSSs. Algorithms that recently attracted the in-
terest of many researchers are MLS approaches. 
Based on MLS or its variants, the algorithms for de-
noising PSSs have also been introduced (Mederos et 
al., 2003; Weyrich et al., 2004; Dey and Sun, 2005; 

Fig.1  Denoising Buste model with our method. (a) Noisy
model; (b) Model denoised by our method; (c) Noisy
model colored by mean curvature; (d) Denoised model
colored by mean curvature. Notice that high-frequency
noise is properly removed, while fine details in hair region
are accurately preserved 

(a) (b) 

(c) (d) 
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Lipman et al., 2006; Daniels II et al., 2007). The main 
problem of MLS-based methods is that prominent 
shape features are blurred while smoothing PSSs. All 
of the above methods did not take into consideration 
the similarity of geometry features of sample points. 
Hu et al.(2006) introduced a mean shift based de-
noising algorithm for PSSs. During the course of 
denoising PSSs, they respected the kind of similarity 
via a 3D mean shift procedure. However, all the 
above-mentioned methods determine the intensity 
similarity of two points locally using only their posi-
tions and sometimes normals. 

Concerning these issues, this paper defines the 
intensity similarity in a non-local fashion and takes 
into account the similarity of geometry features while 
denoising PSSs. We introduce the following tech-
niques to achieve the non-local denoising algorithm: 
(1) By using the trilateral filtering operator, the ge-
ometry intensity of each sample point is determined; (2) 
Based on covariance analysis, a regular grid of ge-
ometry intensity is constructed for each point and the 
geometry-intensity similarity between two points is 
measured; (3) Based on mean shift clustering, the 
PSSs are clustered according to the surface-features 
similarity. 
 
 
NON-LOCAL IMAGE DENOISING 

 
The non-local algorithm for image denoising 

was proposed by Buades et al.(2005). The basic idea 
behind the non-local method is very simple: for a 
given pixel, its denoised intensity value is estimated 
as a weighted average of the other image pixels with 
weights reflecting the similarity between local 
neighborhoods of the pixel being processed and the 
other pixels. 

More precisely, if an image Ω={I(u)|u∈P} is 
given, where u=(x, y) is a pixel and I(u) is the inten-
sity value at u, the smoothed pixel intensity I'(u) can 
be computed as the average of all pixel intensities in 
the image weighted by a similarity factor Φ(u,v), 
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where Φ(u,v)=exp(−Su,v /h2). The parameter h acts as 
a degree of filtering, and the similarity Su,v between u 
and v is measured as 

2
, (|| ||) ( ) ( ) ,aS G I I= + − +∑u v o

o u o v o       (2) 

 
which depends on the pixel-wise intensity difference of 
two square neighborhoods centered at the pixels u and 
v. The vector o denotes the offset between the center 
pixel and an arbitrary neighborhood pixel. The influ-
ence of a pixel pair on the similarity falls with in-
creasing Euclidean distance to the center of the 
neighborhoods. For the distance weighting a Gaussian 
kernel Ga(·) with a standard deviation a>0 is used. 
 
 
NON-LOCAL DENOISING ALGORITHM FOR 
PSSs 

 
For the reason that image pixels are usually 

aligned on a regular and equispaced grid, which is in 
general not true for a point-sampled model, the main 
difficulty of extending the non-local method to PSSs 
consists of how to determine the intensity similarity 
of two points. Our strategy for solving this issue is as 
follows. By using the trilateral filtering operator, the 
differential value of each sample point is determined 
and called geometry intensity as a counterpart to the 
intensity value of an image. Based on covariance 
analysis, the local reference plane is defined on which 
a regular grid of geometry intensity is then con-
structed for each point, and according to geometry 
intensities on the corresponding grids, the geometry- 
intensity similarity of two points is finally measured. 

 
Computation of geometry intensity 

Although the trilateral filter presented by 
Choudhury and Tumblin (2003) for high contrast 
images and meshes can be extended to PSSs, it does 
not consider the curvature-related information. We 
design the following trilateral filter with the curva-
ture-related term to compute the geometry intensity δi 

of each point pi 
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where ni is the surface normal at the point pi, N(pi) is 
the neighborhood of pi, Hi is the mean curvature and 
w(x) is a Gaussian kernel: 2 2

c c( )=exp[ /(2 )],w σ−x x  
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2 2
s s( )=exp[ /(2 )]w σ−x x  and wh(x)=exp[−exp(−||Hij 

−Hi||2/2)]. The term wh(x) denotes that the influence 
on the weight wij increases with an increase in the 
curvature difference (Hij−Hi) so that the high gradient 
regions can be efficiently smoothed. In this paper we 
take the parameter σc as σc=r/2, where r is the radius 
of the enclosing sphere of N(pi), and σs as the standard 
deviation of the projections of the vector (qij−pi) onto 
ni. 

Because our trilateral filtering operator considers 
not only the point positions and normals but curva-
tures, the geometry intensity computed by it can re-
flect the local geometry feature and describe the dif-
ferential property at each point more efficiently. 
Fig.2b demonstrates the geometry-intensity value 
visualization of the points for the Face model. Fig.2e 
illustrates the palette for visualization of mean cur-
vature, geometry intensity and the distance between 
two points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Measuring the geometry-intensity similarity of 
two points 

By covariance analysis, a local frame can be 
constructed based on the tangent plane and normal for 
each sample point. The covariance matrix for the 
point set P is defined as 
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where 

ki
p  is the kth neighboring point around pi and 

/ 
ki

k= ∑p p is the centroid of the neighborhood. 

Since C is symmetric and positive semi-definite, all 
eigenvalues λi (i=0, 1, 2) are of real value and the 
eigenvectors vi (i=0, 1, 2) form an orthogonal basis. 
The eigenvalue λi measures the variation of the local 
point set along the direction of the corresponding 
eigenvector.  

Assuming  λ0≤λ1≤λ2, let the plane (x− p )·v0=0 
through p  minimize the sum of the squared distance 
to the neighboring points of pi, then the normal v0 of 
this plane can be regarded as the normal of the local 
surface at pi. In this particular case, λ0 expresses the 
variation of the surface along the normal v0. Pauly et 
al.(2002a) defined   

 

0 0 1 2( ) ( )i
k k ipσ σ λ λ λ λ= = + +            (4) 

 
as the surface variation at pi assuming a neighborhood 
of size k. It is also observed that σk(pi) is closely re-
lated to the local curvature. To ensure a consistent 
orientation of the normal vectors, we use a method 
based on the minimum spanning tree (Hoppe et al., 
1992). 

For each point, we construct the local frame (v2, 
v1, v0) with the local origin pi and on the plane v2piv1, a 
regular geometry-intensity grid Gi with the size of 
M×M centered at pi can be built by an interpolation 
method. 

Let NR(pi)={qij|qij∈Pn, ||qij−pi||≤M|E|} be the set 
of the neighbors of pi whose elements are within a 
fixed radius R bound centered at pi, where |E|= 

1
min=0

n
ii

r n−∑  is the average edge length of the sample 

(a) (b) 

(c) (d) 

Fig.2  (a) Noisy Face model; (b) Geometry-intensity
value visualization of the points; (c) Our mean-shift
clustering; (d) The point set of local modes; (e) Palette
for visualization of geometry intensity 

Max Min

(e)
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point set Pn, n=|Pn| and ri min is the distance between pi 
and its nearest point. Assuming that the vector vg is 
the projection of the vector (qij−pi) onto the plane 
v2piv1 and δg is the geometry intensity of the point qij, 
the geometry intensity δm of each node gm (0≤m≤ 
M×M−1) among Gi is estimated as  
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where N(gm) is the neighborhood of gm and wg(x) is a 
Gaussian kernel: wg(vg)=exp[−||vg−gm||2/(2σg

2)]. In 
this paper, we take again the parameter σg as  σg=r/2, 
where r is the radius of the enclosing circle of N(gm). 
When the regular geometry-intensity grid Gi of pi is 
regarded as a counterpart to the square neighborhood 
of the pixel u, we can, as a result, measure the ge-
ometry-intensity similarity of two points by means of 
Eq.(2). 

 
Mean shift clustering for PSSs 

Unlike the non-local image filtering algorithm, 
we do not sum over all point positions to filter a point 
but over a local neighborhood of this point which is 
determined by a mean shift clustering method. The 
mean shift algorithm is a nonparametric clustering 
technique for the analysis of a complex multimodal 
feature space and the delineation of arbitrarily shaped 
clusters (Comaniciu and Meer, 2002), and it has a 
wide variety of applications in the fields of computer 
vision and pattern recognition. Recently it has been 
extended to the field of digital geometry processing 
(Yamauchi et al., 2005; Hu et al., 2006; Shamir et al., 
2006). In the following we first present a short review 
of the adaptive mean shift technique and then describe 
how to apply it to the point model. 

Assume that each data point xi∈úd (i=1,2,…,n) 
is associated with a bandwidth value hi>0. The sample 
point estimator (Georgescu et al., 2003; Yamauchi et 
al., 2005) 
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based on a spherically symmetric kernel K with 
bounded support satisfying 
 

2
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is an adaptive nonparametric estimator of the density 
at location x in the feature space. The function k(x) 
(0≤x≤1) is called the profile of the kernel, and the 
normalization constant ck,d assures that K(x) inte-
grates to one. The function g(x)=−k'(x) can always be 
defined when the derivative of the kernel profile k(x) 
exists. Using g(x) as the profile, the kernel G(x) is 
defined as G(x)=cg,dg(||x||2). 

By taking the gradient of Eq.(5) the following 
property can be proven 
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is called the mean shift vector pointing toward the 
direction of the maximum increase in the density. A 
gradient-ascent process with an adaptive step size 
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G jy m y+ =              (7) 

 
constitutes the core of the mean shift clustering pro-
cedure. For clustering S={x1, x2, …, xn} with mean 
shift, the following two steps are performed on each 
xi∈S: (1) Initialize [0]

iy  with xi; (2) Compute [ ]j
iy  

according to Eq.(7) until convergence. It is shown in 
(Comaniciu and Meer, 2002) that under some general 
assumptions the sequences [ ]{ }j

iy  converge to the 

points where ( )Kf̂ x  defined by Eq.(5) attains its 
local maxima (mode). Accordingly, the points that 
converge to the same mode are associated with the 
same cluster. 

One simple extension of the above clustering 
procedure consists of dealing with a set S, each ele-
ment of which has two components of a different 
nature, S={xi=(ci,qi)|ci∈C, qi∈Q}. In such a situation, 
it is convenient to use the mean shift clustering pro-
cedure with separable kernels 
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In this paper, we consider the sample points {pi} 
equipped with the normals {ni} and the mean curva-
ture {Hi} as scattered data S={xi=(ci,qi)|ci∈pi, qi∈(ni, 
Hi)} in ú7. For both ci and qi, we use the normal kernel. 
For the bandwidth values hi, there are numerous 
methods to define them, most of which use a pilot 
density estimate. The simplest way to obtain the pilot 
density estimate is by nearest neighbors. To accelerate 
the mean shift computation, we construct a k-D tree 
for the point set {ci}. According to the k-nearest 
neighbors Nk(ci) of ci, we can adaptively take 
hi1=||ci−ci,k||2, where ci,k is the k-nearest neighbor of ci, 
and hi2=max{||qi−qi,1||2, ||qi−qi,2||2, …, ||qi−qi,k||2}. Af-
ter clustering for PSSs by using this mean shift tech-
nique, the geometry features of the points in the same 
cluster, which contain the point positions, normals 
and mean curvatures, are locally similar, respectively. 
Fig.2c demonstrates the mean shift clustering of the 
Face model, and its point set of local modes is illus-
trated in Fig.2d. 
 
Non-local denoising of PSSs 

From the geometry-intensity similarities of two 
points and Eq.(1), we can compute the denoised 
geometry intensity iδ ′  of pi as  

 

( )( ) ( )
= ( , ) ( , ) ,

ij i ij i
i i ij ij i ijC C

Φ Φδ δ
∈ ∈

′ ∑ ∑q p q p
p q p q  

 
where C(pi) is the cluster to which pi belongs, i.e., a 
local neighborhood of pi determined by our mean 
shift clustering method. The similarity factor Φ(pi, qij) 
is computed by 

 
2
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i iji ijΦ S hp qp q −  

 

where the geometry-intensity similarity ,i ij
S p q  be-

tween pi and qij is measured by the method described 
in the subsection “Measuring the geometry-intensity 
similarity of two points”. 

According to the offset distance δi', the 
smoothed position pi' is given by pi'=pi+δi'ni. Since 
the point pi is moved along its normal direction, our 
denoised method will not introduce undesirable 
points drifting over the surface. Moreover, this 
method is more effective and robust than the local 
denoising methods as it considers not only the ge-
ometry-features similarity between two points but 
also the geometry-intensity similarity between them. 

RESULTS AND DISCUSSION 
 

In our experiments, we use Microsoft Visual 
C++ programming language on a personal computer 
with a Pentium IV 2.8 GHz CPU and 1 GB main 
memory. We have implemented our non-local de-
noising (NLD) and two state-of-the-art denoising 
techniques: the Bilateral denoising (BIL) (Fleishman 
et al., 2003) and the Mean Shift denoising (MST) (Hu 
et al., 2006) to compare their denoising results. We 
use three models in our comparison: a noisy Buste 
model with 125 813 sample points (Fig.1a), a noisy 
Face model with 34 308 sample points (Fig.2a) and a 
noisy Dragon-head model with 100 056 sample points 
(Fig.3). For these models, Table 1 presents the related 
statistics and parameter settings used for our method 
and our implementations of BIL and MST. For BIL 
and MST, we tried to choose the parameter settings 
that produce the best results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Table 1  Parameter setting and the related statistics 

Fig. Method Iters. Sim. k
Max.  
error 

(×10−4) 

Avg. 
error 

(×10−4) 

TMS

(s)
TD 

(s) 

BIL 1 – 15 89.3   4.5 –    2.77
MST 1 – 15 51.9   3.3 15.1    3.524
NLD 1 5×5 15 31.3   2.4 15.1  15.31
BIL 2 – 20 78.0 15.3 –    7.56
MST 3 – 20 75.3 14.8 72.4   13.325
NLD 3 9×9 20 68.9 14.1 72.4 109.92
BIL 3 – 23 131.7 19.5 –     9.03
MST 3 – 23 96.5 16.8 98.7   14.026
NLD 3 9×9 23 74.2 13.3 98.7 148.58

Iters. stands for the number of iterations. Sim. is the size of the regular 
grid considered to measure the geometry-intensity similarity of two 
points. For BIL, k is the number of the neighbors, and for NLD and 
MST, k is the number of the sample points in bandwidth window for 
mean shift clustering. Max. error is the maximum of distances be-
tween the original (noisy) points and their corresponding denoised 
points, and Avg. error is the average of distances. TMS indicates the 
time of implementing the mean shift clustering and TD denotes the 
point estimating time for one iteration 

Fig.3  (a) Noisy Dragon-head model colored by mean
curvature; (b) Closer view of its upper jaw 

                  (a)                                        (b) 
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We use two visualization schemes to compare 
the techniques with our method. The first scheme 
consists of coloring by the mean curvature. The sec-
ond one measures the difference between the original 
and denoised point model, i.e., we visualize the dif- 
ferences in the positions of the corresponding sample 
points of the models noisy denoised| |.i ip p−  

In Fig.4, we demonstrate a comparison of the 
denoised Face models by BIL, MST and NLD. The 
denoised models are illustrated in the top row of Fig.4, 
and their corresponding mean curvature visualiza-
tions in the bottom row. As seen in Fig.4, our NLD 
removes the high-frequency noise properly and 
achieves a more accurate result than BIL or MST does. 
Fig.5 shows a comparison of BIL, MST and NLD 
concerning feature preservation. Note that our NLD 
preserves sharp features more accurately than BIL or 
MST does while producing a smooth result, as shown 
in the closer views of the upper jaw of the denoised 
model. 

In Fig.1, we show the denoising efficiency of our 
approach on the noisy Buste model (Fig.1a), which is 
produced by adding zero-mean Gaussian noise with 
σnoise=0.3|E| to the original model. It can be noticed 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that the high-frequency noise is properly removed, 
while fine details in hair, mouth and ear regions are 
accurately preserved. At the same time, we demon-
strate that our NLD presents the best performance 
according to the entropy of the differences between 
the noisy and denoised models, as shown in the bot-
tom row of Fig.6. From the Max. and Avg. errors in 
Table 1 we can also notice that our method outper-
forms its two rivals. As a result, our method produces 
the lowest oversmoothing when compared with the 
other two denoising techniques. 

Due to our region-based definition of the ge-
ometry-intensity similarity measure which adds more 
geometric information into the denoising process, our 
algorithm removes the high-frequency noise properly 
and achieves a more accurate result than BIL or MST 
does. Furthermore, our method has a better feature 
preservation than BIL or MST does while producing a 
smooth result, mainly because the method utilizes the 
trilateral filter in the denoising process. From the 
execution time listed in Table 1, we notice that our 
method is slower than BIL or MST since our method 
needs to construct the regular geometry-intensity grid 
for each sample point and measure the geome-
try-intensity similarity of two points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Denoising the noisy Face model (Fig.2a). Top: the denoised models. Bottom: the corresponding denoised
model colored by mean curvature. Mean curvature coloring helps us to compare their corresponding fine
details. (a) BIL; (b) MST; (c) NLD 

(a)                                                   (b)                                                 (c) 

Max 

Min 
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CONCLUSION 

 
In this paper, we presented an NLD algorithm for 

PSSs by extending the non-local technique for image 
denoising to a point-sampled model. Since the origi-
nal non-local method relies heavily on the image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
structure regularity, the main difficulty in extending it 
to PSSs is how to determine the intensity similarity of 
two sample points. We first compute the geometry 
intensity of the sample point by using the trilateral 
filtering operator. Based on covariance analysis, a 
regular geometry-intensity grid as a counterpart to the 

Fig.5  Denoising the noisy Dragon-head model (Fig.3). Top: the denoised model colored by mean curvature. Bottom:
a closer view of the upper jaw of the corresponding denoised model. (a) BIL; (b) MST; (c) NLD 

(a)                                                       (b)                                                             (c) 

Fig.6  Denoising the noisy Buste model (Fig.1a). Top: the denoised model colored by mean curvature. Bottom: the
corresponding denoised model colored according to the entropy of the differences between the noisy and denoised
models. (a) BIL; (b) MST; (c) NLD 

(a)                                                            (b)                                                             (c) 

Max

Min
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square neighborhood of the pixel is then constructed. 
Finally, the geometry-intensity similarity of two 
points is measured according to their grids. Further-
more, the neighborhood of the sample point is adap-
tively selected in the denoising process by means of 
our mean shift method so as to produce a more ac-
curate denoising result. 

Our experimental results demonstrate that this 
proposed algorithm is robust, and can produce more 
accurate denoising results than the two state-of-the- 
art smoothing techniques, the Bilateral denoising and 
the Mean Shift denoising, while having better feature 
preservation.  
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