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Abstract:    Three optimal linear attitude estimators are proposed for single-point real-time estimation of spacecraft attitude using 
a geometric approach. The final optimal attitude is represented by modified Rodrigues parameters (MRPs). After introducing 
incidental right-hand orthogonal coordinates for each pair of measured values, three error vectors are obtained by the use of dot 
or/and cross products. Corresponding optimality criteria are rigorously quadratic and unconstrained, which do not coincide with 
Wahba’s constrained criterion. The singularity, which occurs when the principal angle is close to π, can be easily avoided by one 
proper rotation. Numerical simulations show that the proposed three optimal linear estimators can provide a precision comparable 
with those complying with the Wahba optimality definition, and have faster computational speed than the famous quaternion 
estimator (QUEST). 
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1  Introduction 
 

Wahba (1965) formulated the attitude determi-
nation problem using vector observations as a least- 
squares estimation problem which seeks the proper 
orthogonal matrix (attitude matrix or direction-  
cosine matrix (DCM)) A that minimizes the cost 
function: 
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where the sequence bi (i=1, 2, ···, n) of unit vectors 
are the results of measurements performed in vehicle 
Cartesian coordinates of the directions to known ob-
jects. The sequence ri (i=1, 2, ···, n) of unit vectors are 
the corresponding unit vectors resolved in a reference 
Cartesian coordinate system and ξi (i=1, 2, ···, n) are a 

set of positive weights such that 
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The Wahba problem has been solved in a num-
ber of ways which generally fall into two categories, 
single-frame (SF) algorithms and recursive algo-
rithms. The method of SF algorithm is a set, and only 
this set, of simultaneous measurements at time k is 
used to estimate the quaternion. Cheng and Shuster 
(2007) analyzed numbers of SF algorithms with two 
classes. First, obtain the attitude profile matrix B or 
the Davenport matrix K by using algorithms of nu-
merical linear algebra (Markley and Mortari, 1999; 
2000). Such examples can be found by using a polar- 
decomposition method (Farrell et al., 1966), the fa-
mous Davenport q-method (Shuster, 1978; Shuster 
and OH, 1981), and the singular value decomposition 
(SVD) algorithm (Markley, 1988). The other solution 
methods are a kind of iterative solutions which seek 
λmax, the maximum characteristic value of the Dav-
enport matrix K by some methods especially designed 
for the Wahba problem. Examples of those methods 
can be referred to Shuster (1978)’s well-known qua-
ternion estimator (QUEST), fast optimal attitude 
matrix (FOAM) (Markley, 1993), and estimators of 
the optimal quaternion (ESOQ, ESOQ2) algorithms 
(Mortari, 1997a; 1997b; 2000; Markley and Mortari, 
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1999). Cheng and Shuster (2007) also provided de-
tailed analysis of those algorithms mentioned above 
in respect of computational efficiency. Of the most 
interesting one is Mortari et al. (2000; 2007)’s opti-
mal linear attitude estimator (OLAE) using Rodrigues 
(or Gibbs) vector, of which optimality criterion is 
based on Cayler transformation between the attitude 
matrix and Rodrigues vector. In summary, any SF 
attitude determination estimator is a batch estimator 
where the information contained in past measure-
ments is lost. 

The recursive forms of some estimators are 
proposed since they use the past data without requir-
ing its storage, and allow real-time processing of new 
incoming observations. Shuster (1989) proposed an 
implementation of the Wahba problem for dynamic 
systems as a sequential filter and smoother, known as 
filter QUEST and smoother QUEST. Bar-Itzhack 
(1996) provided a recursive modification of QUEST 
algorithm for sequential attitude determination which 
is called REQUEST. The most recent research results 
in this field include: Choukroun et al. (2004) pro-
posed an optimal-REQUEST, which is an optimal 
recursive time-varying estimator of the quaternion, 
Shuster (2009) analyzed the relationship of filter 
QUEST and recursive QUEST in detail, and 
Choukroun (2009) proposed a quaternion estimation 
using Kalman filtering of the vectorized K-matrix. 

Motivated by Mortari et al. (2000; 2007)’s work 
on linear attitude estimator, this paper proposes three 
optimal attitude estimation algorithms to solve the 
single-point attitude determination problem. This is 
achieved with the use of dot products and cross 
products which represent the attitude by Gibbs vector. 
Unlike Wahba (1965)’s optimality criterion, the three 
new optimality criteria, which are rigorously quad-
ratic and unconstrained, have linear estimators. The 
final results of linear attitude estimators are repre-
sented by modified Rodrigues parameters (MRPs). 
 
 
2  Optimal linear attitude estimators 

2.1  Geometric analysis of rotation 

Based on Euler’s theorem (Angeles, 1988), 
which states that any rotation of a body (or coordinate 
system) with respect to another may be described by a 
single rotation through some angle about a single 

fixed axis, the direction cosine matrix A can be rep-
resented as 

 
T( , ) cos (1 co ) sin ,s       A a I aa a      (2) 

 

where I denotes the 3×3 identity matrix, a denotes the 
axis of rotation, θ denotes the angle of rotation, and a× 
denotes a skew-symmetric matrix generated by a: 
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According to the concept of attitude kinematics, 
the relationship between the body and reference 
vectors can be expressed as 
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Premultiplying Eq. (4) by aT, it shows that 
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This means that the angle between bi and a is equiv-
alent to that between ri and a. Moreover, the dot 
product of ri and bi can be given by 

 
T T T 2( , ) cos (1 cos )( ) .i i i ii     b A r a rr r a    (6) 

 

Substituting Eq. (5) into Eq. (6), it is shown that 
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This indicates that θ is just the angle between 
[bi–(aTbi)a] and [ri–(aTri)a]. Eqs. (5) and (7) impli-
cated that ri can be obtained by rotating the vector bi 
through rotation angle θ about the axis a in a constant 
reference coordinate system, as illustrated in Fig. 1. 

For each pair of measured values {ri, bi}, we 
define a corresponding right-hand orthogonal coor-
dinate system as follows: 
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The directions defined in Eq. (8) may not be unit 

vectors, and their magnitudes are given by 
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According to Eq. (5), we have aTyi=0, i.e., the 
axis of rotation a has non-zero components only along 
xi and zi coordinates. Thus a can be written into the 
following form: 

 

cos sin ,i i
i i

i ix z
  

x z
a                 (10) 

 
where αi denotes the angle between xi and a. 

Note that the relationship among angles αi, βi and 
θ, as shown in Fig. 1, can be summarized as 
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where βi denotes the angle between xi and bi. 
The Gibbs vector, which is widely used in atti-

tude representation, is defined as 
 

tan
2

.


g a                            (12) 

Substituting Eqs. (10) and (11) into Eq. (12) yields 
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This means that g has known components projected in 
yi coordinate and zi coordinate. This property is very 
important and will be used in the following linear 
attitude estimators. 

2.2  Three optimal linear attitude estimators 

2.2.1  The first optimal linear attitude estimator 

The first optimal linear attitude estimator 
(OLAE1) can be obtained using dot products to 
eliminate the unknown angle αi, from Eq. (13). 

Premultiplying Eq. (13) by T
iy  and T ,i ix z  respec-

tively, the following can be developed: 
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Eq. (14) cannot be satisfied by all measurements, 
due to the presence of sensor noise. In this study, it is 
supposed that the observed body vectors are given by 

 

,i i i b b v                          (15) 
 

where vi (i=1, 2, ···, n) is a zero-mean white-noise 
vector. Thus, the error vector for a given Gibbs vector 
g can be chosen as 
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This allows us to introduce a new optimality 

criterion for spacecraft attitude. The optimal attitude 
estimate is defined as finding a Gibbs vector g, which 
minimizes the following quadratic cost function: 
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Fig. 1  Geometric relationship of rotation

a

xi

ri
2yi

zi

bißi

ßi

ai

[ri- (aTri)a]

[b
i - (a T

b
i )a]

0.5θ 

0.5θ 



Gong et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2011 12(11):873-882 876 

where ξi (i=1, 2, ···, n) denote a set of relative positive 
weights. Substituting Eqs. (16) and (17) into Eq. (18), 
the first optimality criterion expression can be ob-
tained in terms of attitude and observations’ vectors: 
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(20) 
and thus the first optimality criterion can be rewritten 
as 
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Since this is an unconstrained minimization, station-
arity conditions to minimize Eq. (21) yield 
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Note that 1,M  which is just the second deriva-

tive of the cost function J1 with respect to g, is a real 
symmetric positive definite matrix for n≥2. There-
fore, the global minimum of J1 can be given by 

 

1 1 1
ˆ , M g υ                              (23) 

 
where ĝ1 denotes the optimal Gibbs vector as the 
result of OLAE1. 

According to the relationship between the Gibbs 
vector and the MRP vector, the first optimal MRP 
vector 1σ̂  can be written as 
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2.2.2  The second optimal linear attitude estimator 

The second optimal linear attitude estimator 
(OLAE2) can be achieved using cross products in-
stead of dot products to remove the unknown angle αi 

from Eq. (13). Premultiplying Eq. (13) by ,/i ixx  it 

is shown that 
 

0.i i
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With a similar method as used above, the error 

vector for a given Gibbs vector g can be defined as 
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and the second new optimality criterion can be given 
by 
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The optimal Gibbs vector ĝ2 and MRP vector 2σ̂  of 

OLAE2 are obtained: 
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Note that OLAE2 is equivalent to Mortari et al. 

(2000; 2007)’s OLAE, because both of them have the 
same error vector and optimality criterion as shown in 
Eqs. (26) and (27), respectively. 
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2.2.3  The third optimal linear attitude estimator 

The third optimal linear attitude estimator 
(OLAE3) can be developed using both dot products 
and cross products to remove αi from Eq. (13). The 
corresponding error vector 3i

e  can be selected as 
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and the third new optimality criterion is given by 
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Substituting Eqs. (21) and (27) into Eq. (31), the third 
optimality criterion expression can be obtained in 
terms of attitude and observations’ vectors: 
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The optimal Gibbs vector 3ĝ  and MRP vector 

3σ̂  of OLAE3 are obtained: 
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2.3  Singularity avoidance 

Due to the use of Gibbs vectors in Eqs. (23), 
(28), and (33), the singularity occurs in the three 
proposed OLAEs algorithms. In this study, we adopt 

the method of one prior rotation of reference direc-
tions, as similarly introduced in (Shuster and OH, 
1981) for the QUEST algorithm to avoid the singu-
larity associated with π rotation about the principal 
axis. 

When the principal angle is π, the principal axis 
a locals in the plane which can be expanded from 
measured values ri and bi. Note that if a new reference 

direction i
r  is used instead of the old one ri, which is 

defined as 
 

T( , ) 2( ) ,r A a r a r a ri i i i
                (35) 

 

where a* denotes a proper unit vector, then the sin-
gularity can be easily avoided in the new computation 
process. 

In order to avoid potential singularity, a practical 
implementation of such unit vector is 
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Therefore, it yields 
 

*T *( ) ,b Ar AA A ri i i                    (37) 

 
where A*=A(a*, π). 

With a similar method as used above, the new 

Gibbs vector *ˆ
jg  and the new MRP vector *ˆ jσ  can be 

obtained: 
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where *M j
  and *

j
υ  have the same forms of M j

  and 

j
υ  only replacing ir  by i

r , respectively. 

Inspecting the form of Eq. (37), it shows that 
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Using the relationship of DCM and MRP vector 
yields 
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Therefore, the singularity, which occurs in the 

three proposed OLAEs, can be easily avoided by 
applying one proper rotation. 

In fact, the determinant of M j
  varies with the 

principal angle θ. In order to improve the precision of 
OLAEj (j=1, 2, 3) estimate, the method which is used 
to avoid singularity can be employed more widely. 

That is, if *det det ,M Mj j   Eqs. (36), (38), and (40) 

are adopted to calculate the optimal MRP vectors ˆ jσ  

(j=1, 2, 3). Thus the OLAEs algorithms without sin-
gularity can be achieved as follows. 

OLAEs algorithms 

Step 0: Select a proper OLAEj (j=1, 2, 3). 
Step 1: Define the incidental directions as Eq. (17). 
Step 2: Calculate the unit vector and new reference directions 

as Eqs. (35) and (36). 
Step 3: Define the second incidental directions as follows: 
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Step 5: Obtain the final optimal estimate according to the com-
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  and *det .M j
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else do as Eqs. (38) and (40). 

Consider a special case that there are n (n=3) 
measurements with equal weights along the reference 
axes. Therefore, ri takes the three values [1, 0, 0]T, [0, 
1, 0]T, and [0, 0, 1]T. The determinants of matrices 

M j
  and *

j
M  (j=1, 2, 3) are plotted in Fig. 2. It is 

shown that OLAE2 and OLAE3 have higher preci-
sions than that of OLAE1, because of their absolute 
nonsingularity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4  Covariance analysis 

A detailed covariance analysis is presented to 
quantify the approximation error of OLAEs esti-

mates. Matrices M j
  and vectors j
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which are defined in Eqs. (20), (29), and (34), can be 
rewritten (to first order in vi) as 
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The exact Gibbs vector g is given by 
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Thus the OLAEj estimate ĝj can be rewritten (to first 
order in vi) as 
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The error angle vector of the OLAEj is given (to 

first order in vi) by 
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Therefore, the covariance matrix T{ }
j j j jE    P θ θ  

has the following expression: 
 

1
2

T
T

4
( ) ( ),

(1 )

1, 2, 3,

j j j j j

j

 
     


  

P I g M Q M I g
g g   (48) 

 T( )( ) ,Q υ M g υ M gj j j j jE             (49) 

 

where E{·} denotes the expectation operation. 
Assume that the measurement model for obser-

vations is given by 
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where σi denotes the variance of the ith sensor noise, 
and the relative weights are chosen to minimize the 
original loss function, which leads to 
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Substituting Eqs. (42), (43), and (44) into Eq. (53), Gji 
(j=1, 2, 3) are given by 
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Therefore, Qj and the covariance matrix θ θP
j j

 can be 

rewritten as 
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Especially, for g=0, it can be obtained that 
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3  Numerical simulations 
 

The accuracy of the proposed OLAEs estimate 
compared with QUEST is quantified here with a 
Monte Carlo numerical analysis. The accuracy 
achieved by OLAEj estimator is analyzed by error 
vector for angles of rotation defined in Eq. (47). 
Simulation data are generated almost identically to 
Mortari et al. (2007) in this section, which is sum-
maried as follows: Measurement data and the atti-
tudes are N=1000, randomly produced using sensor 
noise with 10−3 rad (1σ), the true attitude is g=[1, 1, 
1]T and the observed directions are [1, 0, 0]T, [0, 1, 
0]T, and [0, 0, 1]T. The results of these tests are plotted 
in Fig. 3. It shows that OLAEs provide attitude ac-
curacy almost identical to that of QUEST, and the 
computed estimates are compatible with the covari-
ance analysis presented in the previous section. 

Furthermore, the robustness of the proposed al-
gorithms is tested and verified with respect to attitude 
principal angle and deviation of sensor noise. Define 
noise amplification factor εj, which represents the 
ratio of the deviation of attitude error 

j
  and the 

deviation of sensor noise σnoise of the jth estimator, as 
follows: 
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where N=10 000 denotes the number of sets of meas-
urements in simulations, and δθjk denotes the kth 
attitude error of OLAEj: 
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where ĝjk denotes the kth attitude estimate of the jth 
estimator. 

In the first case, the true attitude 
Ttan( / 2)[1 / 3, 1 / 3, 1 / 3]g    varies with the 

principal angle θ, and the measured observed direc-
tions are corrupted by Gaussian white noise with 
zero-mean, standard deviation σnoise=10−3 rad. In or-
der to analyze the evolution of the noise amplification  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Attitude accuracy plots 
(a) OLAE1 estimate error; (b) OLAE2 estimate error; (c) 
OLAE3 estimate error; (d) QUEST estimate error 

(a) 

(b) 

(c) 

(d) 
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factor, sensor noises are fully identical in each sample 
of principal angle. The results of εj (j=1, 2, 3, 4, j=4 
for QUEST algorithm), are plotted in Fig. 4a. It is 
shown that 

1. The precision of OLAE3 is almost identical to 
that of QUEST, and the differences between them are 
less than 0.089% and can be negligible for practical 
purposes. 

2. The attitude accuracy of OLAE1 or OLAE2 is 
a little lower than that of OLAE3 or QUEST, and the 
performance of OLAE1 is comparatively the lowest 
amongst these four estimators.  

3. When the principal angle is close to 0 or π, 

1det 0M   and *
1t 0,de M   singularity occurs in 

calculating the estimated Gibbs vector of OLAE1, and 
consequently its accuracy error increases abruptly in 
these two cases. 

4. According to the results of simulation data, the 
differences among three proposed algorithms and the 
traditional QUEST algorithm are less than 2.5% in 
most cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the second case, the true attitude is a constant 
vector g=−[1, 1, 1]T, while the error of the observed 
directions is Gaussian white noise with zero-mean, 
standard deviation between 10−2 to 10−8 rad. As 

shown in Fig. 4b, noise amplification factors εj (j=1, 
2, 3, 4) become slowly decreasing functions with 
respect to σnoise, while decrements are less than 
0.033% and can also be negligible. 

The comparisons of computational speeds of the 
four different algorithms are illustrated in Fig. 5. The 
number of random tests is N=10 000. Elapsed times of 
OLAE1, OLAE2, OLAE3, and QUEST are 2.768, 
2.688, 2.776, and 3.495 s, respectively. It is shown 
that OLAEj (j=1, 2, 3) need less multiplications than 
QUEST algorithm. 
 
 
 
 
 
 
 
 
 
 

 
 
 
4  Conclusions 
 

This paper presents a new approach for space-
craft attitude estimation via geometric analysis and 
proposes three OLAEs with results parameterized by 
MRPs. The geometry of attitude rotation shows that 
the Gibbs vector has known components along y and z 
directions in incidental right-hand orthogonal coor-
dinates which can be induced by any pair of measured 
values. Thus, the unknown component along x direc-
tion can be eliminated using dot or/and cross prod-
ucts. Three new error vectors are introduced, and 
three associated optimality criteria are developed in 
terms of attitude and observations’ vectors. These 
criteria are rigorously quadratic and unconstrained, 
which do not apply to Wahba’s constrained criterion. 
The optimal attitude estimate in terms of Gibbs vector 
can be expressed by linear equations. To avoid sin-
gularity, which occurs when the principal angle is 
close to π, one proper rotation is adopted. Comparison 
with the Wahba compliant QUEST algorithm shows 
that the proposed OLAEs have faster computational 
speeds, because they do not need to calculate the 
determinant and adjoint of a 3×3 matrix and the 
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Fig. 5  Histogram of elapsed time 

Fig. 4  Measurement noise intensity 
(a) Along principal angle (σnoise=10−3 rad); (b) Along de-
viation of sensor noise (θ=−120°) 

(a) 

(b) 
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maximum root of a quartic equation. Numerical 
simulations are employed to test and verify the per-
formance of OLAEs using the Monte Carlo approach. 
The accuracy provided by OLAEs is comparable with 
that of QUEST algorithm in most cases, and thus the 
differences among these estimators can be negligible 
for practical purposes. Relatively, the order of priority 
of performance is OLAE3>QUEST≈OLAE2>OLAE1. 
Although OLAEs provide high precision in attitude 
determination, they do not include the information 
from all past measurements. Thus, recursive OLAEs 
using the concept of Kalman filter may significantly 
enhance the precision of attitude determination. 
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