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Abstract:    Based on the non-Darcian flow law described by exponent m and threshold gradient i1 under a low hydraulic gradient 
and the classical nonlinear relationships e-lgσ′ and e-lgkv (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear 
consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight 
stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the 
solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, con-
solidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation 
will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is 
faster than that with uniform distribution one. Compared to Darcy’s flow law, the influence of parameters describing non-linearity 
of soft soil on consolidation behavior with non-Darcian flow has no significant change. 
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1  Introduction 
 
Darcy’s flow law has been widely adopted in the 

consolidation theory, which forecasts the settlement 
rates and dissipation rates of excess pore water pres-
sure. Since Darcy’s flow law was initially established 
for coarse-grained soils, it has long been utilized in 
the study of fine-grained soils for its simplicity. 
However, the applicability of Darcy’s flow law for 
fine-grained soils remains a controversial issue. In 
practice, for fine-grained soils under low hydraulic 
gradients, the deviation of water flow from Darcy’s 
flow law has been confirmed in some studies 

(Hansbo, 1960; Swartzendruber, 1962; Miller and 
Low, 1963; Dubin and Moulin, 1985), and this phe-
nomenon has been called non-Darcian flow (Hansbo, 
1960). Among various non-Darcian flow laws, the 
non-Darcian flow law proposed by Hansbo (1960) 
has been widely recognized. In his study, the mobile 
particles were supposed to become meshed during 
their travel through the pore space, and the apparent 
clogging effects of mobile particles would cause a 
gradual decrease of flow within a given certain gra-
dient. However, the pores clogged by mobile particles 
would be “re-opened” when the pore water gradient 
exceeded a certain value i1. Furthermore, in his 
opinion, the application of a hydraulic gradient nec-
essarily caused a disturbance of internal equilibrium 
conditions, and the water flow may occur even with a 
small hydraulic gradient. Based on these hypotheses 
and the results obtained from the tests, the relation-
ship between seepage velocity, v, and hydraulic  
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gradient, i, proposed by Hansbo (1960), is as shown in 
Fig. 1. This non-Darcian flow law can be expressed as 
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                      (1) 

 

where kv is the coefficient of permeability of linear 
relation at gradients higher than i1, i1 is the threshold 
hydraulic gradient for linear relationship, m is the 
exponent of exponential relation at gradients lower 
than i1, i0=i1(m−1)/m. 

Since the non-Darcian flow has been observed in 
some permeability tests of fine-grained soils, and the 
non-Darcian flow law proposed by Hansbo (1960) 
has been recognized by many researchers, it has a 
theoretical significance in associating the influences 
of this non-Darcian flow law on consolidation be-
havior. Dubin and Moulin (1985) replaced the expo-
nential relation with a linear relation at the case of i<il, 
and firstly investigated the problem of 1D consolida-
tion with this non-Darcian flow. Hansbo (1997; 2003) 
analyzed 1D consolidation and uncoupled consolida-
tion with vertical drains by adopting this non-Darcian 
flow, and observed a better agreement to the field 
settlement observations. Moreover, based on this 
non-Darcian flow, Ing and Nie (2002) analyzed the 
consolidation of sand-drained ground with the radial 
and vertical drainages, and investigated the influence 
of non-Darcian flow on the consolidation behavior. 
Xie et al. (2010) completely neglected the water flow 
under the case that hydraulic gradient was less than 
threshold hydraulic gradient, and provided an ap-
proximate solution for the problem of 1D consolida-
tion with threshold gradient. Li et al. (2010; 2012) 
performed a comprehensive analysis of 1D consoli-
dation, considering this non-Darcian flow, along with 
the change of vertical total stress depending on both 
depth and time.  

All these previous studies with this non-Darcian 
flow, however, neglected the non-linear compressi-
bility and permeability of soft soil during the process 
of consolidation. In practice, the non-linear com-
pressibility and permeability of soil in the process of 
consolidation has been realized for 50 years (Davis 
and Raymond, 1965), and many results on non-linear 
consolidation with Darcy’s flow law have been ob-
tained. However, no study is made to consider 
non-linear compressibility and permeability of soft 

soil along with non-Darcian flow simultaneously. 
Since both non-Darcian flow in soft soil and 
non-linear compressibility and permeability of soil 
can be observed during the process of consolidation, 
it has a theoretical and practical significance in ac-
quainting the influence of this non-Darcian flow and 
nonlinearity of clay on consolidation behavior. 

 
 

2  Theoretical formulation of 1D nonlinear 
consolidation with non-Darician flow 

2.1  Presentation and basic assumptions 

In this study, the clay layer, with a thickness of 
H, is assumed to be fully saturated. The top surface of 
clay layer is pervious, and the bottom is impervious. 
Fig. 2 shows the time-dependent loading used in this 
study, which increases with time up to the final value 
and then remains constant. The initial value, the final 
value, and the construction time are denoted as q0, qu, 
and tc, respectively. A particular time-dependent 
loading, ramp loading, also is shown as a dashed line 
in Fig. 2. To investigate the consolidation behavior 
with consideration of non-Darcian flow law and 
nonlinearity of soft soil, the following assumptions 
are made: 

1. The soil grains and pore water in soil are  
incompressible. 
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Fig. 1  Relationship between flow velocity, v, and hy-
draulic gradient, i 
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Fig. 2  Curve of loading versus time 



Li et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2013 14(6):435-446 437

2. The soil only has a small deformation. 
3. The void ratio of soil changes with effective 

stress is given as  
 

1 1lg( / ),ce e c                           (2) 

 
where e is the void ratio, σ′ is the effective stress, σ1′ is 
an known effective stress, e1 is an known void ratio 
corresponding to σ1′, and cc is the compressibility 
index. 

4. The water flow in soil follows Eq. (1), and the 
parameters m and i1 maintain constant during con-
solidation. As noted by Mesri and Rokhsar (1974), a 
linear e-lgkv relation may represent permeability be-
havior of most natural soft clays with small strains. 
Therefore, the coefficient of permeability may de-
crease as per: 

 

1 v v1lg( / ),ke e c k k                          (3) 

 
where kv1 is the coefficient of permeability corre-
sponding to the void ratio e1, and ck is the permeabil-
ity index. 

5. The initial effective stress (self-weight stress) 
is assumed to remain constant or increase with depth 
linearly in this study. If the self-weight stress σ0′ is 
assumed to remain constant, a known effective stress 
σ1′

 is equal to σ0′, that is σ1′=σ0′. If the self-weight 
stress σ0′ is assumed to increase with depth linearly, 
σ0′=γ′z, where γ′ is the effective unit weight, and z is 
the ordinate. Moreover, the average value of self- 
weight stress within the whole soil layer is denoted as 
σ1′, i.e., σ1′=0.5γ′H, where H is the thickness of soil 
layer. These two kinds of distribution of self-weight 
stress may be shown as Fig. 3. 

 
 

 
 
 
 
 
 
 
 
 
 

2.2  Development of governing equations 

From Eqs. (2) and (3), the coefficient of volume 
compressibility mv and coefficient of permeability kv 
can be obtained: 
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where mv1 is the coefficient of volume compressibility 
corresponding to the known effective stress σ1′, which 

can be expressed as v1 1 1/ [(1 ) ln10].cm c e     

Since the soil only occur elastic small deforma-
tion, the general continuity equation for 1D consoli-
dation can be expressed as 
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where e0 is the initial void ratio of the soil, and it is 
corresponding to the self-weight stress σ0′ in the linear 
relation of e-lgσ′. 

With Eqs. (1), (4), (5), and (6), the governing 
equation with the non-Darcian flow and non-linear 
compressibility and permeability of soil can be  
obtained: 
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    (7) 

 
where γw is the unit weight of water, u(z, t) is the 
excess pore water pressure depended on z and t, and 
cv1=kv1/(γwmv1). 

According to the principle of effective stress, 

H 

z 

0 

0.5γ′H 

γ′H 

Constant 

Linear increases 

Fig. 3  Two cases of self-weight stress 
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0 q u     , Eq. (7) can be further expressed as 

 
/

0 0 1
v1 1

1 1 1 0

1

w

1
w

/

0 0 1
v1

1 1 0

0

w

1 1

1

1 d ( )
,

d

1
,

1

1

d (
1

1

c k

c k

c c

m

m

c c

e q u
c

e z mi q u

u u u q t

z z t t

u
i

z

e q u
c

e z q u

i u u q t
u z t
z

 
 





 
 







               
          







      

      


 
       

   
    

1
w

)
,

d

1
.

t

u
i

z























  



  (8) 

 
With pervious top and impervious bottom, the 

vertical boundary conditions can be written as 
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                           (9) 

 
The initial condition is 
 

0( ,0) .u z q                          (10) 
 

Eq. (8) is the governing equation of 1D con-
solidation considering non-Darcian flow and non- 
linearity of compressibility and permeability. This 
equation is a second-order non-linear partial differ-
ential equation, and it can be rewritten as 
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where v ,
u

k u
z

 
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 indicates the change of coefficient 

of permeability with consideration of non-Darcian 
flow and non-linear permeability. This coefficient can 

be determined by the pore water pressure and the 
hydraulic gradient to be: 
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(12) 

 
mv(u) indicates the change of coefficient of volume 
compressibility with consideration of non-linear 
compressibility of soil. It can be determined by the 
excess pore water pressure to be: 
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As shown in Eq. (11), Eq. (8) may be regarded as 

a quasi-linear diffusion equation. Because of the 
complexity of this second-order quasi-linear diffusion 
equation, the analytic solutions for Eq. (8) cannot 
easily be obtained. Therefore, the finite difference 
method is adopted to develop the numerical solutions 
for Eq. (8) in this study. 

 
 

3  Derivation of numerical solutions 

3.1  Governing equations in terms of dimen-
sionless variables 

For convenience of derivations, the following 
dimensionless variables are defined as 
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(14) 

 
In terms of these dimensionless variables, the 

governing Eq. (8) can be rewritten as  
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Eqs. (9) and (10) can be rewritten as 
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3.2  Numerical solution for pore water pressure 

To obtain numerical solutions for Eq. (15) by the 
FDM, the spatial domain 0≤Z≤1 is firstly divided into 
n thin layers with equal length ΔZ, and the jth spatial 
nodal point is denoted as 

 
Zj=jΔZ,  j=0, 1, 2, …, n.                   (18) 

 
Z0 and Zn indicate the top and bottom surfaces of 

the soil layer, respectively. Meanwhile, the time axis 
is divided by a series of time increment, and the time 
increment is denoted as ΔTv. Therefore, the kth time 
nodal point can be written as 

 
Tvk=kΔTv, k=0, 1, 2, …                  (19) 

 
In terms of dimensionless variable, the average 

value of self-weight stress in the jth thin layer may be 
denoted as Sj. With the assumption 5, if the 
self-weight stress is supposed to maintain constant, 
Sj=1; if the self-weight stress is supposed to change 
with depth linearly, Sj can be expressed as 

(2 1) ,jS j Z    j=1, 2, …, n.              (20) 

 
As is well known, difference scheme greatly in-

fluences the accuracy and stability of the FDM. The 
Crank-Nicolson difference scheme is usually con-
vergent, but the corresponding expression is compli-
cated. The expression for explicit difference scheme 
is simple, but the convergence of explicit difference 
scheme highly depends on the value of time step ΔTv. 
Since Eq. (15) essentially is a quasi-linear diffusion 
equation, linearization technique may be employed to 
obtain difference solutions for quasi-linear diffusion 
equation. For example, considering variable coeffi-
cients as constants for a given tiny time increment, the 
exact solution can be obtained by iteration. Therefore, 
an implicit difference scheme of quasi-linear diffu-
sion equation can be adopted to obtain numerical 
solutions, due to its relative simplicity and good 
convergence. In terms of the implicit difference 
scheme of the quasi-linear diffusion equation, the 
following difference equation can be obtained: 
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where Uj
k is the dimensionless variable of excess pore 

water pressure at Z=jΔZ and Tv=Tvk, Q
k is the dimen-

sionless variable of time-dependent loading at Tv=Tvk, 
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Difference Eq. (21) is a series of non-linear 

equations of unknown variables Uj
k+1, and thus an 

iteration method must be adopted to obtain exact 
solutions for Uj

k+1. Uj
k can be adopted as the initial 

iterative value to obtain the values of +1k k
j jS Q U  , 

+1
1/2 ,k

j   and 1
1/2

k
j 
 . In addition, the iteration would be 

governed by either iterative frequency or calculation 
accuracy, and the smaller the value of ΔTv, the less the 
iterative frequency. 

In terms of discrete nodal points, the boundary 
and initial conditions, specified by Eqs. (16) and (17), 
respectively, can be written as follows: 
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0 0 ,jU Q     j=1, 2, …, n.                  (25) 

 
Eqs. (21), (24) and (25) compose a closed system 

of equations, and the exact solutions for unknown 
variables Uj

k+1 can be obtained by the method of  
iteration.  

3.3  Numerical solution for average degree of  
consolidation 

The average degree of consolidation in terms of 
pore water pressure is the ratio of the average effec-
tive stress at any time to the final average effective 
stress, and that at Tvk follows: 
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The average degree of consolidation in terms of 
deformation is the ratio of the settlement at any time to 
the final settlement, and that at Tvk can be expressed as 
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(27) 
 

where εzt is the soil strain of depth z at time t; εzf is the 
final soil strain of the depth z. 

From Eqs. (26) and (27), it can be seen that the 
average degree of consolidation defined by the water 
pressure is different from that defined by the defor-
mation; that is, the dissipation rate of pore water 
pressure is different from deformation rate with con-
sideration of non-Darcian flow and non-linearity of 
compressibility and permeability. 

 
 

4  Verification of the numerical solutions 
 
If the exponent m is equal to 1, Eq. (1) degener-

ates into Darcy’s flow law. In addition, the coefficient 
of consolidation is assumed to remain constant during 
the process of consolidation; that is, the ratio of 
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compressibility index cc to permeability index ck is 
equal to 1. Under these assumptions, Xie et al. (1996) 
obtained an analytical solution for Eq. (8) with con-
sideration of ramp loading and uniform distribution of 
self-weight stress. To verify the accuracy of the 
aforementioned finite difference scheme, a compari-
son is made between the results by the present nu-
merical method and the analytical method based on 
m=1, S=1, and c=1 (Table 1). 

Table 1 reveals a good agreement between the 
FDM and the analytical method. Furthermore, the 
maximal error is less than 0.03%. It confirms that the 
FDM is reliable in calculating 1D non-linear con-
solidation with Darcy’s flow law. The main difference 
between Darcy’s flow law and non-Darcian flow law 

(assumed here) lies in the values of 1
1/2

k
j 
 and 1

1/2
k
j 
 . 

Under the case of Darcy’s flow law, Eqs. (22) and (23) 
may be converted into: 
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         (28) 
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1/2 1 2 .
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k k k k
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 
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However, for the case of non-Darcian flow law, 

the values of 1
1/2

k
j 
  and 1

1/2
k
j 
 may be decided by 

Eqs. (22) and (23). Based on the reliability of the 
FDM in calculating the 1D non-linear consolidation 

with Darcy’s flow law, if the expressions for 1
1/2

k
j 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and 1
1/2

k
j 
  in the case of non-Darcian flow law can be 

ensured to be correct in the finite difference pro-
gramming, and the implicit difference scheme of 
quasi-linear diffusion equation is convergent, while 
the method of iteration is adopted during the process 
of calculation, the results with non-Darcian flow by 
the finite difference method should also be reliable. 

  
 

5  Analysis of consolidation behavior 
 
Hansbo (1960; 1997; 2003) reported that the 

value of m was equal to 1.5 for the typical Swedish 
clays. In this study, the value of m is assumed to range 
from 1 to 2. For the value of i1, Hansbo (1960) stated 
that i1 ranged from 4 to 10, and Dubin and Moulin 
(1985) reported that i1 was between 8 and 35, while 
Tavenas et al. (1983) indicated that i1 may be less than 
0.2. To assess the impact of il on consolidation be-
havior, in this study, il is assumed to vary within 
0.5–40. Mesri and Rokhsar (1974) suggested that the 
ratio of cc to ck for most soft soil usually ranged from 
0.5 to 2. To investigate the influence of non-linear 
compressibility and permeability on consolidation 
behavior, the value of c was selected in the range of 
0.5–2 in this study. 

5.1  Influence of m and i1 on consolidation behavior 

Li et al. (2010) studied the influence of 
non-Darcian flow on 1D consolidation without  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Comparison of the results by FDM with that by analytical method (n=100, ΔTv=1×10−6) 

c=1, b=4, m=1, Tvc=0.1, S=1 c=1, b=8, m=1, Tvc=0.05, S=1 

Up Us Up Us Tv 
FDM 
(%) 

Analytical  
method (%) 

Error 
(%) 

FDM 
(%) 

Analytical 
method (%)

Error
(%)

FDM
(%)

Analytical 
method (%)

Error
(%)

FDM 
(%) 

Analytical  
method (%) 

Error
(%) 

0.002 0.0674 0.0732 0.0058 0.1435 0.1483 0.0048 0.1313 0.1325 0.0012 0.413 0.4112 −0.0018

0.005 0.262 0.268 0.006 0.5457 0.5501 0.0044 0.4953 0.4965 0.0012 1.433 1.4297 −0.0033

0.01 0.7271 0.7337 0.0066 1.4633 1.4673 0.004 1.3245 1.3262 0.0017 3.4376 3.4333 −0.0043

0.03 3.5656 3.5763 0.0107 6.4088 6.4144 0.0056 6.0064 6.0132 0.0068 11.8625 11.8591 −0.0034

0.05 7.3414 7.356 0.0146 12.0867 12.0925 0.0058 11.9204 11.9324 0.012 19.8463 19.8419 −0.0044

0.08 14.1041 14.1255 0.0214 20.9163 20.9227 0.0064 17.4128 17.4164 0.0036 28.1542 28.1489 −0.0053

0.1 19.1576 19.1839 0.0263 26.8097 26.8165 0.0068 20.0994 20.1036 0.0042 32.4073 32.4031 −0.0042

0.2 33.2753 33.2945 0.0192 45.0848 45.0967 0.0119 30.461 30.4771 0.0161 48.2026 48.2141 0.0115

0.4 52.8413 52.8612 0.0199 66.6586 66.6678 0.0092 48.2299 48.2483 0.0184 68.4727 68.4822 0.0095

0.56 65.4577 65.4781 0.0204 77.5347 77.5422 0.0075 60.9367 60.9562 0.0195 78.756 78.7637 0.0077

0.8 79.2945 79.3142 0.0197 87.5729 87.5782 0.0053 75.861 75.8801 0.0191 88.2484 88.2538 0.0054

1 86.8446 86.8631 0.0185 92.4127 92.4165 0.0038 84.4192 84.4370 0.0178 92.8251 92.8289 0.0038
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consideration of non-linearity of compressibility and 
permeability, which indicated that the dissipation rate 
of pore water pressure would decrease with the in-
creasing value of m or i1. From Figs. 4 and 5, the 
influence of m and i1 on the dissipation of excess pore 
water pressure can be observed considering 
non-linearity of soft soil. In the case that the 
self-weight stress changes linearly with depth, the 
dissipation of excess pore water pressure in soil layer 
may be retarded with consideration of non-Darcian 
flow. In addition, the larger the values of m or i1, the 
larger the residual pore water pressure. In other 
words, this retarded dissipation of pore water pressure 
would become more evident with an increase of m or 
i1. This consolidation behavior can be explained from 
Fig. 1 and Eq. (1) that the velocity of seepage may 
slow down with an increase of i1 or m. As a result, the 
dissipation rate of excess pore water pressure may be 
retarded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As stated above, since the dissipation rate of 
pore water pressure will slow down with considera-
tion of non-Darcian flow, the consolidation deforma-
tion rate should also be retarded.  

As show in Figs. 6 and 7, the consolidation rate 
would decrease with the increasing values of m or i1. 
Moreover, if m=1.2 and i1=4, the maximum difference 
in the average degree of consolidation indicated from 
Fig. 6a between Darcy’s flow law and non-Darcian 
flow law is 7.0%. If m=1.2 and i1=5, as shown in Fig. 7, 
the corresponding maximum difference is 9.2%. 
Therefore, if m and i1 are less than a certain value, the 
influence of non-Darcian flow on consolidation rate 
under a certain ratio of external loading to the average 
value of self-weight stress may be neglected. That is, 
non-Darcian flow law can be replaced by Darcy’s flow 
law in calculating the consolidation rate in some cases, 
even if the water flow in fine-grained soil may deviate 
from Darcy’s flow law. For instance, if i1 is small 
enough (Fig. 6b, i1=0.5), consolidation curves with 
different m are almost coincident each other, and 
Darcy’s flow law can be adopted to obtain the con-
solidation deformation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Influence of m on the rate of consolidation de-
formation  
(a) i1=4, c=0.5; (b) i1=0.5, c=1.0 
cc=0.65, e1=1.0, σ1′=0.5γ′H, qu=2γ′H, and Tvc=0.01; linear 
distribution of self-weight stress 
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Fig. 4  Influence of m on the dissipation of excess pore 
water pressure  
cc=0.65, c=0.5, e1=1.0, i1=4, σ1′=0.5γ′H, qu=2γ′H, Tvc=0.01, 
and Tv=0.5; linear distribution of self-weight stress 
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Fig. 5  Influence of i1 on the dissipation of excess pore 
water pressure  
cc=0.65, c=0.5, e1=1.0, m=1.2, σ1′=0.5γ′H, qu=1.5γ′H, Tvc= 
0.01, and Tv=0.6; linear distribution of self-weight stress 
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5.2  Influence of external loading and thickness of 
soil layer on consolidation behavior 

The influence of the ratio of qu to σ1′ on the 
consolidation deformation rate under different cases 
of self-weight stress can be observed from Fig. 8. If 
self-weight stress remains constant with depth, as 
shown in Fig. 8a, the larger the ratio of qu to σ1′, the 
faster the consolidation rate under c=0.5; but the 
consolidation rate decreases with the increasing ratio 
of qu to σ1′ under c=2. In addition, b=1 indicates that 
non-linearity is not considered during the process of 
consolidation. The same consolidation behavior also 
can be observed from Fig. 8b with linear distribution 
of self-weight stress. When c=0.5, the larger the ratio 
of qu to σ1′, the faster the deformation rate. When 
c=1.5, however, the deformation rate decreases with 
the increasing ratio of qu to σ1′. This consolidation 
behavior can be explained from Eq. (15), if c<1, the 
value of (S+Q−U)−c would increase with an increase 
in the ratio of qu to σ1′, and the consolidation rates 
naturally step up. However, if c>1, the value of 
(S+Q−U)−c would decrease with an increase in the 
ratio of qu to σ1′, and the consolidation rates naturally 
slow down. 

As mentioned above, the values of m and i1 have 
a great influence on the difference of consolidation 
rate between Darcy’s flow law and non-Darcian flow 
law. In fact, the ratio of qu to σ1′ also greatly influ-
ences this difference. As shown in Fig. 9, the differ-
ence of consolidation rate between m=1 and m=1.5 
with b=17 is much less than that with b=2. As is well 
known, the average hydraulic gradient in soft soil 
may increase with an increase in the ratio of qu to σ1′, 
then v-i curves have more opportunity to obey a linear  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 

 
 
 
 
 
 

relationship. As a result, the difference of consolida-
tion rate between Darcy’s flow law and non-Darcian 
flow law can gradually reduce with an increase of the 
ratio of qu to σ1′. That is, with an increase of qu or a 
reduction of H, the ratio of qu to σ1′ should increase, 
and then the difference of the consolidation rate be-
tween Darcy’s flow law and non-Darcian flow would 
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Fig. 7  Influence of i1 on the rate of consolidation defor-
mation  
m=1.2, cc=0.65, c=0.5, σ1′=0.5γ′H, qu=1.5γ′H, e1=1.0, and 
Tvc=0.01; linear distribution of self-weight stress 
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Fig. 8  Influence of the ratio of qu to σ1′ on the rate of 
consolidation deformation 
(a) Uniform distribution of self-weight stress, m=1.2, i1= 
10, σ1′=0.5γ′H, and Tvc=0; (b) Linear distribution of self-
weight stress, m=1.2, i1=10, σ1′=0.5γ′H, Tvc=0.01, cc=0.65, 
and e1=1.0 
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Fig. 9  Influence of the ratio of qu to σ1′ on the difference 
of consolidation rate between Darcy’s flow and non-
Darcian flow 
σ1′=0.5γ′H, Tvc=0.01, i1=10, c=1.5, cc=0.65, and e1=1.0; 
linear distribution of self-weight stress 
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gradually lessen. Therefore, if a large load was ap-
plied to the surface of a thin soil layer, the non- 
Darcian flow may not be considered for its complex-
ity, even if the water flow in soil under low gradient 
may obey the non-Darcian flow law. 

5.3  Influence of cc and ck on consolidation  
behavior 

From Fig. 10, the influence of c, the ratio of cc to 
ck, on the average degree of consolidation in terms of 
deformation can be observed. If the self-weight stress 
is supposed to be uniformly distributed with depth 
(Fig. 10a), the average degree of consolidation in 
terms of deformation decreases with an increase in the 
value of c. If the self-weight stress is supposed to 
increase linearly with depth (Fig. 10b), however, the 
consolidation rate increases with the increasing value 
of c at the early stage, and decreases with the in-
creasing value of c at the final stage. This consolida-
tion behavior lies in the fact that, at the early stage of 
consolidation, the value of (S+Q−U) with linear dis-
tribution of self-weight stress may be less than 1, and 
the value of (S+Q−U)−c may increase with an increase 
of c. According to Eq. (15), the consolidation rate 
may accelerate with the increasing value of c at the 
early stage. However, if the self-weight stress remains 
constant or the excess pore water pressure with linear 
increase of self-weight stress has partially dissipated, 
the value of (S+Q−U) may be more than 1, and the 
value of (S+Q−U)−c may decrease with an increase of 
c. As a result, the consolidation rate would slow down 
with an increase of c. 

For the case of uniform distribution of self- 
weight stress, the average degree of consolidation, 
both in terms of stress and deformation, depends on 
the ratio of cc to ck, but is irrelative with the specific 
values of cc to ck. If the self-weight stress changes 
linearly with depth (Fig. 11), however, the rates of 
consolidation deformation with the same c and dif-
ferent cc are different, while the dissipation rates of 
pore water pressure with the same c and different cc 
are equal. In addition, the deformation rate increases 
with the decreasing value of cc. This consolidation 
behavior can be explained by Eq. (27). If the 
self-weight stress remains constant with depth, that is, 
Sj=1, only the value of c has influence on the dissi-
pation of excess pore water pressure, and Up, Us may 
be independent of the specific value of cc. Otherwise, 
the value of cc may influence the final settlement of 

soil layer, and both c and cc have a great influence on 
the deformation rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

5.4  Influence of distribution of self-weight stress 
on consolidation behavior 

To analyze the influence of distribution types of 
self-weight stress, both a uniform distribution and a 
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Fig. 10  Influence of the ratio of cc to ck on the rate of 
consolidation deformation 
(a) Uniform distribution of self-weight stress; m=1.2, i1=10, 
σ1′=0.5γ′H, qu=1.5γ′H, and Tvc=0.01; (b) Linear distribution 
of self-weight stress; m=1.2, i1=10, σ1′=0.5γ′H, qu=2.0γ′H, 
Tvc= 0.05, cc=0.75, and e1=1.0 
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Fig. 11  Influence of cc on consolidation rate with the 
same ratio of cc to ck  
Linear distribution of self-weight stress; m=1.2, i1=10, 
σ1′=0.5γ′H, qu=2.0γ′H, Tvc=0.01, and e1=1.0 
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linear increase of self-weight stress are incorporated 
in this study, and the difference between them is 
discussed. Fig. 12 shows that the consolidation rate 
with a linear distribution of self-weight stress is faster 
than that with a uniform distribution one (the value is 
equal to the average self-weight stress in the whole 
soil layer). In addition, it should be noted that the 
difference of consolidation rate between different 
distribution types of self-weight stress may gradually 
lessen with an increase in the ratio of qu to σ1′. The 
appearances of consolidation behavior are due to the 
fact that the value of (S+Q−U)−c with a linear distri-
bution of self-weight stress is larger than that with a 
uniform distribution one. Furthermore, if the value of 
the ratio of qu to σ1′ is small, the distribution types of 
self-weight stress may have a great influence on the 
value of (S+Q−U)−c. Therefore, if external loading 
applied to the surface of soil layer is large enough, or 
the thickness of soil layer is thin enough (as shown in 
Fig. 12, b=17), the difference of consolidation rate 
between linear distribution and uniform distribution 
of self-weight stress should be fractional and  
acceptable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.5  Influence of loading rate on consolidation 
behavior 

Li et al. (2010; 2012) studied this non-Darcian 
flow, and found that the loading rate of time- 
dependent loading greatly influenced the consolida-
tion rate without consideration of non-linearity, and 
the faster the loading rate, the faster the consolidation 
rate. As well known, the final value of settlement does 
not change with the loading rate, but the present value 
of settlement at some time is related to the value of 

loading already applied to the soil. Therefore, the 
present value of settlement increases with the in-
creasing loading already applied to the soil, i.e., 
loading rate. As shown in Fig. 13, the consolidation 
rate may increase with the increasing loading rate for 
both uniform distribution of self-weight stress and 
linear distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 
In this study, a 1D non-linear consolidation theory 

with non-Darcian flow law was developed, and nu-
merical solutions were obtained by the FDM. The 1D 
non-linear consolidation behavior with non-Darcian 
flow law under different parameters was analyzed, and 
the following conclusions can be obtained. 

1. The rate of 1D non-linear consolidation will 
slow down when considering the non-Darcian flow 
described by the exponent m and threshold hydraulic 
gradient i1. In addition, this retardation of consolida-
tion rate would intensify with an increase in the value 
of m or i1. 

Fig. 12  Influence of distribution types of self-weight 
stress on the rate of consolidation deformation  
m=1.5, i1=5, σ1′=0.5γ′H, Tvc=0.05, e1=1.0, cc=0.75, and c=0.5
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Fig. 13  Influence of loading rate on the rate of con-
solidation deformation  
(a) Uniform distribution of self-weight stress; m=1.5, 
i1=10, c=1.0, σ1′=0.5γ′H, and qu=2.0γ′H; (b) Linear distri-
bution of self-weight stress. m=1.5, i1=10, σ1′=0.5γ′H, 
qu=2γ′H, e1=1.0, cc=0.7, and c=1.0 
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2. If m or i1 keep constant, the retardation of 
consolidation rate will reduce with an increase in the 
ratio of the final loading to average self-weight stress. 
Therefore, if a large load was applied to the surface of 
a thin soil layer, the non-Darcian flow for fine grained 
soil under low gradient can be replaced by Darcy’s 
flow law in calculating consolidation deformation. 

3. When non-Darcian flow is considered, the 
influence of parameters describing non-linearity of 
soft soil on consolidation behavior has no significant 
change compared with that under Darcy’s flow law. 

4. The consolidation rate with a linear increase 
of self-weight stress is faster than that with a uniform 
one. Moreover, the difference of consolidation rate 
between them will reduce with the increasing ratio of 
the final loading to average self-weight stress. 

5. For both uniform distribution and linear in-
crement of self-weight stress, the faster the loading 
rate, the faster the consolidation rate. 
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