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Abstract:    On urban arterials, travel time variability is largely dependent on the variability in the delays vehicles experience at 
signalized intersections. The interpretation of delay evolvement at intersections will give a comprehensive insight into arterial 
travel time variability and provide more possibilities for travel time estimation. Accordingly, an analytical model is proposed to 
study delay variability at isolated, fixed-time controlled intersections. Classic cumulative curves are utilized to derive average 
delay (per cycle) formulas by assuming a deterministic overflow queue. Then, an analogy with the Markov chain process is made 
to clarify the mechanism of stochastic delays and overflow queues at signalized intersections. It was found that, in undersaturated 
cases, the shape of the delay distribution changes very little over time, whereas for saturated and oversaturated cases the delay 
distribution is time-dependent and becomes flatter with an increasing number of cycles. The analysis of arrival distributions, e.g., 
Poisson and binomial, produces the conclusion that the variability of arrivals has a significant effect on delay estimates in both 
undersaturated and oversaturated conditions. A larger variance of arrival flow results in a larger variance of delay distribution. All 
of these analyses can help road authorities to gain insights into arterial travel time variability. 
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1  Introduction 
 

Travel time-based performance measures are 
probably the most familiar and straightforward meas-
ures used by transportation agencies. In addition to 
the commonly used average travel time, the impor-
tance of travel time variability has been increasingly 
recognized such as in the Texas Transportation In-
stitute and Cambridge Systematics (2006). Variability 
can result from the differences in the mix of vehicle 
types on the network for the same flow rates, differ-

ences in driver reactions under driving conditions (Li 
and Shi, 2006; Jin et al., 2011), differences in delays 
experiences by different vehicles at intersections, and 
such random incidents as vehicle breakdowns and 
signal failures, etc. On urban arterials, delays incurred 
at signalized intersections account for a large part of 
travel time (Zheng and van Zuylen, 2010). The in-
terpretation of delay evolvement or delay variability 
at intersections will help give a more comprehensive 
insight into arterial travel time variability, and pro-
vide more possibilities for travel time estimation. 

As illustrated in Fig. 1, after departing from the 
upstream stop line, vehicles run along the link at free 
travel speeds before arriving at the end of the down-
stream queue and becoming influenced by the down-
stream signal control. Basically, an intersection delay 
is composed of two main elements: a uniform delay 
due to the signal control and an overflow delay due to 
high traffic demand. The stochastic arrival and  
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departure process under a signal control contributes to 
the stochastic nature of delay estimation, especially to 
that part of the overflow delay that has a large vari-
ability with increasing traffic volume. As a result, a 
range of delay values can be observed, even for 
known traffic conditions and signal controls. In this 
context, delay variability analysis is preferable to 
average delay estimates in practice for intersection 
performance evaluation. 

 
 
 
 
 
 
 
 
 
However, it is challenging to carry out such 

analysis in the case of urban arterials, given the in-
terrupted nature of signals. The state-of-the-art 
methods mainly rely on empirical approaches, which 
have little physical meaning for explaining the fun-
damental mechanisms of travel times on urban arte-
rials, and thus have limited transferability to different 
traffic conditions at different sites. This study aims to 
develop an analytical model to investigate delay 
variability at isolated, fixed-time controlled intersec-
tions, considering various influencing factors such as 
the degree of saturation, the evaluation period and the 
arrival distribution. 

 
 

2  Related works 
 
To date, research on urban arterial travel time 

estimation has been quite limited because the inter-
rupted nature of traffic flow on urban arterials makes 
such estimations more challenging than on freeways. 
However, such difficulties have led to an active in-
terest in this topic, especially in recent years. In order 
to provide a foundation for this research, a review of 
literature focused on the stochastic delay model, delay 
variance models, and delay distribution models. 

1. Stochastic delay model 
Newell (1965) explains that the expected delay 

per vehicle under a uniform and stochastic arrival 
pattern in nearly saturated (but not saturated) condi-

tions consists of three parts: the deterministic delay, 
the stochastic delay under saturated conditions, and 
the delay to vehicles if they cannot pass through the 
intersection in one cycle, which is also stochastic. The 
deterministic delay has been discussed in classic 
works by Webster (1958). The second type of delay is 
much smaller than the other delays. The third com-
ponent is the delay caused by stochastic overflow. 

2. Delay variance models 
Fu and Hellinga (2000) developed a delay vari-

ability model to quantify the variation in delays in 
highly undersaturated and highly oversaturated con-
ditions. Gu and Lan (2009) questioned whether the 
single empirical curve in Fu and Hellinga (2000)’s 
model fits the variability well during traffic condi-
tions between highly undersaturated and highly 
oversaturated, and therefore developed an alternative 
model based on statistical distributions of traffic ar-
rivals at different degrees of saturation to predict 
delay variability. The model contains two compo-
nents, the expected conditional variance of the indi-
vidual delay and the variance of the mean delay. For 
practical applications, the expression is further sim-
plified using the Taylor expansion. Finally, a Monte 
Carlo simulation is conducted to verify the proposed 
variability model. It is indicated that Fu and Hellinga 
(2000)’s model seems only to contain the expectation 
of the conditional variance and tends to underestimate 
the overall delay variability over mid to high degrees 
of saturation. 

3. Delay distribution models 
Another way to model delay variability is to de-

rive its probability distribution. Due to stochastic 
arrival and departure processes, the operated delay at 
an intersection could be significantly different from 
that expected. In this case, a range of delay values 
with a particular probability distribution will seem 
more appropriate in practice. However, limited re-
search can be found on this topic. Olszewski (1994) 
developed an average delay (per cycle) probability 
distribution model based on a sequential calculation 
of the queue length probability. He explicitly inves-
tigated the delay distribution under the influence of 
arrival distributions, the degree of saturation, and 
various control parameters. Zheng (2011) proposed 
an analytical method for the estimation of the urban 
link delay distribution. The results indicate a correla-
tion between arrival time and link travel time under 

Fig. 1  Phenomenon of stochastic delays at signalized in-
tersections 
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different degrees of congestion. The models also 
demonstrate the evolution of the delay distributions. 
Both the average and the variance of the delay in-
crease cycle by cycle. However, the simplification of 
the signal control, to have the same cycle time and 
green splits at neighboring intersections, limits its 
application to real-life situations. Besides, the over-
flow queues at continuous intersections along arte-
rials have not been fully investigated. How to effi-
ciently utilize delay distribution methods for arterial 
performance evaluation in decision-making processes 
thus remains a critical issue. 

Considering the above, the stochastic nature of 
arterial traffic flow under signal controls has not been 
fully interpreted by deterministic delay models. A 
stochastic modeling approach is urgently needed to 
reflect the delay uncertainty and delay distribution for 
arterial travel time estimation. Accordingly, an ana-
lytical model is proposed in this study to investigate 
delay variability at isolated, fixed-time controlled 
intersections. The interpretation of delay evolvement 
at intersections will give a comprehensive insight into 
arterial travel time variability and provide further 
possibilities for travel time estimation. 
 
 

3  Delay variability modeling for isolated 
signalized intersections 

3.1  Delay components 

To date, various analytical delay models have 
been developed to estimate the average delay under 
certain assumptions, e.g., a Poisson process and a 
constant arrival rate (Akcelik and Rouphail, 1994). 
Point estimates of the average delays are provided 
over the period of analysis (typically 15 min, 30 min or 
1 h). 

Take the delay estimation model in the HCM 
(2010) for example. Three terms are involved in total: 
the uniform, random and initial queue delays. The 
uniform delay is related to the average waiting time of 
a vehicle approaching the intersection when the signal 
is red and no queue is present at the intersection. The 
random and initial queue delays are related to a range 
of volume-to-capacity ratios around unity. In some 
cycles, when traffic demand exceeds the approach 
capacity available for departures, a queue of vehicles 
will remain at the end of the green time in the current 
cycle, or the beginning of the green time in the next 

cycle. This phenomenon occurs either due to random 
fluctuations in the arrival flow rate (Fig. 2a), or during 
prolonged periods of oversaturation (Fig. 2b). 

Abdy and Hellinga (2008) proved that the ran-
domness of vehicle arrivals results in a delay function 
that tends to be a uniform delay model at low v/c 
ratios and a deterministic oversaturation delay model 
at high v/c ratios. For v/c ratios in the range of 0.9 to 
1.1, a non-linear relationship exists between the delay 
and the v/c ratio. The stochastic nature of traffic ar-
rivals results in significantly higher delays than that 
estimated by standard deterministic queuing models. 
This causes the delay associated with random arrivals 
to be higher than the delay associated with uniform 
arrivals. Therefore, both uniform delay and overflow 
delay are focused on in this study when estimating the 
average delay per cycle.  

3.2  Definition of average delay per cycle 

If no queue exists at the beginning (defined as 
the start of red) or end of the cycle, then the average 
delay can be calculated by the classical uniform delay 
model (Webster, 1958). Under overflow conditions, 
the precise definition of the average delay per vehicle 
per cycle becomes important. Conventionally, it is 
defined as the total delay incurred during period T 
(e.g., one cycle, 15 min) by all the vehicles arriving 
during cycle i, as shown in Fig. 3a, D1, divided by the 
number of arrivals in cycle i. However, such an “av-
erage” does not reflect the true delay experienced by 
vehicles arriving during cycle i as the delay caused by 
the initial queue, D2, is mistakenly included. 

The real delay for vehicles arriving during cycle i 
(in the undersaturation case) should be represented by 
the area D1−D2, as shown by the orange area (in the 
web version) in Fig. 3b. 

To compute the overflow delay experienced by 
each vehicle and also the average delay for the cycle, 
one needs to compute the time of this delay, from the 
arrival of the vehicle at the intersection until the 
moment it leaves the intersection, which can be  
several cycles later. 

An overflow queue can exist at the beginning of 
the cycle. In that case, part of the delay during cycle i 
is incurred by vehicles that arrived during cycle i−1 
(or earlier). If not all vehicles are able to depart during 
cycle i, some will incur an extra delay waiting for the 
green phase of cycle i+1 (or subsequent cycles, as 
shown in Fig. 4). 
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The general form of the overflow queue delay 

experienced by vehicles arriving during cycle i is 
represented by the areas as shown in Fig. 4: 

 

1 2 3 ,D D D D                               (1) 

 
where D1 represents the total delay accumulated 
within cycle i by all vehicles arriving during cycle i 
and the initial queue ni at the beginning of cycle i; D2 
is the delay experienced only by vehicles in the initial 
queue ni at the beginning of cycle i; D3 is the delay 
experienced by vehicles arriving during cycle i that is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

caused by the presence of the initial queue ni. 
The following section will present a detailed 

derivation of the average delay across the cycle. 

3.3  Delay formulation with a deterministic initial 
queue 

There follows a systematic computation of the 
average delay in one cycle based on the geometrical 
relationships introduced above. q represents the arri-
val rate (veh/s), tc stands for the cycle length, and s for 
the saturation flow rate (veh/s). 

1. Area D1 

Fig. 2  Overflow delay illustration by cumulative arrival/departure curves 
(a) Initial queue delay; (b) Random overflow delay 

Note: ni is the initial queue at the beginning of cycle i, q is the travel arrival, and s is the saturation flow rate

(a) (b)

Fig. 3  Definition of average delay incurred per cycle 
(a) Total delay in the cycle; (b) Delay for vehicles arriving during the cycle 

(a) (b)

Fig. 4  Overflow queue at the beginning of the cycle (a) and overflow queue at both beginning and end of the cycle (b)

(a) (b)
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If ni+qtc<sg (undersaturation, Fig. 4a), 
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If ni+qtc≥sg (oversaturation, Fig. 4b), 
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To sum up, D1 can be calculated as follows: 
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2. Area D2 
Note that it may take more than one cycle for the 

overflow queue ni to depart. Given saturation flow 
rate s, the overflow queue will decrease cycle by cycle 
 

 
 
 
 
 
 
 
 
 
 

according to the sequence ni, ni−sg, ni−2sg, …, 
ni−ksg, where 

 

,in
k

sg

 
  
 

                                 (10) 

 
where the floor operator   is used to indicate the 
integer value of the expression inside the brackets. 

The area D2 in Fig. 5a can be further divided into 
delay D2r, which is incurred during the red periods, 
and D2g, which is the delay incurred during the green 
periods. Thus, 
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D2g can be calculated as 
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D2r is the sum of several rectangular areas over 

the red periods. So D2 can be written as 
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where ni is the overflow queue at the beginning of 
cycle i, and k is the integer value of the ratio of ni to sg. 

3. Area D3 
Eq. (13) can also be used to calculate area D3 by 

replacing ni with ni+1, as illustrated in Fig. 5b: 
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Fig. 5  Relationship between areas D2 (a) and D3 (b) 
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Now, the average delay di for vehicles arriving 
during cycle i can be calculated by 

 

1 2 3 1 1
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Taking the above equations together, in each 

cycle, the distribution of the delay only depends on 
the distribution of the overflow queues at the begin-
ning of cycle i and the distribution of the arrivals 
during cycle i. Since these two characteristics have 
been assumed to be independent of each other, the 
probability of incurring a particular delay is computed 
by a simple multiplication of these two probabilities. 

3.4  Delay formulation with a stochastic initial 
queue 

The delay probability distribution function de-
rived above is based on a deterministic initial queue at 
the start of the green phase. If the initial queue is 
stochastic with a certain probability distribution, the 
expected probability distribution of the delay can be 
described as a weighted sum of probability functions 
(Zheng, 2011): 
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where P(ni) is the probability distribution of the initial 
queue. 

It can be derived using the Markov chain process 
by assuming a certain arrival distribution or departure 
distribution (Olszewski, 1994; Viti, 2006; van Zuylen 
and Viti, 2007). A detailed introduction to Markov 
Chain processes will be presented below. 

The delay formulas above indicate that the delay 
distribution in each cycle only depends on the dis-
tribution of the queues at the beginning and end of the 
cycle and the distribution of arrivals during the cycle. 
Such a process can be illustrated using the analogy of 
Markov chains on a cycle-by-cycle basis. As shown 
in previous studies (Brilon and Wu, 1990; Olszewski, 
1990a; 1990b; Viti, 2006), the Markov chain model 
enables one to consider the effects of stochastic arri-
val and service processes in the context of queues and 
delays. 

A Markov chain is a random process whose state 
changes over time. A Markov chain is entirely de-

fined by the current state and the transition prob-
abilities. The transition probabilities are associated 
with the manner of state progression as the process 
evolves. A process with the Markov property satisfies 
the following: the conditional probability of the 
process being in a particular state at the next time 
point, given the current state, depends only on the 
current state and not on previous states of the system. 
Mathematically, this can be expressed as 

 

   1 1 1 1, ,..., .t t t t tP s s s s s P s s s                (18) 

 

The Markov property captures the probabilistic 
nature of travel time. Traffic progresses like a Markov 
chain at intersections along urban arterials. The pro-
cess by which traffic arrives and departs at signalized 
intersections has a stochastic nature; in particular, the 
initial queue length is the result of such a stochastic 
process. Fig. 6 illustrates both the input demand from 
upstream intersections and the service mechanism, 
i.e., the number of vehicles that pass through the in-
tersection within one cycle.  

 
 
 
 
 
 
 
The analytical representation of the system is 

given in Eq. (15). Unlike in the deterministic case, 
both the arrival and departure components of this 
formula can be stochastic values given by probability 
distributions. Therefore, the initial queue length at the 
beginning of each cycle also follows a particular  
distribution. 

Note that the signalized intersection system is 
governed by a cyclic mechanism (Viti, 2007). This 
allows one to use discrete time steps, equal to the 
cycle length, and to calculate the initial queue length 
distribution at the beginning of every green period.  
Regardless of whether one is studying fixed-time 
controls with invariant cycle length or time- 
dependent controls with variable signal parameters, a 
state ni+1 is only dependent on the previous state ni 
and the number of arrivals and departures during the 
time interval, e.g., the cycle length. This method is 
also referred to as renewal theory (Markov, 1971). 

Service 
mechanism s

Input demand q

Initial queue 
per cycle

Fig. 6  Illustration of Markov chain process at signalized 
intersections 
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3.5  Basic assumptions 

Considering the analogous properties of the 
Markov chain and the queuing process at signalized 
intersections, the dynamics of the initial queue length 
and its impact on the delay can be analyzed based on 
the probability distributions of the input demand and 
the service rate per cycle. 

Regarding input demand, Dunne (1967) derived 
expressions of delays at fixed-time signals and traffic- 
actuated controls by assuming a binomial arrival 
process. In addition, the arrivals at an isolated inter-
section are commonly assumed to follow a Poisson 
process. For example, van Zuylen (1985) first de-
scribed a Markov model for queues at isolated inter-
sections assuming Poisson arrivals and normally dis-
tributed saturation flow rates. Later, Olszewski 
(1990a; 1990b) adopted the Poisson arrival process to 
model queue length evolvement over time at isolated 
intersections. 

In real life the arrivals are usually different on a 
cycle-by-cycle basis, as shown in Fig. 7. A common 
way of dealing with this is to assume a stationary 
condition with a certain arrival distribution through-
out the evaluation period, in which the average arrival 
rate does not change significantly. In Fig. 7, an av-
erage arrival rate of q has been assumed for all cycles 
within the evaluation period. In the case of a Poisson 
arrival distribution, this average value will define its 
shape and probability distribution, and determine the 
expected initial queue length in each cycle. Of course 
the Markov chain can be modeled using any distri-
bution function. In practice, the distribution function 
can be determined by collecting a sufficient number 
of traffic counts under the same prevailing conditions 
and finding the most appropriate function to fit these 
observations. 

The service rate means the maximum number of 
vehicles that can be dealt with by the intersection 
 

 
 
 
 
 
 
 
 
 

within one cycle. It is also regarded as the saturation 
flow rate, as shown in Chen et al. (2011). Previous 
studies have usually assumed the saturation flow rate 
to be a constant value (HCM, 2000; 2010) or to have a 
binomial (Olszewski, 1990a; 1990b) or normal (van 
Zuylen, 1985) distribution. In this study, saturation 
flow rate of the through lane is considered to be a 
constant value, independent of both queue length and 
arrival flow rate. 

Besides the arrivals and departures in each cycle, 
the computation of queue length evolvement requires 
the specification of an initial queue length at the be-
ginning of the evaluation period. This value can be 
obtained by comparing the traffic conditions to the 
previous period, as indicated in Eq. (15), or simply by 
observing the real queue length in the current cycle. 
Within the evaluation period, every cycle starts with  
a certain initial queue given the assumed arrival  
distributions.  

The following is a brief summary of the as-
sumptions that have been made: 

1. The number of vehicle arrivals per cycle is a 
random variable with a known probability distribu-
tion. In the case of an isolated intersection, the Pois-
son distribution is employed. 

2. Vehicle arrivals are uniformly distributed 
within each cycle. 

3. The saturation flow rate of the through lane 
and the signal control parameters, i.e., green time and 
cycle length, are assumed to be constant. 

4. The average delay across a cycle per arriving 
vehicle during a certain evaluation period is used as a 
measure of intersection performance. Variations in 
the delay incurred by individual vehicles arriving in 
the same cycle are not considered. 
 
 

4  Numerical case study of delay variability 
analysis 

 

A numerical case study will be presented. 
Various factors are taken into account to investigate 
their effects on delay variability at isolated intersec-
tions. 

4.1  Evolvement of delay probabilities for different 
degrees of saturation 

Given the basic scenario (green time g=24 s, cy-
cle length tc=60 s, saturation flow rate s=1800 veh/h 

Fig. 7  Illustration of arrival process at isolated intersec-
tions 
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and a Poisson arrival distribution), an evaluation pe-
riod of 30 min is set, with zero initial queue at the very 
beginning of the cycle. Typical degrees of saturation 
of 0.9, 1, and 1.1 are chosen to analyze the under-
saturation, saturation and oversaturation cases,  
respectively.  

Fig. 8a illustrates the evolution of the average 
delay within one cycle for the undersaturation case 
(x=0.9). It can be identified that the shape of the delay 
distribution changes very little after the first five cy-
cles. Fig. 8b helps further show that the distribution of 
the average delay gradually approaches an equilib-
rium, as reflected by the continuous curves for the 
10th to the 30th probability densities. 

In the full saturation case (x=1), as shown in  
Fig. 9, the shape of the delay distribution is time- 
dependent and becomes flatter with an increasing 
number of cycles. It is easy to conclude that later 
arrivals in a cycle are prone to being influenced by  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

overflow queues and will thus incur longer delays, 
corresponding to uncertain traffic conditions.  

In the oversaturation case (x=1.1), it has become  
deterministic that capacity cannot meet traffic de-
mand. The variation in the delay distribution, or the 
probability of the overflow queue influencing sub-
sequent cycles, increases rapidly over time (Fig. 10a). 
Compared to the full saturation case (x=1), the shape 
of the delay distribution shifts much more quickly to 
the right, with a high standard deviation. In addition, 
the delay distributions are closely overlapping 
(Fig. 10b), for which a group of level of service 
(LOS) can be characterized based on the average 
delay estimates.  

The results confirmed the findings of Viti (2006) 
and van Zuylen and Viti (2007). Meanwhile, they 
help strengthen the point that single delay estimation 
cannot give a full insight into the traffic state at an 
intersection.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  3D view (a) and 2D view (b) of delay variability for x=1 
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Fig. 8  3D view (a) and 2D view (b) of delay variability for x=0.9 
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4.2  Evolvement of delay probabilities for different 
degrees of saturation 

The analysis in Section 4.1 shows how the delay 
variability changes with the degree of saturation and 
with an increasing number of cycles. In practice, the 
values of interest are delay variability-related meas-
ures within the evaluation period, e.g., average delay, 
standard deviation, and confidence intervals. 

Therefore, Olszewski (1994) proposed averag-
ing all of the cycle-by-cycle delay probabilities within 
the evaluation period. 

 

1

1
( ) ( ) ( ),

K

k k ij
k i j

F d P d d q k
K 

                  (20) 

 

where K is the number of cycles within the evaluation 
period and qij(k) represents the probability of realiza-
tion of the state (Ak=i, nk=j) in cycle k. Ak=i is the 
number of arrivals in the cycle following a certain 
distribution, e.g., Poisson, and nk=j is the initial queue 

in that cycle also having a certain probability de-
pendent on traffic arrival and departure in the previ-
ous cycle. 

Eq. (20) indicates that the delay dk can be ob-
served to have a certain distribution in a randomly 
selected cycle during the evaluation period. By as-
suming that the cycle-based traffic process is being 
repeated with the same flow rate and signal control 
throughout the evaluation period, the ‘averaged’ 
probability distribution represents the uncertainty for 
drivers who may arrive at the intersection at any time 
during the evaluation period. 

According to HCM (2010), the time interval 
considered for performance evaluation is typically in 
the range of 15 min to 1 h, with longer durations 
within this range sometimes used for planning 
analyses. In general, caution should be taken when 
interpreting the results from an analysis period of 1 h 
or more because the adverse impact of short peaks in 
traffic demand may not be detected. Then, two com-
monly recommended time intervals for delay evalua-
tion, 15 min and 30 min, are utilized in an average 
delay probability analysis.  

Figs. 11a and 11b show the averaged delay dis-
tributions for T=15 min and 30 min, respectively. It is 
easy to identify that the shapes of the delay distribu-
tions for x=0.9 in both periods barely change. On the 
other hand, the delay distributions for x=1 and x=1.1 
in the evaluation period of 30 min shift to the right, 
with higher values than for the 15-min period. Of the 
two saturation conditions, the case of x=1.1 appar-
ently has the largest shifting distance and spread, with 
a wider range of delay. Similar to the tendency of the 
cycle-by-cycle delay distribution in the previous sec-
tion, the average delay variability within a certain 
period is not sensitive to the time span in undersatu-
rated conditions but is sensitive and time-dependent 
in saturated and oversaturated conditions. 

For a more detailed comparison, the values of the 
mean delay, its standard deviation and the 90% con-
fidence interval are calculated for degrees of satura-
tion ranging from 0.7 and 1.2, for T=15 min and 
30 min. The results are shown in Table 1. It can be 
seen that the mean values and standard deviations 
become larger and the confidence intervals or ranges 
of the delay estimates become wider with an increas-
ing degree of saturation. However, the coefficient of 
variation is not monotonically increasing. After 
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Fig. 10  3D view (a) and 2D view (b) of delay variability 
for x=1.1 
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passing the full saturation condition of x=1, it starts to 
decrease, which implies the relatively deterministic 
nature of the delay in oversaturated conditions. 

With regard to the difference between T=15 min 
and 30 min, as already discussed, the delay distribution 
is more sensitive to the time span in the saturation and 
oversaturation cases compared to the undersaturation 
case. All the evaluation indices for the two evaluation 
periods are quite close to each other when the degree of 
saturation is less than unity. However, when the degree 
of saturation passes unity, a significant discrepancy 
occurs. For instance, the mean delay for x=1 and 
T=15 min is 44.56 s, compared to 59 s when T=30 min. 
Moreover, the difference becomes even more extreme 
when x=1.1 and 1.2. All these findings help to empha-
size the importance of setting an appropriate evaluation 
period for delay variability analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Comparison with classic delay models 
 

In order to evaluate the consistency of the av-
erage delay estimates produced by the proposed 
model compared to various classic models, e.g., the 
HCM (2000), ARRB (Akcelik, 1981) and Webster 
(1958), delay calculations are performed over the 
entire range of degrees of saturation under the fol-
lowing scenario: green time g=20 s, cycle length tc= 
60 s, saturation flow rate s=1800 veh/h, and a Poisson 
arrival distribution. The evaluation period is set as 
30 min. Fig. 12 shows the results of the comparison 
and detailed estimates are presented in Table 2. For a 
better understanding of the impact of delay estimates, 
the level of service (LOS) criteria, based on control 
delay per vehicle (HCM, 2000; 2010), are also illus-
trated in Fig. 12. 
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Fig. 11  Averaged delay distribution for T=15 min (a) and T=30 min (b) 
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Table 1  Comparison of delay variability estimation for T=15 min and 30 min 

Average delay per cycle estimates 

90% confidence interval 
Evaluation  

period 
Degree of 
 saturation Mean±SD (s) Coefficient of variation

Lower 5% (s) Upper 5% (s)

0.7 16.29±4.64 0.28 12.46 25.14 

0.8 19.47±8.56 0.44 12.96 36.80 

0.9 27.06±16.74 0.62 13.88 61.71 

1.0 44.56±31.11 0.70 14.73 108.00 

1.1 74.66±49.89 0.67 17.05 171.64 

T=15 min 

1.2 113.26±70.85 0.63 21.77 243.53 

0.7 16.32±4.70 0.29 12.46 25.14 

0.8 19.68±8.91 0.45 12.96 37.71 

0.9 29.03±19.33 0.67 14.09 69.46 

1.0 59.00±44.35 0.75 15.43 148.20 

1.1 122.06±81.98 0.67 18.38 278.86 

T=30 min 

1.2 198.39±121.25 0.61 29.71 472.80 
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First of all, it can be noted that there is a general 
agreement between the proposed model and the other 
three analytical models for lower degrees of satura-
tion, e.g., x<0.5. This indicates that the randomness of 
vehicle arrivals can be neglected for highly under-
saturated conditions, and the analytical models, 
whether deterministic or stochastic, can provide sat-
isfactory results. However, discrepancies start to oc-
cur with increasing degrees of saturation. For exam-
ple, at a degree of saturation of 0.7, the HCM gives 
delay estimates of over 20 s, corresponding to LOS C, 
whereas the estimates of the other three models  
correspond to LOS B. This reveals that the estimation 
of stochastic vehicle delay plays an importance role in 
accurately determining operational LOS at signalized 
intersections. 

When the degree of saturation gets closer to 
unity, the delays given by the Webster (1958) model 
tend to approach infinity, which is a well-known 
characteristic of that model. Besides, a larger differ-
ence is found between the HCM (2000) model and the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

proposed model. This is due to the ‘algebraic ma-
nipulation’ in the coordinate transformation technique 
applied to realize the transition between undersatu-
rated to oversaturated conditions (Dion et al., 2004). 
For the oversaturated cases, the estimates produced 
by the HCM (2000), ARRB (Akcelik, 1981), and the 
proposed model are in general agreement. Among 
them, ARRB (Akcelik, 1981) shows the best consis-
tency, although a slight difference exists, as shown in 
Table 2. In general, the estimates produced by the 
classic delay models increase monotonically with the 
degree of saturation, and the estimates produced by 
the proposed model are consistent with these 
time-dependent delay models. 

4.4  Delay variability under different arrival  
distributions 

In the analysis above, the arrival distribution is 
assumed to be a Poisson process. This may describe 
very well the traffic arrivals at isolated intersections 
with light traffic volumes. However, when traffic 
demand increases, vehicles start to form clusters or 
platoons with more uniform headway and less vari-
ance. In this case, the Poisson arrival distribution may 
not be appropriate. Other arrival distributions, e.g., 
the truncated Poisson, or the binomial (Olszewski, 
1994; Viti, 2006) would probably be more applicable. 
Here, as an example, the binomial arrival distribution 
is utilized to assess how different arrival distributions 
influence estimated delay variability under different 
traffic conditions. 

Compared to the Poisson distribution with equal 
mean and variance, the ratio of variance to mean 
(hereafter referred to as the I ratio) is less than 1 for 
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Fig. 12  Comparison of average delay estimates

Table 2  Average delay estimates produced by classic models 

Mean average delay per cycle estimates (s) Degree of  
saturation 

Uniform delay (s) 
Webster (1958) HCM (2000) ARRB (Akcelik, 1981) Proposed 

0.1 11.25 11.52 11.52 11.25 11.01 
0.2 11.74 12.33 12.36 11.73 11.53 
0.3 12.27 13.21 13.34 12.27 12.05 
0.4 12.86 14.17 14.52 12.86 12.88 
0.5 13.50 15.26 15.99 13.50 13.69 
0.6 14.21 16.61 17.92 14.21 14.70 
0.7 15.00 18.57 20.71 15.25 16.32 
0.8 15.88 22.35 25.38 19.92 19.68 
0.9 16.88 34.14 35.51 30.55 29.03 
1.0 18.00 – 65.43 63.74 59.00 
1.1 18.00 – 130.08 133.51 122.06 
1.2 18.00 – 211.92 218.21 198.39 
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the binomial distribution. Of course, in practice, the I 
ratio needs to be determined based on real observa-
tions. Here, this ratio is set as 0.4, 0.6 and 0.8, for 
illustration purposes. The results are compared with 
those for the Poisson process, for both undersaturated 
and oversaturated conditions (Fig. 13). 

Under both conditions, the delay estimates pro-
duced by binomial arrival distributions with larger I 
ratios tend to have a wider distribution. Apparently, a 
larger range of delays are covered by the estimation in 
oversaturated conditions. This is reasonable because, 
in the case of a Poisson arrival process with I=1, the 
arrival flow is more uncertain, leading to a larger 
variance in the delays experienced by vehicles at the 
intersection. On the other hand, a binomial arrival 
distribution with a lower I ratio represents less vari-
ance in the arrival flow, so that vehicles travel in 
clusters and utilize the green time more efficiently. 
Correspondingly, a narrower distribution of delays 
can be expected in this case. 

This indicates that the variability of arrivals has a 
significant effect on the delay estimates. A larger 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

variance in the arrival flow will result in a larger 
variance in the delay distribution. In practice, more 
analyses are needed on the types of arrival distribu-
tions corresponding to different traffic conditions. In 
this regard, along urban arterials, the signal control at 
an upstream intersection strongly impacts the arrival 
flow at a downstream intersection. The relationships 
between signal coordination and arrival distribution, 
and further the delay estimation, require additional 
attention in future studies. 

 
 

5  Conclusions and future work 
 

Travel time variability on urban arterials is 
largely dependent on the delay variability vehicles 
experience at signalized intersections. The interpre-
tation of delay evolvement at intersections can give 
comprehensive insights into arterial travel time vari-
ability and provide further possibilities for travel time 
estimation. Therefore, an analytical model was pro-
posed in this paper to investigate average cycle delay 
variability at isolated, fixed-time controlled intersec-
tions whereas in most research only point estimates of 
delay were provided. 

The delay formulas were firstly derived using 
cumulative curves, assuming a deterministic initial 
queue; later on, the stochastic nature of the overflow 
queue was investigated using the analogy of a Markov 
chain process. Then, a numerical case study of delay 
variability analysis was conducted, taking into ac-
count various factors. The main findings are summa-
rized below: 

1. It has been confirmed that different degrees of 
saturation lead to different shapes of delay distribu-
tion. In undersaturated conditions, the shape of the 
delay distribution changes very little over time. In 
saturated and oversaturated conditions, however, the 
delay distributions are time-dependent and become 
flatter with an increasing number of cycles. 

2. Delay variability was averaged over the cycles 
within the evaluation period to provide variability- 
related measures of interest, e.g., average delay, 
standard deviation, and confidence intervals. Two 
time spans, 15 min and 30 min, were investigated. It 
was found that the delay distribution is more sensitive 
to the time span in saturated and oversaturated than in 
undersaturated conditions. All of the evaluation in-
dices for the two evaluation periods are quite close 
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Fig. 13  Delay distributions under Poisson and binomial 
arrival distributions 
(a) Undersaturated conditions, x=0.9, T=15 min; (b) Over-
saturated conditions, x=1.1, T=15 min 
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when the degree of saturation is less than unity. 
However, a significant discrepancy occurs when the 
degree of saturation goes beyond unity. 

3. The average delay estimates produced by the 
proposed model were compared to those from various 
classic models (HCM (2000), ARRB (Akcelik, 1981) 
and Webster (1958)) over a wide range of degrees of 
saturation from 0.1 to 1.2. In general, it was found 
that the estimates produced by the proposed model are 
consistent with these time-dependent delay models. 

4. In order to assess how different arrival dis-
tributions influence delay variability in different traf-
fic conditions, the binomial arrival distribution was 
utilized for illustration purposes. It was concluded 
that the variability of arrivals has a significant effect 
on delay estimates, in both undersaturated and over-
saturated conditions. A larger variance of arrival flow 
results in a larger variance of delay distribution. 

In summary, the ability to capture the charac-
teristics of delay variability serves as a critical step in 
estimating and predicting urban travel times. For 
arterial performance evaluation, gaining knowledge 
of delay variability makes it possible to estimate the 
confidence limits around the mean delays and thus 
provide a more accurate and informative comparison 
of alternative control plans. However, the delay dis-
tribution model is only developed for isolated inter-
sections in this study. In practice, traffic flows on 
urban arterials are controlled by signal coordination 
plans across multiple intersections. Delay or travel 
time is thus influenced by non-uniform arrivals, 
which can be easily reflected in the cumulative curves 
by assuming two different arrival rates at green and 
red phases. The assumptions of the same green time 
and cycle length made in previous work (Viti, 2006; 
Zheng, 2011) for consecutive intersections along 
arterials can also be relaxed to different signal plans. 
Additionally, the focus on identifying queuing delay 
patterns based on field data also facilitates the esti-
mation of delay variability, as shown in (Ban et al., 
2009; 2011). This will form the basis of our future 
work. 
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