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Abstract:    To analyze the stability of a shallow square tunnel, a new curved failure mechanism, representing the mechanical 
characteristics and collapsing form of this type of tunnel, is constructed. Based on the upper bound theorem of limit analysis and 
the Hoek-Brown nonlinear failure criterion, the supporting pressure derived from the virtual work rate equation is regarded as an 
objective function to achieve optimal calculation. By employing variational calculation to optimize the objective function, an 
upper bound solution for the supporting pressure and the collapsing block shape of a shallow square tunnel are obtained. To 
evaluate the validity of the failure mechanism proposed in this paper, the solutions computed by the curved failure mechanism are 
compared with the results calculated by the linear multiple blocks failure mechanism when the Hoek-Brown nonlinear failure 
criterion is converted into the Mohr-Coulomb linear criterion. The influences of rock mass parameters on the supporting pressure 
and collapsing block shape are discussed. 
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1  Introduction 
 

Since arch structures evenly distribute stress, the 
cross-sectional shape of a majority of railway and 
highway tunnels are multi-circular. However, there 
are numerous square and rectangular tunnels widely 
used in subway stations, underground cavities and 
mine tunnels. The mechanical characteristics of 
square tunnels are not as good as those of circular 
tunnels, especially at the junction of the tunnel roof 
and the tunnel wall. Furthermore, to make traveling 
convenient, subway stations and underground parks 
are all excavated in shallow soil strata. So how to 
keep the stability of shallow tunnels with a reasonable 
supporting pressure is an issue of great engineering 

significance. The aim of this paper is to find a mini-
mal supporting pressure which prevents the possible 
collapse of the tunnel roof during the construction 
process. 

The upper bound theorem has been widely used 
in slope stability analysis since it was first introduced 
into geotechnical engineering by Chen (1975). Later, 
some studies found this theory to be a valid method 
for analyzing the stability problem of tunnels. Davis 
et al. (1980) constructed a linear multi-block collapse 
mechanism to develop the upper bound solution of the 
stability ratio. By comparing the lower bound solution 
and experimental result, they claimed that their result 
was valid for a shallow tunnel under undrained con-
dition when the depth ratio was less then 3. On the 
basis of collapse and blow-out failure mechanisms, 
Leca and Dormieux (1990) calculated upper bound 
solutions of supporting pressure for a tunnel face. As 
the validity of the 3D failure mechanisms has been 
proved by Chambon and Corte (1994) using a  
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centrifuge model test, these failure mechanisms have 
been cited frequently by others. Based on these 
mechanisms and taking seepage force into account, 
Lee and Nam (2001) computed the supporting pres-
sure of an underwater tunnel face in the framework of 
the upper bound theorem. The stability of the front of 
a slurry shield-driven tunnel was studied by Li et al. 
(2008) employing the upper bound theorem of limit 
analysis. With the rapid development of computer 
technology in recent years, large optimization prob-
lems can be solved efficiently by using complex al-
gorithms to decrease the computing time. As a result, 
some authors employed the finite element method in 
conjunction with the limit analysis theorem to study 
the stability problem of tunnels. To investigate the 
stability of a square tunnel in undrained soil, Sloan 
and Assadi (1991) derived the rigorous bounds of 
supporting pressure by combining the finite element 
method and limit analysis theory. Similarly, using the 
same approach, Assadi and Sloan (1991) used two 
numerical techniques to calculate the rigorous bounds 
on the loads required to prevent shallow tunnels from 
active and passive failures. 

All studies mentioned above adopted a linear 
failure criterion in conjunction with limit analysis 
theorem and finite element method to study the sta-
bility problem of tunnels. However, with the devel-
opment of geotechnical experimental techniques, 
numerous experimental results have proved that the 
strength envelopes of geomaterials are nonlinear. 
Therefore, the nonlinear failure criterion is now 
widely used in various geotechnical stability analyses 
(Yang et al., 2004; Yang and Yin, 2006; Yang, 2007; 
Zhang et al., 2010). As there was no suitable method 
to estimate the mechanical characteristics and the 
joint rock mass strength, Hoek and Brown (1980) 
proposed the original Hoek-Brown failure criterion. 
Due to its simplicity and accuracy, numerous scholars 
employed this criterion to analyze various geotech-
nical stability problems. Using the limit analysis 
method, Li et al. (2008) calculated stability charts for 
the rock slope using the Hoek-Brown failure criterion, 
and Merifield et al. (2006) estimated the ultimate 
bearing capacity of a foundation resting on a rock 
mass which is subjected to the Hoek-Brown failure 
criterion, and presented rigorous bounds of the ulti-
mate bearing capacity for the foundation. To study the 

collapsing block shape of a deep tunnel with arbitrary 
cross-sections, Fraldi and Guarracino (2010) pro-
posed a 2D failure mechanism to compute the exter-
nal power and the internal dissipation power in the 
framework of the limit analysis method and the 
Hoek-Brown failure criterion. Though their upper 
bound solutions of the collapsing surface derived 
from variational calculation are effective, their 
mechanism is not suitable for shallow tunnels. Thus, 
it is necessary to construct a new mechanism which 
describes the collapsing features of surrounding rock 
over a shallow tunnel roof.  

In this paper, a new collapse mechanism which 
represents the collapsing block of surrounding rock 
over a shallow tunnel roof is proposed to construct a 
virtual work equation on the basis of the upper bound 
theorem combined with the Hoek-Brown failure cri-
terion. What is new in this paper is that the supporting 
pressure is regarded as an objective function to 
achieve optimal calculation. Taking advantage of the 
variational calculation, the optimal upper bound so-
lutions for the supporting pressure and an analytical 
expression of the collapsing block shape over the 
tunnel roof are obtained. Thus, with support pressure 
being considered, we extend the study of the col-
lapsing block shape of a deep cavity conducted by 
Fraldi and Guarracino (2009) to shallow tunnels. 
 
 
2  Hoek-Brown failure criterion 
 

The generalised Hoek-Brown failure criterion is 
always expressed by the maximum effective stress σ1 
and minimum effective stress σ2 (Hoek and Brown, 
1980; 1988; Hoek et al., 2002). However, the energy 
dissipation power along the collapsing surface is 
composed of two parts, i.e., the energy dissipation 
caused by normal stress and shear stress. Conse-
quently, the Hoek-Brown criterion represented by the 
normal and shear stresses (Hoek and Brown, 1997) 
applied in this study can be written as  

 

n tm
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where σn is the normal stress, τ is the shear stress, A 
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and B are material parameters, and σci and σtm are the 
uniaxial compressive strength and the tensile strength 
of the geomaterials, respectively. Due to the lack of a 
suitable failure criterion to evaluate the strengths of a 
poor rock mass, Hoek and Brown (1997) stated that 
the Hoek-Brown failure criterion can be applied to 
projects in very poor quality rock mass, which is 
classified as engineering soil. So the application of 
the Hoek-Brown failure criterion to the study of the 
failure block of shallow square tunnels is sensible and 
feasible. 
 
 
3  Upper bound theorem of limit analysis 
 

According to Chen (1975), the upper bound 
theorem can be described as follows: in any kine-
matically admissible velocity field, the load deter-
mined by the equation of virtual work is larger than 
the actual collapsing load when the velocity boundary 
condition is satisfied by 

 

d d d ,ij ij i i i iv s v
v TV s X V v                  (2) 

 
where σij is the stress tensor, εij is the strain rate in the 
failure mechanism, Ti is a surcharge load on the ve-
locity field boundary s, Xi is the body force, v is the 
volume of the mechanism, and Vi is the velocity along 
the velocity discontinuity surface. As noted by Chen 
(1975), the limit analysis theorem can be applied to 
the geotechnical material if the material has the fol-
lowing ideal properties: (1) it is perfectly plastic ma-
terial which ignores the strain hardening and strain 
softening features of stress-strain; (2) the failure sur-
face of the material is convex and the associated flow 
rule is applicable; (3) the geometric deformation of 
the failure mechanism induced by limit load is  
insignificant. 

 
 
4  Curved failure mechanism of a shallow 
square tunnel 
 

Fraldi and Guarracino (2009) proposed a 2D 
curved failure mechanism to investigate the shape of a 
collapsing block for a deep cavity. The curved failure 

mechanism is constructed by an arched curve which 
confines the possible collapse of the surrounding rock 
over the tunnel roof to a certain region. However, as 
the overburden layer of shallow tunnels is thin, the 
collapsing surface of tunnels extends to the ground 
surface. So, in this study, a new failure mechanism 
(Fig. 1) is used to describe the collapsing block of the 
surrounding rock of shallow tunnels. This failure 
mechanism is composed of two symmetrical curves 
which extend from the junction of the tunnel roof and 
wall to the ground. As velocity discontinuity occurs 
along the collapse surface in the velocity field, the 
failure surface can also be called a detaching surface. 
L is half of the width of the failure surface, σs is the 
surcharge at ground surface, q is the supporting 
pressure, H is the buried depth of the shallow square 
tunnel, b is half of the width of the square tunnel and 
f(x) is the analytical expression of the detaching sur-
face (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Upper bound solution of supporting pres-
sure q for a shallow tunnel 
 

According to the associated flow rule, the plastic 
strain rate is proportional to the stress gradient of the 
plastic potential, and the plastic potential is coinci-
dental with the Hoek-Brown failure curve. Therefore, 
the normal and shear strains are calculated, and the 
energy dissipation of a random point on the detaching 
surface was calculated by Fraldi and Guarracino 
(2009) as 

V
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q
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Fig. 1  Curved failure mechanism of a shallow square 
tunnel 
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where εn is the normal strain rate, γn is the shear strain 
rate, f′(x) is the first derivative of f(x), and t is the 
thickness of the failure surface. By integrating D over 
the interval [L, b], the internal energy dissipation 
power along the detaching surface is obtained: 
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The power of the collapse block caused by weight can 
be determined by  
 

 ( )d ,
b

L
W H b f x x v                    (5) 

 
where γ is the unit weight of the geomaterials. The 
power of the supporting pressure q can be written  
as 
 

.qW bqv                            (6) 

 
The surcharge σs is applied at ground surface and its 
power can be written as 
 

s s .W Lv                           (7) 

 
Based on the upper bound theorem of limit analysis, 
the virtual work rate equation composed of the ex-
ternal power and the internal energy dissipation 
power can be expressed as  
 

s
.D qW W W W                      (8) 

 
By substituting Eqs. (4)–(7) into Eq. (8), the sup-
porting pressure q is obtained as 
 

 
1

11
ci tm

s

1
( ) (1 ) ( ) d

b
B

L
q ABf x B f x x

b

L
H

b

  





     
 

 



  s1
( ), ( ), d ,

b

L

L
f x f x x x H

b b


                  (9) 

 

where  ( ), ( ),f x f x x   is a functional which can be 

expressed as 
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The upper bound theorem of limit analysis states that 
the loads obtained by the equation of virtual work are 
larger than the actual loads for any kinematical failure 
mechanism. So the optimalizing upper bound solution 
close to the real solution is the extremum of the upper 
bound expression q represented by Eq. (9). Further-
more, the supporting pressure q is determined only by 
the function ψ (Eq. (10)). Consequently, the calcula-
tion of the optimalizing upper solution of q can be 
regarded as searching for the extremum value of the 
objective function ψ. Since the objective function ψ is 
a functional whose extremum is difficult to derive, 
variational calculation is employed here to solve this 
problem. Based on the variational principle, the cal-
culation of the extremum of ψ can be converted into 
solving a Euler’s equation which is used to derive the 
equation of a detaching surface in the failure mecha-
nism. Based on the principle of the stationary value of 
variational calculation, we can obtain the Euler 
equation of ψ from 
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It is evident that Eq. (11) is a second-order homoge-
neous differential equation. Thus, the expression of 
f(x) is obtained by conducting two integrations: 
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where C0 and C1 are integration constants which can 
be calculated by the boundary condition. By substi-
tuting Eq. (12) into Eq. (10), the function ψ is  
determined: 
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By substituting Eq. (12) into Eq. (9), the upper solu-
tion for the supporting pressure q is obtained: 
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To achieve the optimal calculation for the supporting 
pressure, the unknown constants C0, C1 and L in 
Eq. (14) should be determined. Since there is no dis-
tribution of shear stress on the ground surface, the 
shear stress at the junction of the failure surface and 
the ground surface is zero. In line with the mechanical 
equilibrium equation, the expression of shear stress at 
the location (x=L, y=0) is derived: 
 

( , 0) 0.xy x L y                       (15) 

 
Furthermore, there are two geometric equations 
(Fig. 1) which can be used to determine these inte-
gration constants: 
 

( ) 0,f x L                           (16) 

( ) .f x b H                           (17) 

 
In accordance with Eqs. (15)–(17), the constants C0, 
C1 and L are obtained. After substituting these con-
stants into Eqs. (12) and (14), the final forms of de-
taching curve f(x) and supporting pressure q can be 
expressed as follows: 
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6  Comparisons with existing mechanism 
 

To analyze the stability of shallow tunnels in 
cohesive material, Davis et al. (1980) proposed a 
linear multiple blocks failure mechanism to calculate 
the stability ratio of tunnels in conjunction with the 
Mohr-Coulomb failure criterion. This mechanism is 
composed of numerous rigid failure blocks (Fig. 2). 
The results of Chambon and Corte (1994) derived 
from a centrifuge model test show that the linear 
multiple blocks failure mechanism is an effective 
failure mechanism in the upper bound analysis of 
shallow tunnels. Consequently, to estimate the valid-
ity of the method applied in this study, the results 
derived from the curved failure mechanism are com-
pared with the solutions calculated by the linear mul-
tiple blocks failure mechanism. However, how to 
convert the parameters of the Hoek-Brown failure 
criterion into the parameters of the Mohr-Coulomb 
failure criterion is a problem in this comparison. It is 
obvious that the Hoek-Brown failure criterion con-
verts into the Mohr-Coulomb linear criterion when 
parameter B=1. Thus, in this case, Eq. (1) can be 
expressed as 
 

n tm .A A                            (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q

V

y

x

H
2b

Linear 
failure  
blocks

Ground surface

L

2b

σs 

Fig. 2  Linear multiple blocks failure mechanism for a 
shallow square tunnel 
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Therefore, the parameters in the Hoek-Brown crite-
rion are equal to those in the Mohr-Coulomb when 
B=1: 
 

tmtan ,   / tan ,A C                 (21) 

 
where  is the friction angle and C is the cohesion. 

The supporting pressure values of the curved 
failure mechanism are plotted in Fig. 3 as functions of 
the tunnel depth ratio H/b with the equivalent pa-
rameters of the Mohr-Coulomb criterion calculated by 
Eq. (21), while the results of the linear multiple blocks 
failure mechanism are calculated by a nonlinear se-
quential quadratic programming algorithm. The val-
ues of q for both failure mechanisms are nearly the 
same in most cases except for a tunnel depth ratio 
larger than 1.6. As a result, the slight difference in the 
supporting pressure between these two mechanisms 
proves that the curved failure mechanism for shallow 
tunnels used in this study is effective. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7  Parameter study for supporting pressure q 
 

Hoek and Brown (1997) claimed that different 
parameters in the Hoek-Brown criterion represent 
different qualities of the surrounding rock. To discuss 
the effect of a single parameter on the supporting 
pressure of shallow tunnels, reference can be made to 
Fig. 4, where the values of q are plotted as the func-
tion of a tunnel depth ratio H/b for different B, A, tm, 
and γ respectively, when other parameters are fixed. 

The values of q increase nonlinearly with the increase 
in the tunnel depth ratio, which means that tunnel 
depth is the key factor influencing the supporting 
pressure. Furthermore, the values of q tend to in-
crease directly with the values of B and γ, and in-
versely with the values of A and tm when other pa-
rameters are constant. Therefore, it can be concluded 
that the stability of shallow square tunnels in sur-
rounding rock with a low value of B and a high value 
of tm can be achieved with a relatively small sup-
porting pressure. 

The majority of subway stations and under-
ground cavities are located in urban centers where 
there are numerous existing structures. Due to the thin 
overburden, the surrounding rock of a shallow tunnel 
will not form a collapsing arch to bear the ground load. 
Thus, to analyze the influence of surcharge s on the 
supporting pressure q is an issue of great research 
value. Fig. 5 shows the change law of the supporting 
pressure for varying the tunnel depth ratio and sur-
charge with soil parameters corresponding to A=0.5, 
ci=2.5 MPa, tm=ci/100, b=10 m, B=0.7, and γ= 
15 kN/m3. q increases directly with the tunnel depth 
ratio and surcharge. Thus, the surcharge is an impor-
tant factor which should not be neglected when the 
tunnel is excavated in shallow soil strata. 

Moreover, Hoek and Brown (1997) proposed 
that the parameters of the Hoek-Brown criterion 
represented by the normal and shear stresses can be 
converted into the parameters in the generalised 
Hoek-Brown criterion using the linear regression 
technique. Based on this method, the correspondence 
between the generalised Hoek-Brown criterion pa-
rameters (a, mb, s, ci, GSI) and those represented by 
the normal and shear stresses in Eq. (1) is demon-
strated in Table 1.  

 
 

8  Parameter study for the shape of the col-
lapse surface of a shallow square tunnel 
 

To study the influence of different parameters on 
the shape of the collapse surface of shallow tunnels, 
the collapse surfaces of soil parameters corresponding 
to A=0.1–0.3, ci=1.5–3.5 MPa, b=10 m, B=0.5–0.9, 
and γ=15–25 kN/m3 are illustrated in Fig. 6. To ana-
lyze the influence of a single factor on the shape of the 
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collapse surface, each diagram in Fig. 6 is plotted for 
one varying parameter while the other parameters 
remain constant. Note that all the collapse surfaces 

Table 1  Correspondence between the generalised Hoek-
Brown criterion parameters and those represented by 
the normal and shear stresses 

Parameter Value Parameter Value 

a 0.7 A 0.5 

mb 1.9 B 0.7 

s 0.02 σci (MPa) 2.5 

σci (MPa) 2.5  σtm (MPa) 0.025 

GSI 25   

Fig. 4  Upper bound values of q for different B (a), A (b), σtm (c), and γ (d) 
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Fig. 5  Upper bound values of q for different surcharge σs
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extend from the tunnel roof to the ground along two 
symmetrical curved lines for different rock mass pa-
rameters. Moreover, the top width of the failure block 
L increases directly with B and γ, and inversely with A 
and ci. 

As illustrated in Eq. (20), the Hoek-Brown cri-
terion converts into the Mohr-Coulomb criterion 
when B=1 and the parameters in the Hoek-Brown 
failure criterion are equal to those in the Mohr- 
Coulomb failure criterion. To study the shape of the 
collapse surface of shallow tunnels which satisfies the 
Mohr-Coulomb failure criterion, the collapse surfaces 
for the surrounding rock characterized by A=0.1–0.3, 
ci=2.5 MPa, b=10 m, B=1, and γ=20 kN/m3 are 
plotted in Fig. 7. Unlike the general situation, in the 
limit case B=1, the collapse surface extends from the 
tunnel roof to the ground along a straight line rather 
than a curved line (Fig. 6). Furthermore, similar to the 
changing law mentioned above, the top width of the 
failure block L still decreases with the increase of A. 
According to Eq. (21), A is equivalent to tan when 
the Hoek-Brown failure criterion converts into the 
Mohr-Coulomb failure criterion. Also, in this limit 
case the expression of the detaching curve f(x)  
becomes 

 
1( ) ( ).f x A x AH b                  (22) 

 
It is obvious that Eq. (22) is relevant only to rock 
mass parameter A. Moreover, A is equal to tan. 
Therefore, the shape of the collapse surface of shal-
low tunnels which satisfies the Mohr-Coulomb crite-
rion is determined by only the friction angle , and is 
not affected by the cohesion. 
 
 
 
 
 
 
 
 
 
 
 
 

9  Conclusions  
 

1. Based on the mechanical mechanism of shal-
low square tunnels, a new 2D curved failure mecha-
nism which describes the collapsing block of this type 
of tunnel is proposed. According to the Hoek-Brown 
nonlinear failure criterion and upper bound theorem, 
the optimal upper solution for the supporting pressure 
and the collapsing block shape of shallow tunnels are 
obtained with the help of variational calculation. By 
using equivalent parameters of the Mohr-Coulomb 
criterion, the upper solutions for the supporting pres-
sure calculated by the curved failure mechanism were 
compared with the results using the linear multiple 
blocks failure mechanism when B=1. A slight differ-
ence between the results from the two mechanisms 
indicates that the new failure mechanism is a valid 
failure mechanism for computing the upper solutions 
for the supporting pressure of shallow tunnels. 

2. The influence of a single parameter on the 
supporting pressure of shallow square tunnels was 
studied when other parameters were fixed. The 
change laws of the supporting pressure which varies 
with the rock mass parameter showed that the stabil-
ity of a shallow tunnel in the surrounding rock with a 
low value of B and a high value of tensile strength tm 
can be achieved with a relatively small supporting 
pressure. 

3. The shapes of the failure surface drawn by the 
analytical solution of a velocity discontinuity surface 
f(x) showed that the range of the collapse surface 
increases directly with B and γ and inversely with A 
and ci. Furthermore, the shapes of the failure surface, 
with the Hoek-Brown criterion reducing to the 
Mohr-Coulomb criterion, were also investigated, and 
were determined by only the friction angle  in this 
limit case. 
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