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Abstract: The buckling of thin-walled structures is presented using the 1D finite element based refined beam
theory formulation that permits us to obtain N-order expansions for the three displacement fields over the section
domain. These higher-order models are obtained in the framework of the Carrera unified formulation (CUF). CUF
is a hierarchical formulation in which the refined models are obtained with no need for ad hoc formulations. Beam
theories are obtained on the basis of Taylor-type and Lagrange polynomial expansions. Assessments of these theories
have been carried out by their applications to studies related to the buckling of various beam structures, like the
beams with square cross section, I-section, thin rectangular cross section, and annular beams. The results obtained
match very well with those from commercial finite element softwares with a significantly less computational cost.
Further, various types of modes like the bending modes, axial modes, torsional modes, and circumferential shell-type
modes are observed.
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1 Introduction

Beam theories are extensively used to analyze
the structural behavior of slender bodies, such as the
ones used in civil, aeronautical as well as mechan-
ical engineering applications. 1D structural mod-
els are simpler and computationally cheaper than
2D (plate/shell) and 3D (solid) elements. Further,
beams can also be the representatives of 2D struc-
tures undergoing cylindrical bending. This aspect
makes beam theories attractive for the static and
dynamic analyses of structures.

Accurate analysis using the refined theories,
incorporating the non-classical effects which can
not be obtained with the Euler-Bernoulli beam
theory (EBBT) and Timoshenko beam theory
(TBT) (EBBT does not account for transverse shear
deformations and TBT considers a uniform shear

‡ Corresponding author
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

distribution along the cross section of a beam), is
of paramount importance for thin-walled composite
structures frequently used in modern engineering
applications, like aerospace, marine and civil struc-
tural components, wherein weight to strength ratio
is given due importance.

A first attempt to improve beams models is re-
lated to the use of shear correction factors, as clearly
stated in Sokolnikoff (1956), Novozhilov (1961), and
Timoshenko and Woinowski-Krieger (1970). Many
works have been presented on this topic, for ex-
ample, Cowper (1966), Gruttmann et al. (1999),
Gruttmann and Wagner (2001), and Wagner and
Gruttmann (2002) for static analysis; Stephen (1980)
and Hutchinson (2001) for dynamics. Moreover,
Jensen (1983) showed how the shear correction fac-
tor varies with the natural frequencies. However,
as shown first in the reviews by Kaneko (1975) and
recently by Dong et al. (2010), the definition of a
universally accepted formulation for shear correction
factors is not an easy task.
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Ladevèze and Simmonds (1996; 1998), El Fatmi
(2002; 2007a; 2007b), and Ladevèze et al. (2004) in-
troduced improvements of the displacement models
over the beam section by introducing warping func-
tions. Further, beam theories were based on the dis-
placements field proposed by Ieşan (1986) and were
solved by a semi-analytical finite element method
(FEM) by Dong et al. (2001), Kosmatka et al.
(2001), and Lin and Dong (2006). Rand (1994) and
Kim and White (1997) used the same approach in
the free vibration analysis introducing out-of-plane
warping with no in-plane stretching terms.

Asymptotic type expansions in conjunction
with variational methods have been proposed by
Berdichevsky et al. (1992) which includes a com-
mendable review of prior works on the beam theory
development. It is the origin of an alternative ap-
proach to constructing refined beam theories. Some
further valuable contributions are those by Volovoi
et al. (1999), Popescu and Hodges (2000), Yu et al.
(2002), and Yu and Hodges (2004; 2005). A dy-
namic extension has been proposed by Kim and
Wang (2010) and by Firouz-Abadi et al. (2007) where
the Wentzel-Kramers-Brillouin (WKB) approxima-
tion was used.

The generalized beam theory (GBT) was orig-
inated with Schardt’s works (Schardt, 1966; 1994;
Schardt and Heinz, 1991). GBT improves classical
theories by using piece-wise beam description of thin-
walled sections. It has been widely employed and
extended in various forms by Silvestre (2002; 2007)
and Silvestre and Camotim (2002), and a dynamic
application is presented by Bebiano et al. (2008).

A hierarchical approach with variable kinematic
2D models has been successfully developed by Car-
rera (1995; 2003) and Carrera and Demasi (2002).
Carrera unified formulation (CUF) is a hierarchical
formulation which permits a systematic evaluation
of refined higher-order plate models from classic 2D
models to quasi-3D descriptions for both static and
dynamic analyses—without the need for ad hoc as-
sumptions (Carrera, 1995; 2000; Carrera and Giunta,
2009). It can be noted that the evaluation of the
2D approximations against the buckling of compos-
ite plates and shell models was recently proposed in
D’Ottavio and Carrera (2010) and Nali et al. (2011),
which are carried out within the framework of CUF.
However, the 2D models used for structures are com-
plex and computational expensive, thereby a need for

a much simpler model was brought out.
Recently, Demasi (2009) presented the gener-

alized unified formulation (GUF) approach. This
method is an extension of CUF used in this work.
The GUF introduces a new formulation that allows
to derive the FEM matrix using a 1× 1 fundamental
nucleus.

Some studies using the hierarchical beam theo-
ries embedded in the CUF have also been carried out.
Carrera and Giunta (2010) proposed the CUF for the
beam analyses using hierarchical displacement-based
theories wherein no ad hoc assumption for transverse
shear is required. Using the proposed 1D CUF, non-
classical features, such as in- and out-of-plane warp-
ing of beam cross section can be adequately pre-
dicted without considering dedicated warping func-
tions. Also, classical models, such as EBBT and
TBT can be retrieved as special cases. For accurate
estimation of displacement, strain and stress distri-
bution at particular geometrical locations such as
voids and corners of beams with uniform cross sec-
tions and to treat complex geometrical cross sections
and loadings, Carrera et al. (2010) systematically im-
plemented the FE in 1D CUF. Many works have been
published to highlight the capabilities of the CUF-
based 1D structural theory. Static analyses have
been considered for compact and thin-walled struc-
tures in Carrera (2011a) and for bridge-like cross
sections in Carrera et al. (2012). Free vibration
analyses have been carried out on hollow cylindrical
structures in Carrera et al. (2011b). Moreover, Car-
rera and Petrolo (2012b) developed a beam model
with only displacement degrees of freedom (DOFs)
by using Lagrange polinamials for the expansion over
cross section. Mixed axiomatic/asymptotic perfor-
mances have been detailed in a recent work by Car-
rera and Petrolo (2011). They highlighted the par-
ticipation of higher-order terms of the refined beam
theories for static analyses of beams with arbitrary
cross sections and loadings. Free vibration studies of
beams using 1D CUF have been carried out by Car-
rera et al. (2011b). A brief review of FE formulations
for vibration analyses of thin/thick composite beam
structures was also given. 1D beam models within
the framework of CUF were capable of predicting
3D features of the vibration modes. Moreover, shell-
type vibration modes for beams with annular sec-
tions were easily detected.

It is worth mentioning that the recent
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literature (Turvey, 1996; Roberts and Al Ubaidi,
2001; 2002; Andrade and Camotim, 2004; Saadé
et al., 2004; De Lorenzis and La Tegola, 2005; An-
drade et al., 2007; Ascione et al., 2011) consisting of
the numerical, theoretical, and experimental stud-
ies pertaining to the contribution of shear deforma-
tion on buckling of thin-walled structures highlights
the continuing research interests dealing with the
issues of lateral as well as flexural torsional buck-
ling of beams with arbitrary cross sections on uni-
fied basis. Ibrahim et al. (2012) proposed buckling
analysis of composite structures by means of refined
beam models. This work presents the systematic ap-
proach to the buckling analysis of beams of arbitrary
cross section geometries by higher-order models us-
ing 1D formulations obtained within the framework
of the CUF. Beam theories are obtained on the ba-
sis of Taylor-type and Lagrange polynomial expan-
sions. In particular, buckling behaviour of beams
with square, doubly symmetric open cross section,
thin rectangular and annular cross sections are in-
vestigated and various types of bucking modes are
observed. The global as well as local buckling phe-
nomena are observed with substantial decrease in
computational cost. Nonclassical features like tor-
sional and annular modes are highlighted.

2 Advanced beam models and related
finite element formulations

2.1 Framework of Carrera unified formulation

The chosen coordinate system is presented in
Fig. 1. The beam boundaries over y are 0 ≤ y ≤ L.
The displacement vector is

u(x, y, z) = {ux uy uz}T , (1)

where the superscript ‘T’ represents the transpose.
Stress, σ, and strain, ε, components can be written
as

σp = {σzz σxx σzx}T , εp = {εzz εxx εzx}T ,

σn = {σzy σxy σyy}T , εn = {εzy εxy εyy}T ,
(2)

where subscript “n” represents terms normal to the
cross section, and “p” stands for terms laying on Ω.
Shear strains are meant as engineering components.
Linear strain-displacement relations are written as

εp = Dpu, εn = Dnu = (DnΩ +Dny)u, (3)

x

y
z

Ω

Fig. 1 Coordinate frame of the beam model

Ω: cross section domain
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The Hooke law is exploited as

σ = C̃ε. (5)

According to Eq. (2), the preceding equation be-
comes {

σp = C̃ppεp + C̃pnεn,

σn = C̃npεp + C̃nnεn.
(6)

In the case of isotropic material, the matrices C̃pp,
C̃nn, C̃pn, and C̃np are

⎧
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(7)

For the sake of brevity, expressions relating coef-
ficients [C̃]ij , Young’s modulus (E), and Poisson’s
ratio (ν) are not reported here and can be found in
existing literature (e.g., Tsai, 1988).
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In the framework of the CUF, the displacement
components are assumed as an expansion in terms of
generic functions, Fτ :

u = Fτuτ , τ = 1, 2, · · · ,M, (8)

where Fτ are functions of coordinates x and z on
the cross section, uτ is the displacement vector, and
M represents the number of terms of the expansion
of order N . According to the Einstein notations,
the repeated subscript τ indicates summation. In
the Subsections 2.2 and 2.3, advanced beam formu-
lations using Taylor series (expansion for cross sec-
tional displacement coupled with FEs representing
the translational displacement field) and Lagrange
polynomials are discussed.

2.2 Taylor 1D CUF

Using the Maclaurin expansion that uses as base
the 2D polynomials xizj, where i and j are posi-
tive integers and considering the expansion up to the
quadratic terms, Eq. (8) can be written as

⎧
⎪⎨

⎪⎩

ux=ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6 ,

uy=uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6 ,

uz=uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6 .
(9)

Note that the quadratic model is reported as an
example and that any order models can be obtained.
The Timoshenko beam model can be obtained by
acting on the Fτ expansion. Two conditions have to
be imposed.

(1) A first-order approximation kinematic field:

⎧
⎨

⎩

ux = ux1 + xux2 + zux3,

uy = uy1 + xuy2 + zuy3,

uz = uz1 + xuz2 + zuz3.

(10)

(2) The displacement components ux and uz

have to be constant above the cross section:

ux2 = uz2 = ux3 = uz3 = 0. (11)

The Euler-Bernoulli beam model can be obtained
through the penalization of εxy and εzy. This condi-
tion can be imposed using a penalty value χ in the
following constitutive relation:

{
σxy = χC̃55εxy + χC̃45εzy,

σzy = χC̃45εxy + χC̃44εzy.
(12)

Unless specified otherwise, for classical (EBBT and
TBT) and first-order models, Poisson’s locking is
corrected according to Carrera and Giunta (2010).

2.3 Lagrange 1D CUF

In this section Lagrange polynomials are used to
describe the cross section displacement field. Nine-
point, L9, polynomials are adopted in this study
whose explicit expressions can be written as

Fτ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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4
(r2 + r rτ )(s

2 + s sτ ), τ = 1, 3, 5, 7,

1

2
s2τ (s

2 − s sτ )(1 − r2)

+
1

2
r2τ (r

2 − r rτ )(1 − s2), τ = 2, 4, 6, 8,

(1− r2)(1 − s2), τ = 9,

(13)
where r and s are from −1 to 1. Fig. 2 and Table 1
show the point locations and natural coordinates,
respectively.
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z

Fig. 2 A nine-point L9 cross section element

Table 1 Nine-point L9 cross section element point
natural coordinates

Point rτ sτ Point rτ sτ

1 −1 −1 6 0 1
2 0 −1 7 −1 1
3 1 −1 8 −1 0
4 1 0 9 0 0
5 1 1

The displacement field given by an L9 element
is
⎧
⎨

⎩

ux=F1ux1+F2ux2+F3ux3+F4ux4+· · ·+F9ux9 ,

uy=F1uy1+F2uy2+F3uy3+F4uy4+· · ·+F9uy9 ,

uz=F1uz1+F2uz2+F3uz3+F4uz4+· · ·+F9uz9 ,
(14)

where ux1 , ux2, · · · , uz9 are the displacement vari-
ables of the problem and they represent the
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translational displacement components of each of the
nine points of the L9 element. The cross section can
be discretized by means of several L-elements. Fig. 3
shows the assembly of two L9 that share a common
edge with three points. A more detailed description
of the CUF Lagrange 1D formulation can be found
in Carrera and Petrolo (2012a; 2012b).

z

x

Fig. 3 Two assembled nine-point L9 elements

2.4 Finite element implementation and stiff-
ness matrix

Introducing the shape functions, Ni, and the
nodal displacement vector, qτi:

qτi =
{
quxτi

quyτi
quzτi

}T
, (15)

the displacement vector becomes

uτ = NiFτqτi, (16)

where shape functions Ni are standard shape func-
tions taken from Bathe (1996). Elements with 3
and 4 nodes (B3 and B4), that is, quadratic and
cubic approximations along the y axis are adopted,
respectively. It is to be noted that the order of the
beam model and the approximation along the lon-
gitudinal axis are completely independent to each
other. An N -order beam model is therefore a theory
that exploits an N -order polynomial to describe the
kinematics of the cross section.

The stiffness matrix of the elements and the ex-
ternal loadings, are obtained via the principle of vir-
tual displacement (PVD):

δLint =

∫

V

(
δεTp σp + δεTnσn

)
dV = δLext, (17)

where Lint, Lext, and δ represent the internal work,
work of the external loadings, and the virtual varia-
tion, respectively. Using Eqs. (3), (6), and (16), the

virtual variation of the internal work is rewritten in
a compact format as

δLint = δqT
τiK

ijτsqsj , (18)

where Kijτs stands for the stiffness matrix in the
form of the fundamental nucleus. The first compo-
nent of the fundamental nucleus can be written as

Kijτs
xx =C̃22

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy

+ C̃66

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy

+ C̃44

∫

Ω

FτFsdΩ

∫

l

Ni,yNj,ydy.

(19)

The detailed expansion of fundamental nucleus can
be seen in Carrera and Giunta (2010). Using 1D
CUF, it is possible to obtain hierarchical higher-
order beam models without changing the expression
of the nucleus components. The shear locking is
corrected through the selective integration technique
(Bathe, 1996). In Carrera et al. (2011a), more de-
tails on the beam model considered in this work can
be found.

3 Governing equations for linearized
stability analysis

The buckling equations are obtained according
to Euler’s method of adjacent equilibrium states. It
consists of a linearized stability analysis with the
following assumptions:

1. The prebuckling deformation is neglected.
2. The initial stress σ0 remains constant during

buckling (i.e., it neither varies in magnitude nor in
direction).

3. At bifurcation, the equilibrium states are
infinitesimally adjacent so that a linearization is
possible.

The buckling load can then be defined via a
scalar load factor λ as the load σ = λσ0 for which
an equilibrium configuration u �= 0 exists such that

δuT
[
K + λKσ(σ

0)
]
u = 0, (20)

where K is the linear stiffness matrix and Kσ is the
geometric stiffness matrix which is obtained using
the following expression:

δLnl =

∫

Ω

∫

l

δεnlyyσ
0
yydydΩ, (21)
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where σ0
yy is the actual initial stress, and δεnlyy are

virtual nonlinear direct in-plane strains that can be
expressed as

εnlyy =
1

2

(
u2
y,y + u2

y,y + u2
y,y

)
, (22)

and the non-zero terms of the geometric stiffness ma-
trix Kσ can be written as

Kijτs
σxx

=Kijτs
σyy

= Kijτs
σzz

=

=

∫

Ω

FτFsdΩ

∫

l

Ni,yNj,ydy.
(23)

4 Numerical analysis and discussion

4.1 Square compact section beam

Validation of the present approach is carried out
considering simply supported beam with a square
cross section. Geometrical and material properties
are: length to thickness ratio L/a = 20, where L is
the length of the beam and a is the side of the square
section and is considered equal to 1 m; Young’s
modulus E = 71.7 GPa; Poisson’s ratio ν = 0.3.
The results are compared with that of Matsunaga
(1996) and FEM results generated by ANSYS. Based
on the convergence study, the beam is modeled in
ANSYS using B3 elements with 20 divisions along
length. Note that the torsional buckling loads are
not obtained in ANSYS using B3 elements. Table 3
presents the first three buckling loadings for bending,
torsion and axial modes using the third order models
with 20 B3 elements in longitudinal directions. It can
be noted that N = 2 model gives a higher bending
buckling load than N = 1. It is important to under-
line that this is due to the Poisson locking correction
that artificially improve the linear solution (Carrera

and Giunta, 2010). The present results are in good
agreement with those obtained using ANSYS for the
first three critical loads in bending as well with those
given in Matsunaga (1996).

A comparative study on the effects of bound-
ary conditions and the aspect ratios of beams with
square cross section is carried out (Table 3). In
general, the first 20 modes of the different beams
considered are dominated by the bending buckling
modes. For the case of clamped-free (L/a = 10)
and clamped-clamped (L/a = 10) beams, least num-
bers (one and two, respectively) of modes with local-
ized axial buckling effects are depicted. For the case
of clamped-clamped (L/a = 5) and hinged-hinged
(L/a = 10), pairs of modes (Modes 5 and 6; Modes
11 and 12, respectively) depicting a twisting type
buckling behavior are also observed. Moreover, the
effect of change in aspect ratio on higher bending
type modes is more pronounced than that on lower
bending modes.

To highlight the capabilities of the present
refined beam models, the first three pure tor-
sional modes for clamped-clamped and hinged-
hinged beams with L/a = 5 and 10 are plotted in
Figs. 4 and 5, respectively. It can be seen that
the present model is effective in predicting the 3D
features like the torsional buckling, as it is pretty
clear that modes having cross sections distorted can
also be captured easily. It is interesting to observe
that the effect of boundary constraints is more pro-
nounced for the beams with slender cross sections
(L/a = 10).

4.2 I-section beam

In this section, doubly symmetric beam with
an open cross section (I-section beam) is considered

Table 2 Bending, torsion, and axial dimensionless buckling loads (P = Po(12/π2)(L/a)2/E, where Po is the
actual buckling load) for an isotropic beam with a length to thickness ratio of 20

Dimensionless buckling load

Model Bending Torsion Axial

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

FEM (ANSYS) 1.0000 4.000 9.000 − − − − − −
Matsunaga (1996) 0.9919 3.873 8.387 − − − 486.25 485.98 485.51
EBBT 0.9950 3.956 8.813 − − − 483.98 484.98 484.98
TBT 0.9900 3.875 8.422 − − − 481.18 481.18 481.19
N=1 0.9925 3.884 8.437 182.84 182.84 182.84 486.34 486.94 488.74
N=2 0.9927 3.885 8.444 182.84 182.84 182.84 484.70 485.52 489.68
N=3 0.9918 3.873 8.387 182.84 182.84 182.84 483.21 484.76 485.56

FEM: finite element method; EBBT: Euler-Bernoulli beam theory; TBT: Timoshenko beam theory; m: mode number
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Table 3 Comparison of first ten pairs of non-dimensional buckling loads using ten B4 elements (P =

Po(12/π2)(L/a)2/E, where Po is the actual buckling load) for beams with different boundary conditions
and aspect ratios

P
Non-dimensional buckling load

Clamped-clamped Clamped-hinged Clamped-free Hinged-hinged

L/a = 5 L/a = 10 L/a = 5 L/a = 10 L/a = 5 L/a = 10 L/a = 5 L/a = 10

P1 0.466a 4.789 0.467a 2.319 0.273 0.318 0.888 0.968
P2 0.467a 4.789 1.712 2.319 0.273 0.318 0.888 0.968
P3 2.961 8.098 1.712 5.741 0.467a 2.517 2.667 3.529
P4 2.961 8.098 3.106a 5.741 1.887 2.517 2.667 3.529
P5 2.984t 12.429 3.323 7.541 1.887 5.921 3.334 6.748
P6 3.219t 12.429 3.323 7.541 2.984a 5.921 3.334 6.748
P7 3.833 15.589 3.538 8.507a 3.659 9.704 3.343 7.514a

P8 3.833 15.589 3.538 9.699 3.659 9.704 3.343 7.622a

P9 4.467 16.487a 3.639a 9.699 4.453 13.388 3.639a 7.851a

P10 4.467 16.589a 4.444 13.372 4.453 13.388 3.639a 7.939a

P11 4.891 19.029 4.444 13.372 5.270 16.487a 4.461 8.389t

P12 4.891 19.029 5.308 16.529a 5.270 16.748 4.461 8.625t

P13 6.014 21.481 5.308 16.737 6.089a 16.748 5.779 10.890
P14 6.014 21.481 5.921a 16.737 6.276 19.712 5.779 10.890
P15 6.707 24.049 6.342 19.726 6.276 19.712 5.921a 14.429
P16 6.707 24.049 6.342 19.726 6.937 22.285 5.921a 14.429
P17 7.542 25.869 6.380a 22.292 6.937 22.285 6.380a 17.657
P18 7.542 25.869 7.164 22.292 7.203a 24.501 6.380a 17.657
P19 7.914 27.782 7.164 23.392a 7.211a 24.501 6.765 20.499
P20 7.914 27.782 7.750 24.537 7.270a 26.406 6.765 20.499
aAxial mode; tTorsional mode

Fig. 4 First three torsional modes for
clamped-clamped boundary conditions
for different aspect ratios
(a) L/a = 5, P44 = 9.867; (b) L/a = 5,
P45 = 9.870; (c) L/a = 5, P46 = 9.870;
(d) L/a = 10, P67 = 39.440; (e) L/a = 10,
P68 = 39.463; (f) L/a = 10, P69 = 39.475

(a) (b) (c)

(d) (e) (f)

Fig. 5 First three torsional modes for
simply supported boundary conditions
for different aspect ratios
(a) L/a = 5, P47 = 9.867; (b) L/a = 5,
P48 = 9.870; (c) L/a = 5, P49 = 9.870;
(d) L/a = 10, P76 = 39.442; (e) L/a = 10,
P77 = 39.465; (f) L/a = 10, P78 = 39.476

(a) (b) (c)

(d) (e) (f)
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to observe the local and global buckling phenomena
associated with torsional buckling. A beam can
buckle out of plane if it does not have sufficient
lateral stiffness and is termed as lateral buckling.
This phenomenon is generally accompanied with
lateral deflection and a small twist without the
change in the cross sectional shape. Local buckling
phenomenon can also be observed if a beam buckles
locally over a short length of the member with only
minor changes in cross sectional shapes (Samanta
and Kumar, 2006). Note that the warping, out- and
in-plane deformations, torsion-bending coupling as
well as distortional buckling modes are not generally
observed in analyses based on classical theories. A
simply supported I-beam is considered with the fol-
lowing geometrical properties: width of top/bottom
flange = 0.21 m; thickness of top/bottom flange =
0.02 m; thickness of web = 0.012 m; overall height
of the beam section = 0.6 m; length of beam =
5 m. First ten modes for the I-beam are given in
Table 4 for different theories and expansion orders
using ten B4 elements. For the case of classical
beam theories (EBBT and TBBT) and for N = 1,
only the bending buckling modes are observed.
However, for the case of N = 2, torsional mode

Table 4 First ten buckling loads for different refined beam theories using ten B4 elements for simply supported
I-section beam

Model
Critical load (×106 N/m2)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

EBBT 57.89 231.06 518.22 918.07 1430.19 1614.52 2055.97 2799.01 3663.73 4641.99

TBT 57.77 229.11 508.36 886.91 1354.27 1527.10 1899.25 2510.99 3179.79 3896.91

N = 1 57.77 229.11 508.36 886.91 1354.27 1527.10 1899.25 2510.99 3179.79 3896.91

N = 2 57.93 231.36 517.98 911.70 1402.54 1527.26 1978.06 2625.36 3331.39 3943.11

N = 3 57.88 230.57 514.23 900.49 1376.46 1455.98 1926.36 2533.69 3183.12 3367.46

N = 4 56.83 224.66 495.68 813.98 857.98 1010.90 1297.04 1328.62 1457.72 1753.00

EBBT: Euler-Bernoulli beam theory; TBT: Timoshenko beam theory

Fig. 6 Torsional and distortional buck-
ling of simply supported I-beam
(a) P10=3367.46 MPa; (b) P11=3606.44 MPa;
(c) P13=4054.13 MPa; (d) P15=4472.06 MPa;
(e) P17=5017.50 MPa; (f) P19=5621.91 MPa

(a) (b) (c)

(d) (e) (f)

also appeared (Mode 10). Further refined theory
(i.e., N = 3) enables us to obtain the torsional as
well as distortional modes (Fig. 6). It is clear from
Fig. 6a that this mode depicts the initiation of the
torsional buckling. The web remains straight but
twisted almost through out its length. It is observed
from Fig. 6b that the distortions in the next higher
mode (Mode 11) is observed both in the longitudinal
and transverse axes of the beam, and the displace-
ment variations are observed both in the flanges and
the web. Next higher modes plotted in Figs. 6c–6f
depict the higher torsional buckling modes wherein
prominent wave-like features exist both in the flanges
as well as in the web. A comparisons with a 2D model
performed with Nastran has been provided. By con-
sidering a refined 2D model with 25 000 DOFs, the
results show that the first critical load is 58.84 N/m2;
and the second is 205.83 N/m2, compared with the
results from a third order model (Table 4), it is pos-
sible to see that the difference between the two solu-
tions is 3.4% for the first critical load and 9.2% for
the second. While the first load is well predicted by
the third order model, for the higher critical loads a
more refined model should be used.
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4.3 Thin rectangular section beam (plate)

Buckling of beams with very thin rectangular
cross section is studied in this section. Two different
models have been used for such analysis. The first is
based on Taylor expansion (TE), and the second is
based on the Lagrange function(LE).

A simply supported beam with a thin rectangu-
lar cross section has been investigated using the TE
approach. The dimensions are: width, a = 2.0 m;
length, L = 2.0 m; thikness, h = 0.01 m. First six
buckling modes are presented in Table 5 for different
theories using ten B4 elements. It can be observed
that the first six bending buckling modes obtained
using the refined theory with expansion order higher
than N = 2 match very well with that of NASTRAN.
Modes 1, 3, and 5 are bending modes. Modes 2,
4, and 6 are torsional modes. For each model, the
DOFs involved in the solution are reported. The re-
sults show that the higher-order beam model provide
results comparable with those by commercial code in
significantly reducing the DOFs.

The shell capabilities of the present 1D LE are
investigated here through the analysis of a simply
supported thin plate. The length of the plate is
0.1 m, the width is 0.025 m, and the thickness is

0.001 m. An isotropic material is adopted having E

= 71.7 GPa and ν = 0.3. Results are compared with
those from a shell model in NASTRAN and from
1D CUF model closed-form Navier-type solutions.
These results are taken from Carrera et al. (2011a).
1D Lagrange CUF models are adopted with two cross
section meshes: 1 L9 and 3 L9. The latter has the
L9 elements spread along the width direction. A
ten element B4 mesh is used along the longitudinal
direction.

Table 6 presents the bending and torsional buck-
ling loads of the present plate. The second column
shows the number of DOFs of each FEM model.
Third and seventh order Taylor models are consid-
ered for the closed-form solution. Fig. 7 presents the
fourth torsional buckling mode, whereas Fig. 8 shows
a shell-like mode affected by severe cross section
distortions.

4.4 Annular circular section beam

In this section, buckling analysis of beam with
annular cross section is presented. A beam with
clamped boundary conditions (all DOFs clamped at
near end and all clamped but uy �= 0 at far end)
is considered with the following section dimensions:
outer radius of the section =1.0 m; inner radius =

Table 5 First six buckling loads for different refined beam theories using ten B4 elements for simply supported
thin rectangular section beam

Model DOFs Critical load (×106 N/m2)

P1 P2 P3 P4 P5 P6

EBBT 279 1.47 5.90 13.27 23.58 36.84 53.07
TBT 279 1.47 5.89 13.26 23.56 36.80 52.97
N = 1 279 1.47 5.90 13.26 23.56 36.80 52.97
N = 2 558 1.62 4.74 6.48 10.69 14.57 20.59
N = 3 930 1.55 4.42 6.38 9.38 14.47 17.40
N = 4 1395 1.55 4.43 6.37 9.44 14.45 17.41
2D Nastran 8200 1.56 4.28 6.43 9.22 14.06 17.54
3D Nastran 25 010 1.56 4.29 6.45 9.25 14.68 17.65

EBBT: Euler-Bernoulli beam theory; TBT: Timoshenko beam theory; DOFs: degrees of freedom

Table 6 First four bending and torsional buckling loadings for the thin plate

Model DOFs
Buckling load (MPa)

Bending Torsion

1 2 3 4 1 2 3 4

Shell 51000 5.932 24.03 54.76 98.25 181.61 198.78 229.16 272.31

1D CUF FEM 1 L9 1893 5.934 24.08 54.98 98.85 182.31 201.45 233.25 277.66
3 L9 837 5.934 24.06 54.85 98.47 181.41 200.46 232.12 276.28

1D CUF ANLT N = 3 − 5.934 24.08 54.98 98.85 181.18 201.09 232.74 277.00
N = 7 − 5.932 24.03 54.71 98.08 180.38 198.88 229.68 272.72
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Fig. 7 Fourth torsional buckling mode

P = 276.28 MPa, 3 L9 model

Fig. 8 Shell-like bucking mode

P = 1410.5 MPa, 3 L9 model

0.99 m; length = 10 m. Comparison of shell modes
obtained using NASTRAN and the present theory
is carried out and it can be observed from Table 7
and Fig. 9 that the second and sixth modes obtained
using the present theory with expansion order N = 7

match very well with that of obtained through NAS-
TRAN shell, both in mode shape as well as in magni-
tude. Also it is clear from Table 7 that the circumfer-
ential modes are obtained with a significantly lower
computational cost as the DOFs of refined theory
with N = 7 are more than three times less than that
of NASTRAN shell. First twelve buckling modes ob-
tained using different theories and expansion orders
are given in Table 8. Using the EBBT and TBT, and
the refined theory with lower order of expansion (up
to N = 2), only the bending buckling modes are de-
picted. With an increase in the expansion (N = 3),
crude circumferential modes with overestimated val-
ues of buckling loads start to appear. The positions
of the first twelve critical buckling loads are plotted
for different beam models in Fig. 10. It is interest-

ing to note that the circumferential modes appear
even before the bending modes for expansion orders
greater than three. Also for N = 4, circumferen-
tial modes with two lobes are observed and with a
further increase of expansion order, circumferential
modes with more than two lobes are obtained. Ac-
curately estimated critical loads for buckling modes
with higher than two lobes are easily depicted with
N = 7. Modes with three (Mode 9) and four lobes
(Mode 13) are plotted in Fig. 11 and the deformed
three and four lobed cross sections at mid length of
the shell can be observed.

Table 7 Comparison between NASTRAN shell and
present beam elements solution for the first and third
buckling modes (clamped annular cross section beam,
L/d = 10)

RBT DOFs
Critical load (×108 N/m2)

First buckling Third buckling
mode mode

NS 10 380 6.25 8.51
Present beam 3348 6.23 8.29

RBT: refined beam theory; DOFs: degrees of freedom; NS:
NASTRAN shell

5 Conclusions

Analysis of beams has been carried out using the
refined beam theories by successfully employing the
1D CUF, which permits us to deal with any-order of
beam theories without need of ad hoc implementa-
tions. Advanced theories are obtained based on Tay-
lor series and Lagrange polynomials. The element
stiffness is obtained in a compact form which is inde-
pendent of the theory approximation order assumed

Table 8 First ten buckling loads for different refined beam theories using ten B4 elements for annular circular
section beam

Model DOFs Critical load (×109 N/m2)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

EBBT 279 1.732b 1.733b 4.888b 4.889b 9.121b 9.134b 13.994b 14.045b 19.115b 19.251b 24.183b 24.469b

TBT 279 1.648b 1.700b 4.224b 4.335b 7.073b 7.223b 9.784b 9.950b 12.189b 12.356b 14.259b 14.418b

N = 1 279 1.700b 1.700b 4.334b 4.335b 7.222b 7.223b 9.949b 9.950b 12.356b 12.356b 14.418b 14.420b

N = 2 558 1.759b 1.760b 4.431b 4.432b 7.338b 7.339b 10.072b 10.073b 12.484b 12.487b 14.548b 14.553b

N = 3 930 1.620b 1.620b 3.690b 3.750b 4.324c 4.340c 4.651c 4.673c 5.069b 5.366b 5.600b 5.600b

N = 4 1395 0.925c 0.926c 1.134c 1.145c 1.161c 1.407c 1.491c 1.527c 1.664c 1.666b 1.666b 1.811c

N = 5 1953 0.722c 0.727c 0.975c 0.986c 0.990c 1.132c 1.203c 1.204c 1.248c 1.250c 1.250c 1.255c

N = 6 2604 0.695c 0.698c 0.715c 0.734c 0.839c 0.872c 0.874c 0.961c 0.964c 0.970c 0.993c 0.993c

N = 7 3348 0.616c 0.623c 0.640c 0.640c 0.823c 0.829c 0.831c 0.833c 0.923c 0.959c 0.962c 0.986c

b Bending mode; c Circumferential mode; EBBT: Euler-Bernoulli beam theory; TBT: Timoshenko beam theory; DOFs:
degrees of freedom
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(a) (b)

(c) (d)

Fig. 9 Comparison of the modes obtained using
present beam theory (N = 7) and NASTRAN
(a) NASTRAN shell, P = 6.25 × 108 N/m2; (b)
N = 7, P2 = 6.23 × 108 N/m2; (c) NASTRAN shell,
P = 8.51× 108 N/m2; (d) N = 7, P6 = 8.29× 108 N/m2
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Fig. 10 Bucking modes versus beam models for an-
nular cross section beam

as a free parameter. Evaluation of the present formu-
lation has been carried out for the buckling analyses
of beams with different cross sections. Beams with
square cross section, I-sections, very thin rectangu-
lar cross sections (plate) as well as annular cross sec-
tion beams (shell) with different boundary conditions
have been studied. Buckling loads corresponding to
the bending, axial, torsional, and distortional modes
have been obtained. The present analysis carried out
using the 1D theories matches very well with that of
commercially available FE softwares using shell ele-
ments. The following conclusions can be drawn from
the present study:

1. The present formulation gives us flexibility to
deal with beam having arbitrary cross sections.

2. The torsional, distortional modes, as well as
global and local buckling features are easily depicted.

(a) (b)

(c) (d)

Fig. 11 Three and four lobed modes and the corre-
sponding cross sections at midlength of annular cross
section beams
(a) Three lobed mode, P9 = 9.226×108 N/m2; (b) Deformed
cross section of (a) at midlength; (c) Four lobed mode, P13 =
9.933 × 108 N/m2; (d) Deformed cross section of (c) at
midlength

3. 3D features like modes wherein components
of out of plane deformations are substantial can be
easily obtained.

4. For the case of thin rectangular beam sections,
accurate estimation of the buckling loads, as well as
the corresponding mode shapes can be observed by
using theory order as low as N = 2.

5. Localized buckling effects, which can not be
obtained using the classical theories like EBBT and
TBT are easily obtained.

6. A general good match is found between the
1D model and the shell one for the analysed cases of
plates and circumferentially complete shells.

7. The 1D Lagrange model results provide ac-
curacies lying in between those from a third and
seventh order Taylor model for the case of plate
structures.

8. The present formulation is able to detect
shell-like modes with a substantial decrease in com-
putational cost. Shell-like features like circumferen-
tial modes are exactly matched with that of commer-
cially available finite element software using only ten
B4 elements and considering N = 7.

Future investigations involving the refined beam
theories based on CUF could be directed towards
considering the nonlinear analysis of structures.
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