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Abstract:   The fracture processes of concrete were described by a cohesive crack model based on initial toughness criterion. The 
corresponding analytical method to predict the instability state was proposed. In this model, the initial toughness was adopted as 
the crack propagation criterion and the weight function method was used to calculate the stress intensity factor and the crack 
opening displacement caused by the cohesive stress. The unstable toughness can be easily obtained using the proposed method 
without measuring parameters at the critical state that was necessary in traditional methods. The proposed method was verified by 
existing experimental data of wedge splitting specimens with different grades of concrete and the sensitivity of the results on the 
tensile softening curve was discussed. The results demonstrate that the proposed method can well predict the peak load, the critical 
effective crack length, and the unstable toughness of concrete specimens. Moreover, the calculated unstable toughness is not 
sensitive to the tensile softening curve. 
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1  Introduction 

 
A large number of experimental studies on 

concrete fracture have shown that an obvious fracture 
process zone (FPZ) exists at the crack tip (Bazant and 
Planas, 1998). The traditional linear elastic fracture 
mechanics (LEFM), is no longer applicable to the 
analysis of the concrete fracture process (Jenq and 
Shah, 1985a) when the size of FPZ is comparable to 
the structure. To date, numerous nonlinear models for 

concrete fracture have been developed from different 
perspectives and based on various assumptions. The 
primary models and their characteristics are briefly 
summarized herein.  

The fictitious crack model (FCM) (Hillerborg et 
al., 1976) and crack band model (CBM) (Bazant and 
Oh, 1983) both considering the softening relation in 
the FPZ, were primarily solved numerically. The size 
effect law (SEL) developed by Bazant (1984) ana-
lyzes the size effect of the fracture by comparing 
nominal stress in the failure of structures with dif-
ferent sizes. The effective crack model (ECM) (Ka-
rihaloo and Nallathambi, 1990), known as the equiv-
alent LEFM, has an explicit analytical solution. The 
two-parameter fracture model (TPFM) proposed by 
Jenq and Shah (1985a) was based on the assumption 
that crack propagation starts when the stress intensity 
factor and crack tip opening displacement (CTOD) 
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reach their critical values. The critical stress intensity 

factor S
ICK  in both ECM and TPFM was calculated 

from the peak load Pmax and critical effective crack 
length ac using a formula developed in LEFM.  

Three different stages in the concrete fracture 
processes have been identified, namely, crack initia-
tion, stable crack propagation, and unstable crack 
propagation (Xu and Reinhardt, 1999a). To depict the 
three stages of crack propagation without compro-
mising simplicity, Xu and Reinhardt (1999a) devel-
oped the double-K model, which employed the initial 

toughness ini
ICK  and the unstable toughness n

IC
uK  as 

control parameters of the two important instantaneous 
states of crack initiation and instability, respectively. 
Macroscopic damage in concrete is believed to be 
initiated once the stress intensity factor at the crack tip 

reaches ini
ICK  (Zhang and Xu, 2011). Crack instability 

is the catastrophic point between the stable and un-
stable crack propagation stages and is significant in 
investigating the mechanisms of concrete fracture. 
The double-K model has been playing an important 

role in engineering practice. For instance, ini
ICK  and 

n
IC
uK  have been used in safety warning systems (DL/T 

5332-2005, 2006) and in evaluating the performance 
of concrete structures with cracks. 

The initial toughness ini
ICK  can be easily obtained 

using formulae of the initial cracking load and initial 
crack length based on LEFM (Xu and Reinhardt, 
1999a). Several measurement methods for the initial 
cracking load, such as tests using photo-elastic coat-
ing, laser speckle (Xu and Reinhardt, 1999a) and 
strain gauge (Zhang and Xu, 2011), and analytical 
methods have been formulated. Xu and Reinhardt 
(1999b; 1999c; 2000) proposed the double-K method 
and developed a simplified method later. Kumar and 
Barai (2009) developed a weight function method. 
The comparison of the above analytical methods can 
be found in (Zhang and Xu, 2011). Recently, Qing 
and Li (2013) proposed a theoretical method to obtain 

ini
ICK  based on experimental peak load. Alternatively, 

as an easy method, Reinhardt and Xu (1999) and 
Zhang et al. (2010) determined the initial cracking 
load by the transition point that separates the linear 
and nonlinear segments of the load P-CMOD (crack 
mouth opening displacement) curve.  

Nevertheless, predicting the unstable toughness 
n

IC
uK  is difficult without making any assumption. In 

the experimental aspect, n
IC
uK  can be calculated by the 

peak load Pmax and the critical effective crack length 
ac, which were mainly measured at the peak load state 
through the three point bending (TPB) specimens or 
wedge splitting (WS) specimens (DL/T 5332-2005, 
2006). However, the critical effective crack length ac 
was usually difficult to measure accurately. In 
traditional methods, ac was calculated by critical 
crack mouth opening displacement CMODc through 
empirical formulae (Xu and Reinhardt, 1999b; 1999c; 
Kumar and Barai, 2009; Zhang and Xu, 2011). Fur-
thermore, in the numerical aspect, a similar 
step-by-step procedure must be followed until the 
maximum load was reached (Wu et al. 2007; Dong et 
al., 2013). Therefore, it is of significance to establish 
a simple theoretical method for predicting the unsta-

ble toughness n
IC
uK . 

Based on the analysis of concrete fracture 
mechanisms, the current study attempts to develop an 
easy-to-use theoretical method for predicting the 

unstable toughness n
IC
u .K  In this method, the initial 

toughness ini
ICK  was adopted as the control parameter 

of crack propagation and a weight function method 
was used to calculate the stress intensity factor and 
the crack opening displacement caused by the cohe-
sive stress. Then the proposed method was verified 
using experimental data on wedge splitting specimens. 
The sensitivity of the results to the tensile softening 
curve was discussed. 

 
 

2  Model development 

2.1  Fracture processes of concrete 

As mentioned in the previous section, the frac-
ture processes in concrete structures include three 
different stages: crack initiation, stable crack propa-
gation, and unstable fracture. To identify the three 
different states, the cohesive crack model with crack 
tip singularity (Elices and Planas, 1991) was adopted 
in the present work. Fig. 1 shows the different char-
acteristics of the three stages, including the initial 
crack length a0, crack propagation length Δa, external  
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load P, stress strength factor KI, and fracture tough-
ness KIC. Take type I load for example. When concrete 
is subjected to monotonic loading, cracks will not 
propagate until the external load P reaches the crack 

initiation load Pini (P=Pini), and ini
I ICK K  (Fig. 1a). 

After crack initiation and as the external load P con-
tinuously increases, the crack starts to propagate, and 
a cohesive zone forms ahead of the initial crack, as 
shown in Fig. 1b. This period is commonly known as 
the stable crack propagation stage. Then the external 
load P reaches the peak (critical) value Pmax (Fig. 1c). 
After that, unstable crack propagation may occur and 
the external load P decreases.  

A typical P-a/D (a is the effective crack length, 
and D is the specimen height) curve is shown in Fig. 2 
(Reinhardt and Xu, 1999; Kumar and Barai, 2008; 
Qing and Li, 2013). When P reaches the initial 
cracking load Pini, crack begins to grow and it gradu-
ally and nonlinearly increases with a. When P reaches 
the peak load Pmax, a=ac. Then P gradually decreases 
with a. The derivation of P to a at P=Pmax can be 
assumed to be continuous (Qing and Li, 2013). The 
maximum theory can also be adopted to predict the 
crack instability. 

2.2  Criterion for concrete fracture 

As discussed above, a crack is initiated in con-
crete once the external load reaches the crack load Pini 
or the stress intensity factor increases to the initial 

toughness ini
IC .K  Thus, ini

ICK  can be regarded as the 

toughness of the structural material to crack growth 
attributable to external forces. In the present study, the 
following criterion for crack initiation and propaga-
tion was employed (Xu and Reinhardt, 1999a; Wu  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
et al., 2007; Dong et al., 2013): 

 
ini

I IC ,K K                                        (1) 

 
where KI is the stress intensity factor at the tip of the 
effective crack tip in a mode I fracture. 

Before crack initiation, LEFM can be applied, 
and KI can be calculated by 

 
                P ,K K                                     (2a) 

 
where KI

P is the stress intensity factor attributable to 
the external load in a mode I fracture. 

After the crack initiation, KI can be expressed by 
the superposition scheme: 

 
P C

I I I ,K K K                              (2b) 

 
where KI

C is the stress intensity factor attributable to 
cohesive stress.  

a0

KI= KIC

a0

KI= KIC

a0

KI= KIC

P=Pini Pini<P<Pmax P=Pmax

(a) (b) (c)

a  ca

   (CTOD)  c(CTOD )

Fig. 1  Three stages of the concrete fracture processes 
(a) Crack initiation; (b) Stable crack growth; (c) Unstable fracture 

Pini

Pmax

a/Da0/D ac/D

P

Fig. 2  A typical P-a/D curve of concrete fracture (Qing 
and Li, 2013) 
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2.3  Cohesive stress distribution 

It is assumed that the cohesive stress distribution 
on the FPZ can be expressed by Eq. (3) (Li et al., 
2012). The cohesive stress at the tip of the effective 
crack equals the tensile strength. The cohesive stress 
at the tip of the initial crack and the crack tip opening 
displacement CTOD satisfy the tensile softening 
curve. 

 

0
s t s

0

( ) ,( )

m
x a

b f
a a

  
 

     
              (3) 

 
where s is the stress on the initial crack tip, ft is the 
tensile strength, and m is the cohesion distribution 
index. 

According to Eq. (3), the distribution of cohesive 
stress changes with the index m. When m=1, the co-
hesive stress distribution is linear. Eq. (3) is similar to 
the cohesive force distribution adopted by Reinhardt 
(1985). The difference is that the cohesive stress at the 
initial crack tip is not zero in the present model. Based 
on the theoretical model, the corresponding analytical 
approach is developed in the following section.  

 

 
3  Analytical method for fracture 
 

Take the WS specimen for example, the con-
figuration of the WS specimen is shown in Fig. 3 
(DL/T 5332-2005, 2006). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
KI

P can be expressed by (Xu and Reinhardt, 
1999c): 

P
I ( ),

P
K k

B D
                                (4) 

 
where α=a/D, and k(α) is a geometric factor, which 
can be calculated by (DL/T 5332-2005, 2006): 
 

 
3/2

3.675 1 0.12( 0.45)
( ) .

(1 )
k





 




              (5) 

 
Eq. (5) is valid for 0.2≤α≤0.8 with 2% accuracy (Xu 
and Reinhardt, 1999c). 

To obtain the value of KI
C, a distribution of co-

hesive stress is assumed on the fictitious crack in an 
infinite strip (Jenq and Shah, 1985b). Previous studies 
have shown that the descending segment of the 
P-CMOD curve is affected by the cohesive stress 
distribution, while the peak load and critical crack 
mouth opening displacement are almost not affected 
(Li et al., 2012). Therefore, to simplify the analysis of 
the fracture processes, a linear cohesive stress as-
sumption (m=1) was adopted for the propagation state 
of concrete cracks in the current study. The cohesive 
stress distribution is shown in Fig. 4, where s(CTOD) 
is the function of CTOD. 

 
 
 
 
 
 
 
 
 
The weight function method proposed by Kumar 

and Barai (2009) was adopted in this study to calcu-
late KI

C: 
 

C
I

2
( ),

2π
K g a

a


                           
 (6) 

 
where g(a) can be expressed using the following 
fourth-order weight function: 

 

3/2 22
1 1 2

/ 31 2
( ) 2

3 2

M
g a A a s M s M s s

     
 

 

Fig. 3  Test set-up of WS specimen (DL/T 5332-2005, 2006)

F

a0

ft
 s (CTOD)

aΔ

Fig. 4  Linear distribution of cohesive stress
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2 3/2 2 5/21
2 2

3

3 0 0 ,

4 4

3 2 15

1 3
6

M
A a s s M s

M a a
s

a a

  

         








        (7) 

 
where A1=s(CTOD), A2=[ft−(CTOD)]/(a−a0), s= 
1−a0/a, M1, M2, and M3 can be expressed by α (Kumar 
and Barai, 2009).  

The CTOD and s(CTOD) values are required to 
calculate KI

C using Eqs. (6) and (7), where s(CTOD) 
can be expressed by (Reinhardt et al., 1986): 

 

 
3

1 2
s t

0 0

3
1 2

0

CTOD CTOD
CTOD 1 exp

CTOD
(1 )exp( ) ,

c c
f

w w

c c
w


          
    



 
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




 

(8) 
 

where c1, c2, and w0 are parameters.  
CTOD in Eq. (8) needs to be calculated by 

adding up two displacements caused by the external 
load P and cohesive stress. Using Paris’ displacement 
formula (Tada et al., 2000; Mai, 2002), CTOD can be 
expressed by 

 

0

0

0

2
CTOD ( , )d

2 2
( ) ( , )d ,

2π

a

a

a

a

P
k m a

E DB D

g m a
E

  

  


   
 






          (9) 

 
where E is the elasticity modules, ξ is the integration 
variable, m(x, a) can be expressed using the following 
fourth-order weight function (Kumar and Barai, 
2009): 
 

1/2

1

3/2

2 3

2
( , ) 1 1

2π( )

1 1 .

x
m x a M

aa x

x x
M M

a a

        
          

    

       (10) 

 
Thus, using Eqs. (7)–(9), g(a) can be derived, 

and KI
C can be obtained using Eq. (6). Then, substi-

tuting Eq. (4) for KI
P and Eq. (6) for KI

C into Eq. (2b) 
leads to: 
 

ini
IC ,( ) ( )P a a K                           (11) 

 
where 

2
( ) ( ),

2π ( )

B D
a g a

ak



  

1
( ) .

( )
a B D

k



    

 
Eq. (11) obviously shows that the external load P 

can be explicitly expressed as a function of the effec-
tive crack length a. The derivation of this equation 
with respect to a at the moment of the crack instability 
can be expressed by the following partial differential 
equation: 

 

c

0,
a a

P

a 




                             (12) 

 

and P

a




 is calculated by 
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P
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2

( )
( ) ( ) ( ) ( )

2 2
( ) ,

2π ( )

k
g a k a g a k a a

B D a
a

k a






    



 

2

( )
( ) .

( )

k
a B D

k





   

 

g'(a) can be expressed as 
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k'(α) can be expressed as 
 

3/2 1/2

3
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0.441(1 ) (5.810175 0.6615 )(1 )
.
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k 

  

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


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(15) 
 

If the initial toughness ini
ICK  is given, the critical 

effective crack length ac can be calculated using 
Eq. (12) by iterating method. Then, the critical crack 
tip opening displacement CTODc and the peak load 
Pmax can be obtained by substituting a=ac into Eq. (9) 
and Eq. (11), respectively. The unstable toughness 

n
IC
uK  can be calculated by substituting a=ac and P=  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pmax into Eq. (4). Hence, an analytical approach for 

calculating n
IC
uK  was developed. 

 
 
4  Results and discussion 

4.1  Verification of the analytical method  

In this section, the proposed method for concrete 
fracture was verified using the data from Xu et al. 
(2006)’s experiments on WS specimens with different 
maximum aggregate sizes. The parameters of the 
specimens are shown in Table 1. In the experiments, 
the crack initiation load Pini was measured by resis-

tance strain gauges and the initial toughness ini
ICK  was 

obtained by the LEFM formula.  
According to the experimental conditions, the 

parameters in Eq. (8) for the proposed method were 
taken as follows: c1=3, c2=6.93, and w0=160 μm 
(Reinhardt et al., 1986). 

The calculated and measured values of the peak 
load Pmax are compared in Tables 2–4. It can be seen 
from the comparison that the values of the peak load 
Pmax calculated by the proposed method are generally 
in good agreement with the experimental values for 
different maximum aggregate sizes of concrete 
specimens. It can be concluded that the method is 
effective for predicting the instability of concrete.  

Moreover, the values of unstable toughness n
IC
uK   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Parameters of the wedge splitting specimens 

Specimen  
No. 

Specimen size, 
2H×D×B (mm) 

Maximum aggre-
gate size (mm)

a0 

(mm)
E 

(GPa)
Compressive strength, 

fc (MPa) 
Tensile strength, 

ft (MPa) 

WS13 300×300×200 20 150 33.4 34.2 2.76 

WS14 600×600×200 20 300 33.4 34.2 2.76 

WS15 800×800×200 20 400 33.4 34.2 2.76 

WS16 1000×1000×200 20 500 33.4 34.2 2.76 

WS17 1200×1200×200 20 600 33.4 34.2 2.76 

WS32 300×300×200 40 150 29.1 34.3 3.04 

WS22 600×600×200 40 300 29.1 34.3 3.04 

WS34 800×800×200 40 400 29.1 34.3 3.04 

WS35 1000×1000×200 40 500 29.1 34.3 3.04 

WS23 600×600×250 80 300 29.1 34.3 3.04 

WS24 800×800×250 80 400 29.1 34.3 3.04 

WS25 1000×1000×250 80 500 29.1 34.3 3.04 

WS26 1200×1200×250 80 600 29.1 34.3 3.04 
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Table 2  Comparison of the predicted and measured results (maximum aggregate size: 20 mm) 

Specimen 
No. 

Specimen size,
2H×D×B (mm)

a0 

(mm) 
Pini 

(kN) 
Predicted

ac/D 
Predicted
Pmax (kN)

Experimental
Pmax (kN) 

Predicted 
n

IC
uK  (1) 

Experimental 
n

IC
uK  (2) 

(1)/(2)

WS13-1 300×300×200 150   7.181 0.620 11.668 12.173 1.637 1.690 0.969

WS13-2 300×300×200 150 10.916 0.567 14.156 12.801 1.642 1.958 0.838

WS13-4 300×300×200 150   7.909 0.607 12.095 11.492 1.614 1.759 0.918

Mean     8.669 0.598 12.639 12.155 1.631 1.802 0.908

WS14-1 600×600×200 300 19.308 0.569 25.387 25.550 2.098 2.224 0.943

WS14-2 600×600×200 300 18.484 0.583 24.787 22.667 2.148 2.462 0.872

WS14-4 600×600×200 300 18.000 0.583 24.437 23.408 2.117 2.004 1.057

Mean   18.597 0.578 24.870 23.875 2.121 2.230 0.957

WS15-1 800×800×200 400 23.788 0.597 32.848 30.758 2.596 2.191 1.185

WS15-2 800×800×200 400 24.546 0.584 33.387 31.136 2.511 2.135 1.176

WS15-3 800×800×200 400 17.403 0.639 28.776 29.351 2.667 2.102 1.269

Mean   21.912 0.607 31.670 30.415 2.591 2.143 1.210

WS16-1 1000×1000×200 500 32.495 0.570 42.677 42.137 2.741 2.974 0.922

WS16-2 1000×1000×200 500 30.478 0.584 41.205 39.000 2.777 2.851 0.974

WS16-3 1000×1000×200 500 24.235 0.612 36.929 31.494 2.753 2.250 1.224

Mean   29.069 0.589 40.270 37.544 2.757 2.692 1.040

WS17-1 1200×1200×200 600 33.368 0.584 46.734 46.326 2.878 3.231 0.891

WS17-2 1200×1200×200 600 36.699 0.584 49.142 55.183 3.026 3.028 0.999

WS17-3 1200×1200×200 600 40.045 0.570 51.689 50.355 3.033 3.112 0.975

Mean   36.704 0.579 49.188 50.621 2.979 3.124 0.955

Table 3  Comparison of the predicted and measured results (maximum aggregate size: 40 mm) 

Specimen 
No. 

Specimen size,
2H×D×B (mm)

a0 

(mm) 
Pini 

(kN) 
Predicted

ac/D 
Predicted
Pmax (kN)

Experimental
Pmax (kN)

Predicted
n

IC
uK  (1)

Experimental 
n

IC
uK  (2) 

(1)/(2)

WS32-1 300×300×200 150 8.234 0.593 12.237 11.221 1.556 1.524 1.021 

WS32-2 300×300×200 150 8.848 0.580 11.384   9.433 1.381 1.232 1.121 

WS32-3 300×300×200 150 8.431 0.593 12.366 10.727 1.572 1.371 1.147 

Mean   8.504 0.589 11.996 10.460 1.503 1.376 1.096 

WS33-2 600×600×200 300 18.973 0.569 25.017 24.511 2.068 1.957 1.057 

WS33-3 600×600×200 300 18.588 0.569 24.725 21.956 2.044 2.132 0.959 

WS33-4 600×600×200 300 16.091 0.583 22.912 21.242 1.985 2.006 0.990 

Mean   17.884 0.574 24.218 22.570 2.032 2.032 1.002 

WS34-1 800×800×200 400 22.306 0.584 30.683 27.349 2.308 2.016 1.145 

WS34-2 800×800×200 400 18.766 0.597 28.215 27.049 2.230 2.106 1.059 

WS34-4 800×800×200 400 26.711 0.570 34.006 32.000 2.439 2.713 0.899 

Mean   22.594 0.584 30.968 28.799 2.326 2.278 1.034 

WS35-2 1000×1000×200 500 21.337 0.598 33.364 29.866 2.363 2.071 1.141 

WS35-3 1000×1000×200 500 19.284 0.612 32.076 25.634 2.391 1.884 1.269 

WS35-4 1000×1000×200 500 21.837 0.598 33.698 32.700 2.386 2.336 1.021 

Mean   20.819 0.603 33.046 29.400 2.380 2.097 1.144 
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are also shown in Tables 2–4. The calculated values of 
n

IC
uK  by the proposed method generally agree well 

with those by experimental method. Some of the 
calculated results are slightly different from those 
obtained by the experimental method, for example, 
the ratio of the predicted result to experimental result 
of WS15 is 1.21. According to Eq. (4), the discrep-
ancy in the unstable toughness results from the critical 
relative effective crack length ac/D. The primary 
reason is that, as mentioned above, an empirical 
formula was adopted in the experimental method to 
calculate the critical effective length ac. The proposed 
method, differing from the experimental method, is 
capable of considering the effects of both external 
load and cohesive force when calculating ac.  

4.2  Effect of tensile softening curve  

To study the sensitivity of the method to the 
shape of the tensile softening curve, two groups of 
parameters characterizing different tensile softening 
curves were used to predict fracture using the pro-
posed theoretical method. 

The parameters of first group were c1=3, c2=6.93, 
and w0=160 μm, which were adopted in the last sec-
tion. For comparison, the second set of the softening 
curve parameters was taken as as c1=1.5, c2=6.3, and 
w0=90 μm. The tensile softening curves represented 
by these two sets of parameters are shown in Fig. 5.  

With these different parameters, the values of  

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

 

Pmax, ac/D, and n
IC
uK were calculated using the pro-

posed method, and the results are shown in Figs. 6–8. 
As can be seen from Figs. 6–8, the calculated Pmax, 

ac/D, and n
IC
uK  using the first group of parameters are 

slightly different from those of the other one. Gener-
ally, this disparity in the calculated results using these 
two sets of parameters is considered to be insignifi-
cant in view of the great difference between the two 
tensile softening curves. For example, the fracture 
energy GF (area under the tensile softening curve) 
corresponding to the first softening curve is about 
twice that for the second one. 

 
 
 
 
 
 
 
 
 

 

 
 
 
5  Conclusions 
 

In this study, the instability state of fracture in 
concrete was predicted by a theoretical model which 

Table 4  Comparison of the predicted and measured results (maximum aggregate size: 80 mm) 

Specimen 
No. 

Specimen size,
2H×D×B (mm)

a0 

(mm) 
Pini 

(kN) 
Predicted

ac/D 
Predicted
Pmax (kN)

Experimental
Pmax (kN) 

Predicted
n

IC
uK  (1)

Experimental 
n

IC
uK  (2) 

(1)/(2) 

WS23-2 600×600×250 300 16.525 0.638 27.138 23.407 2.312 2.465 0.938 

WS23-4 600×600×250 300 17.451 0.624 27.675 24.340 2.233 2.260 0.988 

Mean   16.988 0.631 27.407 23.874 2.273 2.363 0.963 

WS24-1 800×800×250 400 29.425 0.584 40.357 36.833 2.429 2.867 0.847 

WS24-3 800×800×250 400 31.575 0.584 41.924 35.859 2.523 2.385 1.058 

WS24-4 800×800×250 400 19.594 0.639 34.058 32.178 2.525 2.766 0.913 

Mean   26.865 0.602 38.780 34.957 2.492 2.673 0.939 

WS25-1 1000×1000×250 500 25.000 0.626 42.102 43.711 2.649 2.814 0.941 

WS25-2 1000×1000×250 500 34.093 0.584 48.006 45.163 2.588 3.043 0.850 

WS25-4 1000×1000×250 500 20.590 0.640 39.637 39.194 2.636 2.308 1.142 

Mean   26.561 0.617 43.248 42.689 2.624 2.722 0.978 

WS26-1 1200×1200×250 600 45.168 0.570 60.206 54.000 2.826 2.931 0.964 

WS26-2 1200×1200×250 600 37.663 0.598 54.773 47.340 2.836 3.326 0.853 

Mean   41.416 0.584 57.490 50.670 2.831 3.129 0.909 
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Fig. 5  Tensile softening curves 
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adopted the initial toughness ini
ICK  as the crack prop-

agation criterion, and used the weight function 
method to calculate the stress intensity factor and the 
crack opening displacement caused by the cohesive 
stress. The applicability of the proposed method was 
verified by experimental data obtained on WS spec-
imens, and the parameters at the peak load state, such 
as the peak load Pmax, critical effective crack length ac 

and unstable toughness n
IC
u ,K  were calculated using 

the proposed method. The good agreement between 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the calculated results and the experimental results 
demonstrates that the proposed method can accurately 

predict the unstable toughness n
IC
u .K  In addition, the 

sensitivity of the results to the tensile softening curve 
was discussed. The results showed that the proposed 
method for fracture is not sensitive to the tensile sof-
tening curve, which verifies the reasonability of the 
proposed method. Future studies can be conducted 
from many aspects, such as the investigation of 
measurement methods for the effective crack length 
ac. 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Average values of Pmax for specimens with different 
maximum aggregate sizes of 20 mm (a), 40 mm (b), and 
80 mm (c) 
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Fig. 7  Average values of ac/D for specimens with different 
maximum aggregate sizes of 20 mm (a), 40 mm (b), and 
80 mm (c) 
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中文概要： 
 
本文题目：基于起裂韧度准则的混凝土失稳韧度预测研究 

Predicting unstable toughness of concrete based on initial toughness criterion 
研究目的：研究混凝土失稳韧度的理论预测方法。 

创新要点：1.提出混凝土失稳韧度的理论预测方法；2.利用楔入劈拉试件计算不同级配混凝土的失稳韧

度；3.研究失稳韧度受拉伸软化曲线的影响。 

研究方法：1.基于起裂韧度扩展准则，采用理论分析手段研究混凝土的失稳韧度计算方法；2.利用楔入

劈拉试件（见图3）计算不同级配混凝土的失稳韧度。 

重要结论：1.基于起裂韧度准则可合理地预测峰值荷载状态及失稳韧度；2.混凝土失稳韧度受断裂能的

影响较小；3.拉伸软化曲线对混凝土失稳韧度的影响较小。 

关键词组：混凝土；起裂韧度；失稳韧度；楔入劈拉实验 


