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Abstract:    Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing 
and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of 
damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of 
another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on struc-
tures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a 
difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decom-
position (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of 
single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed 
methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. 
Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to 
improve the characteristics and life span of real structures. 
 
Key words:  Truss structure, Vibration, Spectral analysis, Wavelet packet transform, Empirical mode decomposition, Artificial 

neural network (ANN) 
doi:10.1631/jzus.A1300030                     Document code:  A                    CLC number:  O34 

 
 

1  Introduction 
 

With the worldwide increase of new civil infra-
structure, developing novel sensing equipment for 
improved damage identification systems is necessary. 
As such, structural health monitoring (SHM) has 
become an important topic for civil and mechanical 

engineering research, because it allows for the 
analysis of the behavior of a structural system in order 
to help preserve the structural performance during its 
years of service. SHM consists of implementing a 
damage identification system that involves the 
monitoring, data processing, and interpretation, to 
evaluate the condition of a structure with the aim of 
detecting damage early and to make the correspond-
ing maintenance decisions that will be useful for 
preventing the fall or collapse of structures, while 
avoiding human and economic losses (Doebling  
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et al., 1998; Yang and Sun, 2011; Baptista et al., 
2012). In general, to detect damage in a structure, a 
comparison between two different conditions of the 
structural system is necessary: the initial state repre-
senting the healthy condition of the structure, and the 
actual condition, which should be assessed as healthy 
or damaged (Farrar and Worden, 2007). 

In particular, many SHM methods based on 
modal parameters have been used for the detection 
and location of damage in structures. The basic idea 
of these methods is that modifications to structural 
dynamic characteristics affect the modal parameters 
of a structure, such as natural frequencies (Wang et 
al., 2001; Hao and Xia, 2002; Chen et al., 2005; 
Sayyad and Kumar, 2011), mode shapes (Hao and 
Xia, 2002), damping ratios (Curadelli et al., 2008) or 
their derivatives (Wang and Chen, 2005) (e.g., flexi-
bility matrices, curvature mode shapes, etc.). The 
main goal of this method is to find dynamic charac-
teristics, which are sensitive to not only damage but 
also to environmental conditions such as humidity, 
wind, and temperature. Therefore, before using the 
modal parameters to detect damage, it is necessary to 
consider changes in environmental conditions. Sev-
eral researchers have proposed various methodologies 
to compensate for the effects of temperature 
(Cornwell et al., 1999; Peeters and de Roeck, 2001; 
Ko et al., 2003; Meruane and Heylen, 2012). For 
example, Cornwell et al. (1999) proposed a linear 
regression model to describe the variations of natural 
frequencies caused by the changes of temperature in a 
bridge. Peeters and de Roeck (2001) reported a 
methodology based on an autoregressive model with 
exogenous inputs (ARX) model to detect variation in 
the natural frequencies caused by the temperature 
changes in a bridge. Despite promising results to 
compensate for the effects of environmental condi-
tions, the problem has not been resolved. For this 
reason, it would be desirable to establish a more 
practical and effective damage identification ap-
proach, which allows for the creation of a method-
ology to identify and localize the damage in the 
structure. 

Damage suffered by civil structures during their 
service life can be attributed to several reasons such 
as excessive movements, corrosion, high temperature, 
cumulative crack growth, degradation of columns, 
joints, beams, and the impact produced by a foreign 

object (Umesha et al., 2009). Truss-type structures 
are widely employed in the design of civil infra-
structure because of their easy assembling and mate-
rial savings when compared to other types of struc-
tures, their ability to span across long distances with 
limited sag, their quick installation, their lightweight, 
and accessible space provided for maintenance. Thus, 
truss-type structures play an important role in many 
applications such as bridges, towers, cranes, roof 
supports, building skeletons, etc. (Yan et al., 2012). 
Several investigations to identify damage in these 
kinds of structures have been proposed; unfortunately, 
most of them deal with identifying just one damage or 
isolated damage. In real life, truss-type structures can 
be affected by several damage such as loosening of 
bolted connections (Mehrjoo et al., 2008; Yan et al., 
2012), cracks (Jiang et al., 2012; Xiang and Liang, 
2012), missing elements (Taha, 2010), reduced stiff-
ness (RS) (Law et al., 2005; Lei et al., 2012), and 
corrosion (Batis and Rakanta, 2005; Osornio-Rios et 
al., 2012). Moreover, in a real structure, two or more 
types of damage can be present at the same time, and 
it has been shown that one kind of damaged condition 
can interfere with the detection of another kind of 
damage, leading to an incorrect assessment about the 
structure condition (Yan et al., 2012). Identifying 
combined damage on structures still represents a 
challenge for condition monitoring; they have rarely 
been considered despite being a common situation, 
because the reliable identification of a combined 
damaged condition, considering the presence of two 
or more kinds of damage, is a difficult task. 

Visual or experimental localization procedures 
are currently used in SHM. Some of these procedures 
are: the acoustic emission (Li et al., 2011), infrared 
thermography (Shih et al., 2000), ultrasound (Voigt et 
al., 2003), image processing (Nishikawa et al., 2012), 
eddy currents (Banks et al., 2002), and radiographs 
(Vossoughi et al., 2007); which are all used in as-
sessing structural damage. However, the aforemen-
tioned methods possess several disadvantages; for 
instance, it is required that the location of the damage 
be known a priori, the section of the structure under 
inspection needs to be easily accessible and in several 
cases, the structures must be closed temporarily dur-
ing its inspection (Curadelli et al., 2008). These 
limitations have led to the development of new global 
monitoring methods. These methods are based on 
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changes in the vibration characteristics on the struc-
ture, because vibration measurements are sensitive 
enough to detect damage, especially in the truss-type 
structures, where the vibration levels are high (Yan et 
al., 2012). The basic idea of vibration-based SHM is 
that modifications in structural characteristics affect 
the vibration response characteristics of structures 
(Talebinejad et al., 2011). 

Several methods based on processing the struc-
ture vibration signals before and after damage have 
been proposed, which introduce certain features for 
the damage detection and its location by using a sin-
gle technique. The most popular methods for structure 
condition monitoring are: Hilbert-Huang transform 
(HHT) (Mao and Que, 2006; Rezaei and Taheri, 2011; 
Razi et al., 2011), wavelet analysis (Han et al., 2005; 
Guo et al., 2005; Ren and Sun, 2008; Xiang and Li-
ang, 2012), and multiple signal classification analysis 
(MUSIC) (Osornio-Rios et al., 2012). For example, 
Guo et al. (2005) investigated the use of wavelet 
packet transform (WPT) to extract features of vibra-
tion test data from a structure, where the wavelet 
energy rate index was the feature extracted and com-
bined with an artificial neural network (ANN) to 
detect crack damage in a multi-story structure. The 
results showed that the proposed methodology was 
able to identify the damage; however, quantifying the 
damage presents small errors. Han et al. (2005) pro-
posed a method based on the use of a WPT for the 
damage detection in beam structures, where the 
wavelet energy rate index was proposed and used to 
detect and locate the damage. The results were good; 
however, the methodology was tested using many 
sensors to locate a crack in a simple beam, which is 
costly, and the sensors were placed at the damage 
location, which is unrealistic in practical situations. 
Thus, the methodology needs to be tested in more 
complex structures. Ren and Sun (2008) used the 
combination of the wavelet transformation with 
Shannon entropy to detect and locate structural 
damage from measured vibration signals. The pro-
posed method was experimentally tested in a beam 
structure and the experimental results showed the 
combination of methods helped to detect and locate 
crack damage in the structure. Similar to Han et al. 
(2005), Ren and Sun (2008) employed many sensors 
to locate a crack in a simple beam, and the sensors 
were placed at the damage location. Taha (2010) 

suggested the use of the discrete wavelet transform 
for detecting damage using the American Society of 
Civil Engineers (ASCE) benchmark structure. The 
wavelet energy rate index was proposed and used as 
an input of ANN to detect the damage. The results 
showed that it is possible to identify when an element 
is removed from a structure. Razi et al. (2011) pro-
posed a novel vibration-based technique to detect and 
locate fatigue cracks in a beam. The method used the 
empirical mode decomposition (EMD) method to 
establish an energy-based damage index. The results 
showed that the proposed damage detection method-
ology can detect the presence and location of the 
damage. Unfortunately, the results are difficult to 
interpret and the sensors are placed next to damage; 
consequently, the proposed methodology might not 
work well if sensors are located far away of the 
damage. Xiang and Liang (2012) proposed a new 
methodology to detect and locate cracks in a beam by 
applying the wavelet transform to the modal shape. It 
was found that the proposed method works reasona-
bly well at a certain level of noise. Recently, 
Osornio-Rios et al. (2012) presented a methodology 
for identifying, locating, and quantifying the severity 
of single damage. The fusion of two algorithms, 
MUSIC-ANN, for SHM applied to a five-bay 
truss-type structure is verified. The proposed meth-
odology is effective for detecting a healthy structure, 
a structure with external corrosion and internal cor-
rosion (IC), and a structure with a crack. However, in 
spite of the good results, the MUSIC algorithm has 
some limitations, as the algorithm is sensitive to the 
order, the technique consumes many computational 
resources, and it is not a general technique because 
the order selection is empirical. In addition, the 
aforementioned studies, although they employ a sin-
gle technique to detect and locate damage, they pre-
sent some difficulties that remain unresolved. These 
approaches are feasible only for monitoring the local 
damage of a single structural member or a simple 
structure, where the sensors are placed at the damage 
location. However, in a real structure, the sensors are 
randomly placed, and the proposed methodologies 
have only been tested under single damage. In real 
life, the structure can suffer two or more damage at 
the same time; therefore, it is necessary to find a 
methodology that provides a suitable, easy, and effi-
cient way to locate and detect different single and 
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combined damage in a more complex structure where 
the damage can be present simultaneously. 

This paper presents a fused methodology of 
WPT and EMD, combined with ANN, for the identi-
fication and location of combined damage in a 
truss-type structure. The structure used in the case of 
study has five bays and was excited with an electro-
dynamic shaker. The proposed methodology is able to 
automatically locate and identify damage such as 
loosened bolts (LB), RS, IC, and their combinations 
in an automated monitoring process. A comprehen-
sive experimental study to assess the utility of the 
proposed vibration-based SHM is presented. Results 
showed that the provided methodology can make a 
reliable assessment of the condition-location of the 
specific single or combined damage conditions. 
Moreover, the proposed methodology can be re-
garded as a simple, effective, and automated tool 
without the need for sophisticated analysis, to estab-
lish a practical, more general, and reliable SHM 
methodology. 

 
 

2  Structure 

2.1  Truss-type structures 

Truss-type structures consist only of flexible 
truss members under axial forces, and are pin- 
connected at joints. The truss-type structure being 
tested consists of a five-bay structure made of alu-
minum, which is recessed in a concrete wall. Each 
assembled bay is a 0.7071 m cube-shaped structure. 
Bar elements are made of aluminum and those ele-
ments located in the X, Y, and Z directions have di-
mensions of 0.7071 m×0.019 m of length and di-
ameter, respectively. The dimensions for diagonal 
members are 1 m×0.019 m of length and diameter, 
respectively. The connection node has a mass of 
0.2 kg, 0.055 m side and is bolt connected with the 
bar elements. Fig. 1a shows the complete geometric 
configuration of the structure under test. Fig. 1b 
shows an assembly of a bar element used in the fab-
ricated structure which consists of a bar with bolt 
connected nodes. 

A finite element model (FEM) was performed to 
locate the natural frequencies of the structure under 
study. In the region from 15 Hz to 150 Hz the first  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
natural frequencies were found; therefore, this region 
was selected to excite the structure; since it is sus-
ceptible to changes because of damage. The damage 
under study was experimentally analyzed. 

2.2  Damage under study 

In order to validate the proposed methodology, 
various types of damage including LB, RS, IC, and 
their combinations are proposed in this work. 

2.2.1  Loosened bolt (LB) 

LB is a frequent damage in truss-type structures. 
This damage occurs due to vibrations caused by 
strong winds, traffic, etc. It is then common to dis-
cover that recently installed bolts in the structure are 
loosened (Yan et al., 2012). To carry out the LB test, 
one side of the bar element is separated from the bolt 
connector as shown in Fig. 2a. 

2.2.2  Reduced stiffness (RS) 

Another kind of damage regularly present in 
truss-type structures is the RS of their elements, 
which can be produced by corrosion, changes in 
temperature, etc., and produces a local decrease of the 
cross-sectional area of the affected element (Chen et 
al., 2005; Osornio-Rios et al., 2012). To simulate the 
RS condition, a bar element with a reduced diameter 
(0.013 m) is used; therefore, the bar element stiffness 
has been reduced by 53%. Fig. 2b illustrates the 
comparison between the healthy bar element and the 
damaged bar element with the reduced diameter. 

Fig. 1  Truss-type structure (a) and typical assembly of a 
bar element (b) 
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2.2.3  Internal corrosion (IC) 

Corrosion is one of the most serious forms of 
damage in structural performance. Truss-type struc-
tures are mainly made of tube elements, which can 
often suffer IC because of water filtrations, humidity, 
etc. (Chen et al., 2005). To simulate the IC test, a tube 
element is used instead of a solid bar. The dimensions 
of the tube elements are 0.019 m for the exterior di-
ameter and 0.0165 mm for the interior diameter. 
Fig. 2c shows the comparison between the healthy bar 
element and the damaged tube element. A tube ele-
ment is used to simulate the IC; nevertheless, it is 
necessary to consider that the solid bar is perforated 
with a drill of 9.5 mm in order to connect it with the 

node; therefore, the reduction of material to simulate 
the IC is 7 mm. 

2.2.4  Combined damage 

The multiple-combined damage conditions ap-
plied to the structure are obtained by combining each 
single damage condition with one or two of the re-
maining damage conditions. Fig. 3 depicts the dif-
ferent arrangements for the multiple-combined 
damage conditions, where there are seven possible 
cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3  Theoretical background 

3.1  Wavelet packet transform (WPT) 

WPT, like discrete wavelet transform (DWT), is 
a technique that decomposes a signal repeatedly into 
successive low- and high-frequency components. 
Even so, in WPT, the approximation and detail coef-
ficients are decomposed to create the full binary tree 
of band decomposition. Therefore, WPT can provide 
uniform frequency bands, different from DWT where 
just the approximation coefficients are decomposed 
(Amezquita-Sanchez et al., 2012). WPT is defined by 
Eq. (1), where j and k are integer numbers that rep-
resent the scale and translation, respectively, and n 
represents the modulation or oscillation parameter. 
 

/2
, ( ) 2 (2 ).n j n j

j kW t W t k                   (1) 

 
WPT is obtained through the next recursive 

Eqs. (2) and (3), where t is the  time variable, h(k) is 
the low-pass filter coefficients, and g(k) and Wn are 

Fig. 3  Combinations for the analysis of the single and 
multiple-combined damages 

Fig. 2  Damage under study: LB (a), RS (b), and IC (c)
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the high-pass filter coefficients associated with the 
scaling function and the mother wavelet, respectively. 
 

2 ( ) 2 ( ) (2 ),n n

k

W t h k W t k




             (2) 

2 1( ) 2 ( ) (2 ).n n

k

W t g k W t k






            (3) 

 
The wavelet packet component energy is defined 

by 
 

2(WPT) ( ) d ,n n
fj jE f t t




                   (4) 

 

where n
jf  is the nth level signal component decom-

posed at the jth level by the wavelet function and 
translated in the time domain. 

The coefficients for each wavelet node h(j, k) 
and g(j, k) can be obtained through the inner products 
of x(t) with the corresponding wavelets as shown in  
Eq. (5). The signal reconstruction is done by applying 
the process in an inverse way, which is known as the 
inverse WPT (IWPT). Fig. 4 displays the decompo-
sition and reconstruction process of the wavelet 
packet. According to Fig. 4, the frequency bands for 
each node of a 1-level decomposition, h(1,0) and 
g(1,1), with a sampling frequency Fs=320 Hz are 
0–80 Hz and 80–160 Hz, respectively. 

 

, ,( ) ( )d( ).n
j k j kS x t W t t                      (5) 

 
 

 
 
 

 
 
 
 
 

3.2  Empirical mode decomposition (EMD) 

The EMD method is better suited to dealing with 
data from nonstationary and nonlinear processes. The 
EMD method decomposes a signal into oscillating 
components obeying some basic properties, namely 

intrinsic mode functions (IMFs). The principle of 
EMD is to decompose any signal s(t) into a set of 
band-limited functions Cn(t), which are zero mean 
oscillating components, called IMF. Each IMF satis-
fies two basic conditions: (1) in the whole data set, the 
number of extrema and the number of zero crossings 
must either be equal to or varied by at most one; (2) at 
any point, the mean value of the envelope defined by 
the local maxima and the envelope defined by the 
local minima is zero (Huang et al., 1998). 

The name IMF is adopted because it represents 
the oscillation mode in the signal. Thus, the IMF in 
each cycle is defined by the zero crossings and in-
volves only one mode of oscillation, where no com-
plex riding waves are allowed. The idea of finding the 
IMF relies on subtracting the highest oscillating 
components from the signal with a step-by-step 
process, the sifting process: 

1. Identify the maxima and minima of s(t). 
2. Generate the upper and lower envelopes (u(t) 

and l(t) respectively) by cubic spline interpolation. 
3. Determine the local mean m1(t)=[u(t)+l(t)]/2. 
4. Since IMF should have zero local mean, sub-

tract m1(t) from s(t) to obtain h1(t). 
5. Check whether h1(t) is an IMF or not. 
6. If not, use h1(t) as the new data and repeat 

steps 1 to 5 until ending up with an IMF. 
Once the first IMF h1(t) is obtained, it is defined 

as C1(t)=h1(t), which is the smallest temporal scale in 
the signal s(t). To compute the remaining IMF, C1(t) is 
subtracted from the original signal to get the residue 
signal r1(t): r1(t)=s(t)−C1(t). The residue now contains 
information about the components of longer periods. 
The sifting process will be continued until the final 
residue is a constant, a monotonic function, or a 
function with only one maxima and one minima from 
which no more IMF can be obtained (Rezaei and 
Taheri, 2009). The subsequent IMF and the residues 
are computed as 

 

1 2

2 3 3 4 1

( ) ( )

( ) ( ), ( ) ( ), ..., ( ) ( )

( ).
n n

n

r t C t

r t C t r t C t r t C t

r t



   



    

(6) 
 

At the decomposition end, the signal s(t) will be 
represented as a sum of n IMF signals plus a residue 
signal: 

g(1,1) 

h(1,0) 

Decomposition Reconstruction 

S 2,3
2 

g(2,3) 
h(2,2) 

g(2,3) 
h(2,2) 

g(1,1)+ 
S 2,2

S 2,1g(2,1) 
h(2,0) 

g(2,1) 
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h(1,0)+ 
S 2,0

+ x(t)

2 

2 

2 

2 
2 

2 

2 

2 
2 

2 

2 

x(t) 

Fig. 4  Wavelet packet decomposition and reconstruction
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1

( ) ( ) ( ).
n

i n
i

s t C t r t


                          (7) 

 
The energy of the desired IMF can be established 

by 
 

0 2

0
(IMF) (IMF) d ,

t
E t                       (8) 

 
where t0 is defined as the signal duration. 

3.3  Artificial neural network (ANN) 

ANN is a pursuit of simulating the intercon-
nected neurological structure of the human brain, 
which has been proven to be suitable of learning and 
solving problems through pattern recognition. Several 
ANN architectures have been used in civil engineer-
ing applications (Adeli, 2001); however, the multi- 
layered perceptron (MLP) architecture is the most 
commonly used ANN. The MLP architecture consists 
of an input layer, one or more hidden layers, and an 
output layer, where each layer is composed of a 
variable number of nodes (Fig. 5). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
The r nodes in the input layer distribute the in-

formation to the nodes in the hidden layer, which 
performs a nonlinear transformation on the weighted 
sum of the inputs; afterwards, the results are passed to 
the l nodes in the output layer. The back-propagation 
algorithm or algorithm of inverse propagation is the 
most used training method in the previous studies of 
MLP network. This algorithm consists of mapping the 
input process to the desired outputs by minimizing the 
error between the desired outputs and the calculated 
outputs (Huang, 2009). 

In this study, an MLP network architecture is 
carried out for identification-location of single and 
multiple-combined structural damage. The proposed 
ANN consists of five input nodes, which receive 
values from the IMF block, obtained by information 
energy of the vibration signal acquired by each sensor 
(five sensors placed in each one of the five bays in the 
structure), with 90 nodes in the first hidden layer and 
50 nodes in the second hidden layer to provide the 
best results in the proposed methodology. The nine 
output nodes are the flags indicating the structure 
condition healthy structure, LB, RS, and IC, and the 
locations of damage condition, first-bay, second-bay, 
and so on up to the fifth-bay. In the first four outputs, 
each node agrees to a single-damage condition; and if 
two or more damage are present at the same time, the 
corresponding output nodes will be triggered up. The 
nodes at the hidden and output layers have a 
log-sigmoid (LS) activation function, which is de-
fined by Eq. (9), where β is the sum of the inputs to 
the nodes. The proposed ANN is implemented in the 
Matlab digital signal processing toolbox, which is 
trained using a back-propagation algorithm. 

 
1

LS( ) .
1 e  


                         (9) 

 

 
4  Methodology 
 

Vibration signature analysis is employed to de-
termine the state of a structure. It can be used to es-
tablish a damage feature index, which allows for 
monitoring of the structure condition in order to de-
tect the presence of damage. A structural damage 
produces changes in the vibration response of the 
structure by inducing variations in its energy. There-
fore, the vibration analysis is a powerful diagnostic 
and troubleshooting tool of structure health monitor-
ing. The proposed methodology for identification- 
location of damage diagnosis by vibration signature 
analysis through integration of the information energy 
and ANN algorithms includes the following steps: 

1. Acquire vibration data from the five sensors 
placed in each bay of a healthy five-bay truss-type 
structure (without damage), which is taken as the 
baseline. 

2. Decompose the acquired signal into different 

Fig. 5  MLP architecture for an ANN

Input layer  Hidden layer  Output layer 

x1 

x2 

xr yl

y2
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frequency bands (nodes) by applying the WPT 
method. At the same time, decompose the acquired 
signal into distinctive IMF by applying the EMD 
method. 

3. Select the frequency band (node) and the IMF 
that provide information about the natural frequencies 
of the structure. In this work, the node (1, 0) selected 
corresponded to the frequency range (0–80 Hz). In 
addition, the Daubechies (db4) is used as the mother 
wavelet because it is the best suited for the proposed 
methodology (Wang et al., 2008). The selected node 
was experimentally determined; in this node it was 
found that the energy is more sensitive to the damage. 
As well, the first IMF was selected because it contains 
most of the natural frequencies, and the energy cal-
culation is more stable than the other IMF (e.g., 
IMF2, IMF3, …); therefore, the repeatability of the 
calculated energies is possible. To extend this point to 
other structures, it is necessary to identify a band-
width or region, which contains most of the natural 
frequencies of the structure, with the aim of having 
more energy. For example, when the structure is 
healthy (sensor-1), the energy of node (1, 0) and the 
first IMF are 0.5700 and 0.6413, respectively. On the 
other hand, the energy of node (1, 1) and the second 
IMF are 0.2423 and 0.0186, respectively. Therefore, 
the node (1, 0) and the first IMF contain the most 
energy of the system. 

4. Estimate the energy contents in the node 
(WPT) and the selected IMF. 

5. Sequential damage in each bay is induced 
independently; this means the damage in the first bay 
is repaired before advancing to the second-bay and so 
on. From here, damage is applied to the first-bay, and 
data are acquired from the sensors in a similar way to 
step 1. 

6. Then the node and IMF are obtained as in 
steps 2 and 3 to establish the analysis region of the 
damaged condition. 

7. Steps 2–5 are repeated for all the bays in the 
structure, and their respective energies are obtained. 

8. The damage feature index is obtained from the 
computed energies fusion, and it is an indicative of 
structure-condition. The damage index computing 
method is further described later in this section. 

9. The obtained damage feature index is used to 
train the ANN algorithm, in order to diagnose the 
health-condition within the truss-type structure. 

4.1  Damage feature index 

For a given structural damage, the data acquired 
from several sensors fixed at different locations in the 
structure contain distinctive information. Thus, each 
sensor has distinct sensitivity to the structural dam-
age, which is transferred to the energy computed in 
the vibration signal. In this work, a new damage fea-
ture index based on fusion of the energies obtained by 
a single wavelet-packet node and the first intrinsic 
mode function (IMF1) in the vibration signal from 
each of the five sensors is proposed. 

The proposed damage index computing for the 
identification-location of different damages and their 
combination applied to a truss-type structure through 
the analysis of a single parameter is described by 

 

DIV (IMF) (WPT),E E                     (10) 

 
where DIV, E(IMF), and E(WPT) are the damage 
index value, energy of IMF, and energy of WPT, re-
spectively. Once calculated, DIV for each sensor, the 
obtained damage feature indexes are used to train the 
ANN algorithm; where the existence and location of 
damage are identified in the structure. The damage 
index value is a scalar value, which will increase if 
there is damage in the structure. However, the pro-
posed index has not yet been fully studied and re-
quires more study to observe the effects of the local 
damage in the vibration level of a structure. 

In order to monitor the condition of other struc-
ture the proposed damage index should be repre-
sented in percentage only, which allows locating the 
damage in an automatic fashion. This percentage is 
the difference in the structure’s energy at its healthy 
and damaged states, which is described by  

 

Healthy Damaged

Healthy

Healthy Damaged

Healthy

(IMF) (IMF)
DIV

(IMF)

(WPT) (WPT)
100.

(WPT)

E E

E

E E

E

 





 



 (11) 

 
Once DIV is calculated for each sensor, the 

relatively high index values are identified as indica-
tors for the existence of damage close to the respected 
sensor, thereby the existence and location of damage 
are identified accordingly. 
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4.2  Network training 
 

The ANN was trained through a back- 
propagation algorithm for identification-location of 
different single and combined damage in a truss-type 
structure. Ten trials were carried out under each  
damage condition. The training set for each damage 
condition was synthetically obtained by randomly 
producing 250 damage index values within the range 
[μ−3σ, μ+3σ], where μ is the mean, and σ is the 
standard deviation of the calculated damage index 
values from the ten trials. Real values were used as a 
validation set for the corresponding damage condition 
and its localization. Fig. 6 depicts the estimated 
damage index value-1 from sensor-1 (DIV1) as 
Gaussian functions for the three damage conditions 
and their combinations respectively, which were ob-
tained from 10 trials for each structure condition. The 
obtained DIV1 shows that each damage condition has 
different sensitivity due to the kind of damage and its 
location. Furthermore, it is possible to observe that 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

some areas overlap, for instance, in LB, locating 
damage in the second-bay with the damage in the 
third-bay. However, the damage index value corre-
sponds to the sensor-1 and there are four other dam-
age index values that are applied to the ANN as ex-
plained in the next section. Thus, this proves that it is 
important to have information from several sensors 
because of those containing different information 
from damage. Table 1 lists the behavior of the first 
IMF energy and WPT energy according to local 
damage and their combinations. This table shows the 
average of 10 tests for each condition. It is possible to 
observe that the energy varies according to the dam-
age and its location; besides, the energy variation with 
single damage is little, in comparison, to the com-
bined damage, which is large. Moreover, Table 1 
shows that the energy variation is not monotonous 
with the local damage. Additionally, it is important to 
clarify that the calculated energies are not global 
parameters and they change according to the signal 
vibration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Density functions defining detectability zones obtained by proposed damage index values from sensor-1 for LB
(a), RS (b), IC (c), LB&RS (d), LB&IC (e), RS&IC (f), and LB&RS&IC (g) 
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On the other hand, Fig. 7 shows the estimated 
index values according to Eq. (12). Figs. 7a–7c dis-
play the obtained index values for detect and locate 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LB, LB&RS, and LB&RS&IC. It is possible to ob-
serve that the relatively high index values are identi-
fied as indicators for the existence of damage and its 

Table 1  Behaviors of IMF-energy and WPT-energy

IMF WPT Structure 
condition 

Sensor 
1st-bay 2nd-bay 3rd-bay 4th-bay 5th-bay 1st-bay 2nd-bay 3rd-bay 4th-bay 5th-bay

1 0.760 0.520 0.489 0.509 0.438 1.012 0.622 0.629 0.623 0.588

2 0.396 0.422 0.362 0.304 0.281 0.859 0.902 0.857 0.783 0.761

3 0.261 0.239 0.291 0.197 0.313 0.795 0.758 0.841 0.638 0.866

4 0.134 0.157 0.132 0.252 0.254 0.726 0.703 0.709 0.776 0.784

LB 

5 0.053 0.078 0.076 0.050 0.055 0.616 0.601 0.631 0.611 0.798

1 0.512 0.528 0.546 0.528 0.494 0.825 0.858 0.753 0.765 0.134

2 0.403 0.428 0.391 0.404 0.332 0.826 0.881 0.719 0.772 0.292

3 0.270 0.240 0.203 0.238 0.270 0.795 0.774 0.756 0.782 0.813

4 0.184 0.158 0.157 0.192 0.239 0.672 0.727 0.720 0.862 0.764

RS 

5 0.089 0.085 0.079 0.072 0.045 0.626 0.617 0.595 0.627 0.850

1 0.555 0.539 0.587 0.470 0.494 0.861 0.860 0.815 0.793 0.852

2 0.426 0.439 0.444 0.404 0.391 0.773 0.873 0.718 0.878 0.864

3 0.255 0.240 0.295 0.290 0.242 0.779 0.768 0.839 0.831 0.796

4 0.174 0.173 0.188 0.212 0.218 0.739 0.738 0.769 0.785 0.781

IC 

5 0.080 0.077 0.090 0.084 0.147 0.617 0.607 0.639 0.634 0.666

1 0.577 0.528 0.625 0.533 0.500 0.882 0.876 0.839 0.856 0828

2 0.396 0.429 0.437 0.347 0.320 0.844 0.902 0.810 0.836 0.817

3 0.287 0.213 0.307 0.399 0.284 0.810 0.773 0.839 0.947 0.865

4 0.194 0.131 0.172 0.346 0.280 0.776 0.730 0.743 0.855 0.835

LB&RS 

5 0.093 0.073 0.085 0.042 0.045 0.641 0.630 0.629 0.611 0.912

1 0.809 0.590 0.432 0.558 0.496 1.049 0.908 0.241 0.856 0.829

2 0.430 0.477 0.369 0.344 0.316 0.897 0.922 0.366 0.825 0.802

3 0.238 0.244 0.322 0.386 0.264 0.804 0.779 0.870 0.926 0.846

4 0.134 0.155 0.127 0.308 0.248 0.740 0.731 0.523 0.818 0.812

LB&IC 

5 0.070 0.080 0.072 0.040 0.036 0.634 0.622 0.410 0.608 0.859

1 0.528 0.527 0.563 0.527 0.504 0.842 0.8696 0.899 0.829 0.849

2 0.372 0.458 0.404 0.376 0.335 0.839 0.8875 0.869 0.521 0.825

3 0.267 0.244 0.249 0.244 0.261 0.783 0.766 0.987 0.924 0.814

4 0.210 0.144 0.222 0.144 0.272 0.758 0.712 0.806 0.403 0.841

 
IC&RS 

5 0.089 0.077 0.065 0.077 0.187 0.622 0.613 0.620 0.411 0.723

1 0.823 0.644 0.553 0.568 0.437 1.013 0.922 0.907 0.893 0.787

2 0.457 0.471 0.327 0.426 0.312 0.895 0.934 0.839 0.914 0.789

3 0.339 0.283 0.330 0.346 0.251 0.819 0.800 0.865 0.870 0.791

4 0.185 0.168 0.146 0.297 0.206 0.746 0.737 0.720 0.813 0.754

LB&RS 
&IC 

5 0.104 0.106 0.075 0.078 0.177 0.623 0.626 0.625 0.616 0.663

1 0.570 0.641 

2 0.388 0.646 

3 0.259 0.652 

4 0.175 0.645 

Healthy 

5 0.091 0.576 
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location close to the respected sensor, which can be 
employed to train the ANN in order to identify the 
damage and monitor the structure. Figs. 7d and 7e 
show the percentage using IMF-energy, and Figs. 7f– 
7h present the percentages by WPT-energy. Figs. 
7d–7h demonstrate that using the energy of a single 
technique is difficult to detect and locate the damage, 
since in several cases the sensor with larger energy is 
located far away from damage location; therefore, the 
fusion of energies to detect and locate the damage 
according to the location of sensors is necessary. 

4.3  Energy neural process 

Fig. 8 depicts the flow of the applied process for 
detection-location of different damage conditions, 
and their possible combinations on a truss-type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

structure. The energy neural process consists of three 
main units: the WPT and IMF algorithms for isolating 
the analysis region, and the energy calculation. 

Both analyses are used to find out the damage 
index values (DIV1, DIV2, DIV3, DIV4, and DIV5), 
which are obtained fusing both energies, and the ANN 
algorithm is used to identify the condition and location 
of the damage in the truss-type structure from the 
estimated damage index values. 

 
 

5  Experiments  
 

The experimental setup is shown in Fig. 9, where 
the location of each accelerometer used for monitor-
ing the behavior of a reconfigurable five-bay space  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Behaviors of IMF-energy and WPT-energy in percentages 
(a) LB: IMF-energy+WPT-energy; (b) LB&RS: IMF-energy+WPT-energy; (c) LB&RS&IC: IMF-energy+WPT-energy; (d) 
LB: IMF-energy; (e) LB&RS: IMF-energy; (f) LB&RS&IC: IMF-energy; (g) LB: WPT-energy; (h) LB&RS: WPT-energy; (i) 
LB&RS&IC: WPT-energy 
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truss-type structure made of aluminum is exhibited 
(Fig. 9a). The vibration signal is acquired using a 
micro-elecromechanical system (MEMS)-based 
tri-axial accelerometer model LIS3L02 AS4 from 
STMicroelectronics. The accelerometer has a user- 
selectable full-scale of ±2g/±6g (g=9.81 m/s2), a 0.66 
V/g sensitivity, a bandwidth of 750 Hz, and a 5×10−4g 
resolution over a 100 Hz bandwidth (Fig. 9c). The 
obtained signals from the sensor network are stored in 
a proprietary data-acquisition system (DAS) and are 
sent to PC by USB protocol (Fig. 9d). The sampling 
frequency of the DAS is set to 3.2 kHz, obtaining 48 

000 samples during a period of 15 s. To perform the 
modal testing, an electrodynamic shaker from Lab-
works model ET-127 powered by a linear power  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

amplifier from Labworks Model PA-141 (LabWorks 
Inc., USA) is used as the excitation source (Fig. 9b). 
Simultaneously, the amplifier is fed by a proprietary 
digital waveform synthesizer (Fig. 9d). 

In order to reduce the computation time and to 
optimize the damage index value estimation, the ac-
quired signal is decimated to limit the useful fre-
quency region, leading to a lower signal-to- 
quantization noise ratio (SQNR) (Tan and Wang, 
2011). The acquired vibration signal is decimated 10 
times to limit the sampling frequency to 320 Hz and 
the frequency range from 0 to 160 Hz, because the 
region of interest lies below 150 Hz. The proposed 
experiments use a sinusoidal sweep with a frequency 
range from 15 to 150 Hz over a period of 15 s to excite  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Experimental setup 
(a) Structure under test; (b) Overall system; (c) Tri-axial accelerometer; (d) Digital waveform synthesizer and data acquisition system

Fig. 8  Energy neural process 
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the structure. Fig. 10 displays the locations of dif-
ferent single and multiply-combined damages, ap-
plied to the truss-type structure, where sequential 
damage in each bay is induced independently. 

This means that the damage in the first bay is 
repaired before advancing to the second-bay and so 
on. The circle, black line, and the dotted line indicate 
the location of LB, RS and IC damage respectively. 
For example, Fig. 10d shows a close-up of the sec-
ond-bay, where it is possible to observe the location of 
a single damage and IC; it is important to mention that 
in the same location there are two other damage, 
which are applied one at a time in the structure. 
Fig. 10a presents the location of the single damage in 
the other four bays. On the other hand, Fig. 10e dis-
plays a close-up of the third-bay, where two points of 
damage are applied at the same time, RS and IC. In 
addition, Fig. 10b presents the locations of the other 
two combinations of damage (LB&IC, LB&RS) in 
the other four bays. Fig. 10f displays an example of 
location of three combined damage in the first-bay, 
and Fig. 10c shows the location of three combined 
damage in the other four bays. 

 
 

6  Results and discussion 
 

Table 2 presents the obtained results by the 
proposed methodology (IMF-WPT-ANN) and the 
results obtained with the other three methodologies 
proposed in previous studies, i.e., IMF-energy (Razi 
et al., 2011), WPT-energy (Han et al., 2005), and 
MUSIC-ANN (Osornio-Rios et al., 2012), which  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

were applied to the five-bay truss-type structure for 
identification, and locations of single and multiple- 
combined damage. This table shows that fusing the 
IMF and WPT methodologies with the ANN method, 
increases the effectiveness of carrying out the 
truss-structure condition monitoring, where the single 
methodologies were not able to do it. 

According to the seven plots of density functions 
vs. damage index values as shown in Fig. 6, it is pos-
sible to observe that only three plots (LB, RS, and 
RS&IC), show overlap locations. However, the plots 
from Fig. 6 correspond to the energy analysis from 
sensor-1 only, and the proposed methodology is also 
applied to the four other sensors. Results from the 
energy analysis of all five sensors are the input nodes 
of the ANN, which contains 90 and 50 nodes in the 
hidden layer, and 9 output nodes to assert the diag-
nosis. From the output nodes of the ANN, it is possi-
ble to obtain a 100% certainty for all studied cases; 
the correct decision for identification and location of 
the multiple-combined damage applied to a truss-type 
structure can be seen in Table 2. The results included 
identifying a healthy condition and a single isolated 
fault, combining two or three damage conditions, as 
well as locating the damage in one of the five bays. 
For all these cases, 10 tests were performed to acquire 
the vibration signals from the truss-type structure 
excited by an electrodynamic shaker. 

Results showed that the proposed methodology 
has 100% effectiveness for detecting health condi-
tions in a five-bay truss-type structure. The proposed 
methodology can detect and distinguish three differ-
ent kinds of single damage such as LB, RS, IC, and  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 10  Locations of different damages applied to the truss-type structure 

(a) Single damage; (b) Two damage at the same time; (c) Three damage at the same time; (d) 2nd-bay; (e) 3rd-bay; (f) 1st-bay

 (a) 

5th-bay 4th-bay 3rd-bay 2nd-bay 1st-bay 
 (b) 

5th-bay 4th-bay 3rd-bay 2nd-bay 1st-bay

(c) 

5th-bay 4th-bay 3rd-bay 2nd-bay 1st-bay

(d) (e) (f) 

Location of the replaced element to 
simulate the RS

Location of the replaced element to 
simulate the IC 

Location of LB
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their combinations. In addition, the proposed meth-
odology improves the certainty to detect and to locate 
structural damage; where the others proposed meth-
odologies in the introduction section cannot. For in-
stance, employing the proposed methodologies by 
Han et al. (2005), Rezaei and Taheri (2011), and 
Osornio-Rios et al. (2012), it is possible to have a 
70%, 70%, and 100% effectiveness to detect IC in the 
third-bay, respectively. On the other hand, the pro-
posed methodology increases the detection up to 
90%. The methodology depicted by Osornio-Rios et 
al. (2012) is more efficient at detecting IC in the  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
third-bay than the proposed methodology. However, 
in spite of the good results, the methodology by 
Osornio-Rios et al. (2012) was developed to consider 
the presence of single damage, not combined. 

On the other hand, results shown in Fig. 7 dem-
onstrate that it is possible to extend the proposed 
methodology to other structures. According to results, 
a single damage generates a low percent, instead, when 
damage is combined the percent increases; therefore, 
this characteristic could be used to train an ANN in 
order to identify the damage and to automate the 
process. However, this assumption needs to be studied. 

Table 2  Behaviors of IMF-energy and WPT-energy 

Damage location 
Structure condition Methodology 

First-bay Second-bay Third-bay Fourth-bay Fifth-bay

IMF-energy 100% 100% 100% 100% 100% 

WPT-energy 100% 100% 100% 100% 100% 

MUSIC-ANN – – – – – 
LB 

WPT-IMF-ANN 100% 100% 100% 100% 100% 

IMF-energy 100% 100% 70% 100% 100% 

WPT-energy 100% 100% 70% 100% 100% 

MUSIC-ANN 100% 100% 100% 100% 100% 
IC 

WPT-IMF-ANN 100% 100% 90% 100% 100% 

IMF-energy 100% 100% 80% 100% 100% 

WPT-energy 100% 100% 90% 100% 100% 

MUSIC-ANN – – – – – 
RS 

WPT-IMF-ANN 100% 100% 100% 100% 100% 

IMF-energy 100% 100% 100% 100% 100% 

WPT-energy 90% 100% 100% 100% 100% 

MUSIC-ANN – – – – – 
LB&IC 

WPT-IMF-ANN 100% 100% 100% 100% 100% 

IMF-energy 100% 100% 100% 100% 100% 

WPT-energy 100% 100% 100% 100% 100% 

MUSIC-ANN – – – – – 
LB&RS 

WPT-IMF-ANN 100% 100% 100% 100% 100% 

IMF-energy 100% 80% 100% 100% 100% 

WPT-energy 100% 100% 100% 100% 100% 

MUSIC-ANN – – – – – 
IC&RS 

WPT-IMF-ANN 100% 100% 100% 100% 100% 

IMF-energy 100% 100% 100% 100% 100% 

WPT-energy 90% 100% 100% 100% 100% 

MUSIC-ANN – – – – – 
LB&IC&RS 

WPT-IMF-ANN 100% 100% 100% 100% 100% 

IMF-energy 

WPT-energy 

MUSIC-ANN 
Healthy 

WPT-IMF-ANN 

100% 
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7  Conclusions 
 

This paper proposes a straightforward method-
ology that combines WPT and empirical mode de-
composition to obtain a single parameter and energy, 
which is used for detecting and locating different 
structural conditions qualitatively. The contribution 
of this work is that the proposed methodology can 
detect different single and multiply-combined dam-
ages by analyzing the vibration produced by an elec-
trodynamic shaker, in an automatic fashion. The 
proposed methodology proved to be more efficient 
than previous methodologies where a single damage 
and its location are studied; besides, several damage 
indices are employed to identify the structure condi-
tion. The experiments carried out ascertain that the 
proposed methodology is very efficient and reliable 
for identifying and locating the three kinds of dam-
age: LB, RS, IC, as well as their combinations, in a 
quantitative way with a certainty of 100%. Therefore, 
the proposed methodology provides an easy way to 
locate and identify multiple-combined damage. It can 
be regarded as a simple and effective tool without 
sophisticated analysis, toward establishing a practical, 
reliable and more general SHM methodology. In ad-
dition, the results show that the proposed methodol-
ogy could be applied to detection locations of damage 
in others structures by analyzing the fusion of ener-
gies, which will help to improve the performance, 
resistance, design, and life service of real structures. 

In further work, it is necessary to investigate the 
possibility of automating the process in a real struc-
ture where circumstances are different. There are still 
some practical aspects that should be studied, i.e., the 
IMF- and WPT-energy-based damage identification 
and location in other type of structures. In addition, 
the monotonicity of energies should be studied in 
order to quantify the damage. 
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