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Abstract:    In this study, we conducted numerical simulations of fluid resonance in-between two floating structures based on 
potential theory assessing the effect of fluid viscosity by including the artificial damping force. The numerical results of two 
adjacent Barges systems and Barge & Wigley systems were compared with experimental data of those of the viscous fluid mod-
el based on Reynolds average Navier-Stokes equations (RANSE). It can be observed that the conventional potential flow model 
(without artificial damping force) significantly over-estimated the wave height and forces around the resonant frequencies. Re-
sults of the present method with an appropriate damping coefficient supported the available data, confirming the importance of 
the viscous damping effect on strong hydrodynamic interaction between the floating structures. Furthermore, influences of lat-
eral clearances, wave heading angles, and ships’ motions on the wave surface elevations were analyzed. Validation and applica-
tion of methods to estimate the fluid resonant frequencies and modes were also conducted. Generally speaking, Molin’s simpli-
fied theory can give an accurate estimation of resonant frequencies and serve as a practical tool to analyze the fluid resonant 
phenomena of gaps in-between a two Barge system and Wigley & Barge system in close proximity. 
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1  Introduction 
 

Hydrodynamic interaction effect becomes im-
portant for multiple floating structures arranged side 
by side with small separation, which are often en-
countered in marine and offshore practices, such as 
the very large floating structure (VLFS) involving 
many separated modules and floating production 
storage and floating facility (FPSO), and a large ves-
sel berthing in front of wharf. The actual geometry is 
such that 3D effects can be important, and near-
resonant standing waves can also exist along the 
length of the gap.  

This interesting phenomenon has, understanda-
bly, attracted great attention. The first numerical in-
vestigation of the 3D problem was probably that of 
Newman and Sclavounos (1988), and more recently 
the interactions between multiple closely spaced 
bodies have been further studied by other researchers 
(Kashiwagi et al., 2005; Kashiwagi, 2007; Koo and 
Kim, 2005; Pauw et al., 2007; Lewandowski, 2008; 
Sun et al., 2008; 2010; Molin et al., 2009; Chen, 
2011). They have all shown that, when the multiple 
floating structures with narrow gaps are subjected to 
water waves, fluid resonance may take place. This 
can lead to the vertical oscillations of the mean sur-
face having amplitudes substantially larger than the 
incident wave in narrow gaps and the increase of 
wave forces around the resonant frequencies. Thus, 
practical interest is confined not only to the forces 
and motions of the closely spaced vessels but also to 
the free surface elevations. 
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A number of publications have been recently 
released concerning the resonant motion of the wave 
field in the confided zone between two floating bod-
ies. Unlike the resonant response of body’s motion 
associated with the balance of inertia and stiffness 
loads, this resonant kinematics of fluid is annulled or 
amplified by complex scattering between bodies 
(Chen, 2011). Within the framework of the classical 
linear potential theory (for example aspects based on 
the boundary integral method, 3D model in frequen-
cy and time domain), there is no limit in terms of 
predicting wave elevations at the free surface. This 
flow model tends to overestimate the wave ampli-
tudes in narrow gaps because of the physical energy 
resulting from fluid viscosity, vortex shedding, and 
turbulence which cannot be taken into account in the 
context of potential flow theory. This unrealistic flu-
id motion magnifies the wave loads on the bodies. 
To contain the wave motion within a realistic level, 
Buchner et al. (2001) developed a method consisting 
of placing a rigid lid on the gap in between the two 
bodies. The unrealistic wave kinematics is thus sup-
pressed. In fact, no wavy elevation is possible under 
this rigid lid and noticeable perturbation around the 
ends of the lid can be observed due to the diffraction 
effect. To make wavy motion possible on the lid, 
Newman (2003) rendered the lid flexible using a set 
of basic functions of Chebychev polynomials. The 
deformation of the flexible mat (equal to the free 
surface elevation) is then reduced by introducing a 
damping coefficient. Chen (2011) proposed the in-
troduction of a linear dissipation term in the free sur-
face equation, which was referred as fairly perfect 
fluid potential theory. It has been shown that the 
technique of incorporating artificial resistance into 
the conventional potential flow model may work 
well in limiting the amplitude of water oscillations in 
narrow gaps. In addition, the vortex method em-
ployed to overcome the difficulties produced by a 
conventional potential model gives reasonable re-
sults, but it has only been used in 2D case.  

The resonant frequency is another key concern. 
It has been noted by other researchers that this prob-
lem is closely related to resonant phenomenon of the 
moonpool, which was comprehensively investigated 
by Molin (2001) and Molin et al. (2002). Other 
works which pertain to this problem are those of Mi-
ao et al. (2000), Zhu et al. (2005; 2008), Saitoh et al. 
(2006), Iwata et al. (2007), Wang and Wu (2008), 
and Lu et al. (2011a; 2011b). 

The present study focuses on the fluid reso-
nances between two floating structures based on fair-
ly perfect fluid potential theory (taking the effect of 
fluid viscosity into consideration). Additionally this 
paper also analyzes methods used to estimate the 
fluid resonant frequencies. Furthermore, the valida-
tion and practical application of these methods for 
ship hulls are investigated. 

 
 

2  Numerical model 

2.1  Potential flow considering the effect of fluid 
viscosity 

In this section we study floating bodies with or 
without forward speed on a free surface and in the 
presence of incident propagative waves. The refer-
ence system of Cartesian coordinates is defined by 
letting (x, y) plane coincide with the mean free sur-
face and a positive and upwards z-axis. The fluid is 
assumed to be incompressible and inviscid while the 
fluid motion is irrotational. Under the assumptions of 
a perfect fluid, the fluid velocity V=(V1, V2, V3) can 
be expressed as V=Φ, the gradient of a scalar po-
tential Φ, which satisfies the Laplace equation ac-
cording to mass conservation. The fluid is under the 
action of gravity. This gravitational field, an internal 
force, 

 
, f V                                   (1) 

 
is assumed to apply to the fluid particle as well. The 
parameter μ is assumed to be positive and small, and 
this force is proportional to the magnitude of fluid 
velocity but moving in the opposite direction. Alt-
hough it plays the same role of dampening fluid mo-
tion and dissipating energy as that of fluid viscosity, 
it does not introduce any vortices so the existence of 
velocity potential is safeguarded. The inviscid and 
irrotational fluid with the artificial damping force is 
called by Guevel (1982) the fairly perfect fluid. The 
momentum equation for the fairly perfect fluid is 
slightly modified and the associated Bernoulli equa-
tion is expressed as (Chen, 2011) 
 

/ / 2 ( ),tP gz C t              (2) 

 
where ρ is the water density, g is the gravitational 
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acceleration, P is the dynamic pressure of ship hull, 
and C(t) is a constant number. 

At the first-order problem, combining both the 
dynamic and kinematic free surface conditions yields 
a compound form: 

 

0.z ttg                           (3) 

 

Furthermore, the free surface elevation is given 
by 

 

( ) / .t g                            (4) 
 

2.2  Velocity potential 

The regular wave is coming from a direction 
with an angle β, which is the angle between the posi-
tive x-axis and the incident wave direction. Thus, 

180 means it is facing head-on towards the sea. The 
incident potential Φ0 is given as 

 

ei
0 0( , , , ) e ,tx y z t                             (5) 

0 0 ( cos sin )
0

0

i
e e ,k z k x yg  


                 (6) 

 

where 2
0 0 /k g  is the wave number of the inci-

dent wave, 0  and   are the frequency and ampli-

tude, respectively, and ωe is the encounter frequency.  
The velocity potential ΦT(x,y,z,t) can be ex-

pressed as  
 

s( , , , ) ( , , ) ( , , , ),T x y z t x y z x y z t           (7) 
 

where s  and Φ are the steady disturbance potential 

and unsteady potential, respectively. In the first-
order problem, all unsteady motions are assumed to 
be sinusoidal in time with the encounter frequency 
ωe, and by linear decomposition the unsteady poten-
tial Φ can be expressed as 
 

ei
7 0 7 0( , , , ) ( )e ,t

R Rx y z t               (8) 

 
where ΦR and Φ7 are the coupled radiation and dif-
fraction potentials in the field, and R  and 7  are the 

time-independent aspects. 

3  Numerical methods 

3.1  Integral equations 

Presenting potential flow theory directly uses 
authentic equations, and involves the energy dissipat-
ing via the introduction of the damping force as illus-
trated by Eq. (1). In most cases, the damping coeffi-
cient μ is set to zero without affecting the results. 
However, this damping term must play an important 
role in predicting the wave field within the confined 
zone, i.e., wave elevation of the gap in-between two 
floating structures. In these cases, the radiation and 
diffraction potential j can be expressed as (Chen, 
2011) 
 

( ) ( , )d ,j S
p G p q S    with ,

ma b F FS S S S S     

(9) 
 
and the integral equations to determine the source 
distribution σ are 
 

2 ( ) d ( ) ( , ) , ,n n a bS
p S q G p q p S S        (10) 

4 ( ) d ( ) ( , ) 0, ,n FS
p S q G p q p S               (11) 

04 ( ) i d ( ) ( , ) 0, ,
mFS

p k S q G p q p S         (12) 

 
where ε=μ/ω0, Sa and Sb are the mean wetted surface 
of ship-a and ship-b, respectively, SF ′ is the interior 

free surface of ship hull (also named as lid) and 
mFS  

is the entire free surface; ,n aj bjn n  (j=1, 2, …, 6) 

represent radiation problems, and 0 /n n     

signify diffraction problem, with ,aj bjn n  as the nor-

mal vectors of ship-a and ship-b, which are oriented 
positively towards the fluid. 

Thus, it can be known that σ=0 if ε=0. A non-
zero value of ε was applied only in the zone where 
the fluid kinematics is susceptible to behaving in a 
volatile manner, so that the discretization of free sur-
face is confined to the gap in-between the two ships. 

Here, the pulsating source Green’s function is 
employed in Eqs. (9)–(12), which can be expressed as 

 

 1 0 0( , ) 1 / 1 / 2 ( , ) i ( ) e ,G p q r r f R h J h         
(13) 
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2
13 3

1

1

( , )
2 ( ( , )

i ( ) e ) ,

G p q R R
f R h

x r r

x
J h

R






             
        

              (14) 

2
13 3

1

1

( , )
2 ( ( , )

i ( ) e ) ,

G p q R R
f R h

y r r

y
J h

R






           
       

               (15) 

3 3
1

2
0 0

( , )

2 (1 / ( , ) i ( ) e ),

G p q z z

z r r

f d R h J h 

 



  
 



    

 (16) 

where  
2 2 2 1/2[( ) ( ) ( ) ] / ,r x y z L         
2 2 2 1/2

1 [( ) ( ) ( ) ] / ,r x y z L         
2 2 1/2[( ) ( ) ] / ,R x y L      

2

,
L

f
g


  

,h f R   

( ) / ,f z L    
2 2 1/2( ) .d h    

 
p ( , , )x y z  and q ( , , )    are the coordinates for 

field point and source point, respectively. The varia-
bles R, r, r1 and h, v, d are non-dimensional in terms 
of the reference lengths L and g/ω2, respectively. 
J0(h) and J1(h) are the usual Bessel functions of the 
first kind. R0(h, v) and R1(h, v) are real functions to 
be defined by four different series expansions and 
one integral representation submitted by Telste and 
Noblesse (1986). As for ship with forward speed, the 
translating-pulsating source Green function can be 
used (Yao and Dong, 2014). 

3.2  Wave exciting forces and hydrodynamic  
coefficients 

Considering the unsteady state of incident 
waves, omitting the high order terms and static water 
pressure, the linear hydrodynamic pressure equation 
becomes 

 

ei
e

e

i 1 e .
i

tP   


 
  

 
                (17) 

By replacing the potential   by radiation poten-

tials, the hydrodynamic pressure induced by oscilla-
tion motion can be obtained. Then the related hydro-
dynamic coefficients for added mass and damping 
can be obtained as 

 

2
e e e
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e e e
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  (18) 

 
where , , and ,aaij aaij abij abijA B A B  are the added mass 

and damping coefficients on ship-a which result 
from the motion of ship-a and ship-b, respectively; 

, , and ,baij baij bbij bbijA B A B  are the added mass and 

damping coefficients on ship-b caused by the motion 
of ship-a and ship-b, respectively. 

Correspondingly, the incident wave forces and 
coupled diffraction forces of each ship can be de-
fined as 

 
e

e

e

e

i
w w

i
e 7 0

e
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w w
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   

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









 

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  



         





  (19) 

 
where fwai and fwbi are the waves exciting the force of 
ship-a and ship-b, respectively. 

 
 

4  Numerical results of twin barge ships 

4.1  Configuration and properties 

The configuration consists of two side-by-side 
rectangular boxes of the same dimension in meters 
( 2.47 0.6 0.18)L B T     with mechanical prop-

erties (zG=0.02 m and gyration radii=0.187/0.527/ 
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0.527). The mesh of barges and the whole gap 
meshed as the damping zone are presented in Fig. 1.  

Cases of different lateral clearance, the boxes 
fully fixed or freely floating, and the different wave 
heading angles are considered in order to assess the 
influence of those parameters on the hydrodynamics 
of barges. 

4.2  Methods to determine dissipate parameter ɛ  

The free floating model tests were realized in 
Oceanide and reported by Rippol (2004). The free 
surface wave elevation was measured at the center of 
the gap (marked as P in Fig. 1).  

 
 
 
 
 
 
 
 
 
The dissipate parameter ε can be determined by 

comparing numerical results of potential theory with 
internal damping force to those of the experiments. 
For the two barges introduced above, the wave ele-
vation results (i.e., per 1 m incident wave amplitude) 
of numerical computation with values of parameter 
ε=0 and 0.016 are drawn in Fig. 2 together with 
those of measurements and numerical calculations 
by Chen (2011). As is evident, the results of conven-
tional potential method (without lid or with lid, ε=0) 
are much larger than those measured, while the re-
sults with ε=0.016 support the measurements of 
around the resonant frequencies, confirming the im-
portance of viscous damping effect on the strong 
interaction between two adjacent floating structures. 

Another convenient way to determine the dissi-
pate parameter is by comparing the numerical results 
of potential and viscous fluid theory. Here, viscous 
results (referred to as Reynolds average Navier-
Stokes equations (RANSE)) are obtained by using 
the numerical wave tank which has been developed 
and based on the commercial software Fluent, at the 
core of which are the Navier-Stokes equations and 
turbulent models. Additionally, the volume of fluid 
method is used to capture the free surface. 

The results of numerical computation with val-

ues of parameter ε=0, 0.008, 0.016, and 0.032 and 
viscous model are presented in Fig. 3 for Dy=0.8 m, 
0.9 m at a heading sea, and Dy=0.716 m at β=150°. 
As shown in Fig. 3, the conventional potential flow 
model always significantly over-predicts the wave 
height in narrow gap around the resonant frequency. 
However, the results of present potential theory with 
ε=0.016 show good correlation with those of 
RANSE. 

 
 
 
 
 
 
 
 
 
 
 
 

4.3  First-order wave elevation in the gap 

The motion of the free surface in the gap be-
tween two side-by-side barges is now explored using 
the code which has been developed using the theory 
introduced above. Results are presented as response 
amplitude operators (RAOs) of the free-surface am-
plitude (i.e., per 1 m incident wave amplitude) at the 
center of gap. According to the above analysis, the 
damping coefficient is set to a constant value of 
0.016. 

4.3.1  Influence of lateral clearance on wave  
elevation 

Firstly, the conditions of the twin barges ar-
ranged side-by-side with different spacings are con-
sidered. Here, three typical centerline distances of 
0.716 m, 0.8 m, and 0.9 m are utilized.  

RAOs of wave elevation in the gap are shown 
in Fig. 4 under beam seas. It can be observed that 
there are many resonant peaks. The frequencies of 
peaks depend on the spacing, and they shift to higher 
frequencies with the decrease of spacing, i.e., the 
first peak frequency is 4.94 rad/s, 5.34 rad/s,  
and 5.82 rad/s for Dy=0.9 m, 0.8 m, and 0.716 m, 
respectively. In addition, the magnitudes of wave 
elevation decrease by up to 23.4% with the increase 

Fig. 1  Mesh of two barges and damping zone

P 

Fig. 2  Wave elevations in the gap center of two barges: 
total wave elevation for free floating bodies for Dy=0.716 m
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of investigated spacings and the maximum peak val-
ue is about 4–5 times the amplitude of the incident 
wave. The resonant frequencies and their relation-
ship to the sloshing and piston mode will be dis-
cussed in details in section 4.4. 

4.3.2  Influence of wave heading angle on wave  
elevation 

The influence of wave heading angle on the flu-
id resonance is determined by the fixed lateral dis-
tance of Dy=0.716 m and four wave heading angles, 
namely, β=90°, 120°, 150°, and 180°. Fig. 5 shows 
the variation of wave elevations with incident wave 
frequency ωe. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Numerical results shown in Fig. 5 confirm that 
many resonant peaks still exist and the locations of 
peaks in different wave directions are similar, but 
not identical. As established by Sun et al. (2010), the 
difference is due to the fact that in beam seas the 
responses are essentially standing waves, while in 
head seas these are superposed on a progressive 
wave, including the effects of incident and diffrac-
tion waves along the gap.  

It also can be seen that the first peak wave ele-
vation at β=120° is much greater than that of other 
heading angles; meanwhile, the second peak wave 
elevation at β=150° is higher than that of others. This 
fact indicates that the wave elevation of the gap in-
between two barges considered here is more signifi-
cant under oblique seas, and that these situations 
should be avoided for practical operations in  
seaways. 

4.3.3  Influence of barge motion on wave elevation 

Fig. 6 shows the free surface amplitude RAO 
for cases with both barges fixed and both freely 
floating. The spacing is 0.716 m and the barge ships 
are in beam seas. 
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Fig. 4  Effect of spacing on diffraction wave elevation in 
the gap in beam seas 
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Fig. 5  Effect of wave direction on diffraction wave eleva-
tion in the gap with Dy=0.716 m 

Fig. 3  Wave elevation in the center gap of two barges 
Diffraction wave elevation for Dy=0.8 m (a), Dy=0.9 m (b), 
and Dy=0.716 m, β=150° (c) 
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It can be observed that the locations of the 
peaks shift depending on whether the barge is fixed 
or freely floating. The frequency corresponding to 
the first resonant peak of cases where both barges are 
fixed is lower, i.e., 4.94 rad/s for both barges fixed 
whilst it is 6.06 rad/s when both barges are floating 
freely; meanwhile, the peak magnitudes of the wave 
elevation are substantially smaller. The reason is that 
the components of total wave elevation of these two 
cases are different. As for the fixed situation, only 
incident and diffraction waves are involved, whilst 
with the incident wave, radiation waves due to oscil-
lation of both barges and diffraction wave are in-
cluded for free floating cases. 

 
 
 
 
 
 
 
 
 
 
 
 
However, with the increase of frequency of in-

cident waves, discrepancies between two cases be-
come small and almost the same when ωe>10 rad/s. 

The sway and heave motions of the barges are 
presented in Fig. 7. Ship-a and ship-b are at the 
shadow and weather side, respectively. An evident 
sheltering effect by the weather side ship on the oth-
er ship can be observed. 

4.4  Analysis of resonant frequencies and associ-
ated Eigen modes 

As discussed by Newman and Sclavouns (1988) 
and Molin et al. (2002), the problem of fluid reso-
nance in-between two barges arranged side-by-side 
with a small gap can be treated as an open-ended 
moonpool. However, the proper boundary condition 
(the no-flow Neumann condition or the zero pressure 
Dirichlet condition) for the ended boundary still re-
quires further discussion. 

Based on the assumption of potential flow theo-
ry, the flow within the moonpool is expressed in 
terms of Eigen function expansions, and matched to 

the flow below the plate by means of an integral 
equation. As for the flow in the gap between the two 
parallel barges, the problem can be treated in a simi-
lar fashion. Here, Neumann or Dirichlet boundary 
conditions are taken into consideration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As pointed out by Molin (2001), it is easy to see 

that the velocity potential Φ in the fluid field satis-
fies the Laplace equation and linear free surface 
conditions. If it is assumed to be periodic at frequen-
cy ω, then it can be written in the form: 

 

0 0

( ) ( )[ cosh( ) sinh( )]cos( ).m n mn mn mn mn
m n

f x g y C v z D v z t




 

 




 

(20) 
 

The functions fm and gn are determined by the 
no-flow boundary conditions on the walls and open-
end boundary conditions, which yield fm(x)=sin(λmx), 
gn(y)=cos(μny) for the Dirichlet condition and  
fm(x)=cos(λmx), gn(y)=cos(μny) for the Neumann con-

dition, with λm=mπ/Lg, μn=nπ/Bg, and 2 2 2
m n mnv   , 

Lg and Bg as the length and width of the gap, respec-
tively. The coefficients Cmn and Dmn are obtained by 
imposing the free-surface boundary condition and 
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the coupling condition. The coupling condition is 
satisfied by using the Galerkin procedure: it is multi-

plied by ( ) ( )m nf x g y  and integrated over (0<x<Lg, 

0<y<Bg) (details can be seen in (Molin, 2001)). Con-
sequently, an eigenvalue problem for the resonant 
frequencies mn  can be solved. As pointed out by 

Molin (2001), when using single mode approxima-
tions, the general form of mn is (with H the draught 

of ship hull): 
 

2 1 tanh( )
,

tanh( )
mn mn

mn mn
mn mn

J v H
gv

J v H






             (21) 
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 
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In the general case of arbitrary m and n, Molin 

(2001) showed that the quadruple integral may be 
reduced to a double integral. In the special case of 
n=0 (no variation of wave elevation across the gap), 
a simpler single integral can be derived based on the 
residue theorem. Thus, 0mJ  for Neumann conditions 

can be written as (Molin, 2001) 
 

2
1N

0 2 0 2 2 2

0

2
1 ( 1)cos( )

sin( ) 1
d 1 .

sin

m

r
J u n u

n r u u r

n u
u

n 

       
      


 (23) 

 
Jm0 for the Dirichlet condition can be expressed 

as (Molin et al., 2002) 
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where g g/r B L  and 0tan 1 / .r   For the general 

case n>0, a numerical approach proposed by Sun et 

al. (2010) is adopted, for which the numerator in 
Eq. (22) should be written as 
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The inner double integral of 1/R can be evaluat-

ed analytically. The second inner double integral 
may be computed numerically. In a comparable fash-
ion to the numerical method of Sun et al. (2010), the 
high order Gaussian quadrature is used, for which 
the integration points and weights are calculated by 
the algorithm proposed by Recktenwald (2000).  

The convergence of this numerical approach is 
corroborated by Sun et al. (2008). In order to check 
the validation of the present numerical integration 

algorithm code, N
0mJ  and D

0mJ  are calculated with 

Lg=2.87 m, Bg=0.116 m. Tables 1 and 2 show the 
results for the symmetric modes in the cases. It can 
be seen from the two tables that 24 24  quadrature 
(indicated as Gauss24 in the table) is accurate to 
within about 5D–6D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the numerical method, the estimation 
of the resonant frequencies is analyzed. Table 3 gives 

Table 1  Convergence of N
0mJ  factors with Gauss inte-

gration order  

Method
N

0mJ  

9 11 13 15 

Gauss24 0.670 064 0.717 834 0.754 797 0.785 894

Gauss48 0.670 039 0.717 804 0.754 640 0.783 692

Gauss96 0.670 038 0.717 802 0.754 638 0.783 689
Molin 
(2001)

0.670 038 0.717 802 0.754 638 0.783 689

Table 2  Convergence of D
0mJ  factors with Gauss inte-

gration order 

Method
D

0mJ  

9 11 13 15 

Gauss24 0.717 680 0.742 460 0.796 973 0.831 546

Gauss48 0.717 679 0.762 457 0.796 699 0.823 468

Gauss96 0.717 672 0.762 457 0.796 699 0.823 468
Molin et  

al. (2002)
0.717 619 0.762 457 0.796 699 0.823 468
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the frequencies for the first nine symmetric longitudi-
nal modes in which there is no variation across the 
gap and they are obtained from Eq. (23) (designated 
as TheoryN), Eq. (24) (designated as TheoryD) and the 
full 3D calculation for beam seas based on present 
panel method codes. Table 4 shows resonant frequen-
cies as predicted by the theory for the longitudinally 
symmetric n=1 modes. In Table 3, the missing numer-
ical results of the panel method for the modes (11, 0) 
and (13, 0) are because they are close to the frequen-
cies for the modes (7, 1) and (5, 1). As a result, the 
former two modes are superimposed. 

Overall, it may be seen that the simple semi-
analytical theory gives very close predictions of the 
resonant frequencies identified from 3D potential 

panel method, and the difference between N
0mJ  and 

D
0mJ  is reduced for the higher mode fluid resonance. 

That is to say, the influence of the boundary condi-
tions at the end boundary becomes less prominent 
for higher resonant modes. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8 shows the resonant modes of the wave 
elevations along the centerline of the gap in beam 
seas. These figures correspond to six modes, and the 
modes are symmetric longitudinally and uniform in 
the transverse direction. They confirm that the longi-
tudinal variations of the elevations are indeed of type 
(m, 0). 

 
 
5  Results of Wigley & Barge 
 

The experiments investigating problems arising 
from the side-by-side arrangement of a modified 
Wigley model (which will be referred to as ship-a1) 
and a rectangular barge model (which will be re-
ferred to as ship-b1) were carried out by Kashiwagi 
et al. (2005). Both models are L=2.0 m in length, 
B=0.3 m in breadth, d=0.125 m in draft and set in 
beam waves with two separation distances Dy= 
1.097 m and 1.797 m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Resonant frequencies (rad/s) for elevations in gap between two barges: n=0 mode  

Bg (m) Method 
Resonant frequency, ωe 

1, 0 3, 0 5, 0 7, 0 9, 0 11, 0 13, 0 15, 0 17, 0 

0.116 

TheoryN 5.9149 6.9639 8.2128 9.4628 10.6407 11.7318 12.7421 13.6830 14.5650

TheoryD 5.5564 6.8739 8.1799 9.4501 10.6357 11.7298 12.7413 13.6826 14.5649

Present 5.82 6.94 8.14 9.34 10.54 11.52 12.55 13.69 14.50 

0.200 

TheoryN 5.5114 6.7533 8.1184 9.4234 10.6249 11.7256 12.7397 13.6820 14.5647

TheoryD 5.0542 6.6359 8.0759 9.4072 10.6186 11.7231 12.7388 13.6816 14.5645

Present 5.34 6.62 7.90 9.18 10.42 11.47 – 13.61 14.45 

0.300 

TheoryN 5.2114 6.6102 8.0598 9.4008 10.6164 11.7224 12.7385 13.6825 14.5645

TheoryD 4.6796 6.4704 8.0092 9.3815 10.6089 11.7195 12.7374 13.6811 14.5643

Present 4.94 6.38 7.66 9.10 10.14 – 12.24 13.63 14.36 

Table 4  Resonant frequencies (rad/s) for elevations in gap between two barges: n=1 mode 

Bg (m) Method 
Resonant frequency, ωe 

1, 1 3, 1 5, 1 7, 1 

0.116 

TheoryN 16.3088 16.3801 16.5200 16.7234 

TheoryD 16.3088 16.3801 16.5200 16.7234 

Present 16.07 16.18 16.34 16.62 

0.200 

TheoryN 12.4402 12.5985 12.8982 13.3121 

TheoryD 12.4394 12.5979 12.8977 13.3118 

Present 12.35 12.56 12.81 13.27 

0.300 

TheoryN 10.2094 10.4879 10.9849 11.6248 

TheoryD 10.2028 10.4832 10.9819 11.6231 

Present 10.36 10.54 11.39 11.81 
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The mesh of these vessels is presented in Fig. 9, 
on which a rectangular zone (damping zone) be-
tween the vessels is shown as well. The experiment 
conducted first examined the forced heave oscilla-
tion tests, with ship-a oscillated and ship-b fixed. 
The second experiment was the measurement of the 
first-order wave-exciting forces in plane progressive 
waves with both ships completely fixed, correspond-
ing to the diffraction problem. Here analysis of both 
cases is conducted, with the purpose of investigating 
the validation of present potential theory with an 
artificial damping force and the application of 
Molin’s semi-analytical method to estimate the reso-
nant frequencies. 

5.1  Analysis of added mass and damping  
coefficients 

The Wigley hull was forcibly oscillated in 
heave and the Barge fixed with separation distance 
Dy=1.797 m is first surveyed. During Kasiwagi 
(2005)’s experiments, researchers measures manner 
in which the heave and sway added mass and damp-
ing coefficients as a result of the heave motion of 
Wigley-hull itself. The results of numerical compu-
tation with three values of parameter ε=0, 0.008, and 
0.016 are noted in Fig. 10 together with those of the 
measurements, against wave frequency k0L. The  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

results of Xiang (2013) predicted by using the Ran-
kine panel method are also given. The added masses 
are nondimensional by the displaced mass of the 
Wigley ship ρa1 and the damping by ρa1ω.  

It can be seen from Fig. 10 that the numerical 
results from conventional methods are in agreement 
with the measurements, with the exception of those 
around the resonant peaks. The curves with dissipate 
parameter ε=0.008 are very similar close to the 
measurements. These also confirm the importance of 
the viscous damping effect on the strong hydrody-
namic interaction and the validation of present po-
tential method with an appropriate damping parame-
ter. However, for added mass it seems that the no-lid 
case may yield closer predictions for some frequen-
cies (such as k0L=12.68, 16.66); meanwhile, results 
obtained using the present method with dissipate 
parameter ε=0.008 agree well with experiment 
method for other resonant frequencies (such as 
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P3 

Fig. 9  Computational grid for Wigley, Barge, and gap in-
between of them 

Fig. 8  Wave elevation along the gap in beam seas with Dy=0.716 m 
(a) m=1; (b) m=3; (c) m=5; (d) m=7; (e) m=9; (f) m=13 
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k0L=13.37, 17.35). This may be due to the fact that 
added mass is the reaction force on the hull in phase 
with hull oscillations, and thus is less sensitive to 
viscous effects at some frequencies. 

As can be seen in Fig. 10 and Fig. 11, the loca-
tions of the peaks of the damping coefficient are co-
incident with those of radiation elevation of P1. 
However, resonant frequencies of the added mass are 
at slight variance with these results. This is due to 
different characteristic behaviors of the radiation 
coefficients in the vicinity of the resonant frequen-
cies: the damping coefficient exhibits delta function-
like behavior and the added mass usually experienc-
es first a maximum and then a minimum roughly 
centered on the damping maximum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2  Analysis of the first-order wave forces 

The excitation forces on the same Wigley-
Barge system with Dy=1.097 and beam seas are fo-
cused: the Wigley hull is on the weather side, and 
the Barge is on the shadow side. Amplitudes of the 
sway and heave excitation force on the Barge are 
shown in Fig. 12. The force amplitudes have been 

non-dimensionalized by wb ,g A   where wbA  is the 

waterplane area of ship-b1. It can be seen that numer-
ical results with 0.008   may be generally in good 
agreement with the model test results and many re-
peated peaks of sway and heave forces can also be 
recorded. However, some discrepancies still occur in 
the low frequency range where the towing tank may 
not be wide enough to avoid the wall effects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 shows the wave elevation of P3 against 

k0L, from which repeated peaks can be seen, and the 
corresponding frequencies are almost identical to 
those of wave forces. This indicates that a correla-
tion exists between fluid and force resonance. 

5.3  Analysis of resonant frequencies 

As explored in section 4.4, the resonance fre-
quencies can be estimated by Molin’s simplified 
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theory. Here, the Wigley hull is approximated as an 
identical barge ship, thus Eq. (21) and Eq. (22) may 
be used. The calculated resonant frequencies of 
“longitudinal sloshing mode” for the Wigley-Barge 
side-by-side system are presented in Table 5. The 
simplified estimated results of k0L=(2m−1)π pro-
posed by Xiang (2013) and Zhu et al. (2008) are also 
listed. Overall, it may be observed that the simple, 
semi-analytical theory yields close predictions of the 
resonant frequencies identified from present 3D dif-
fraction analysis. In addition, the equations corre-
sponding to Neumann Conditions give better agree-
ment with predicted resonant frequencies based on 
3D panel method than other equations. 

There follows further comparison of different 
methods to predict resonant frequencies. Table 6 
gives the predicted resonant frequencies at different 
separations, such as Dy=1.2 m, 1.5 m, and 1.6 m. It 
can be seen that the resonant frequencies tend to de-
crease with the increase of gap width, which mimic 
the results of the two barges system. However, the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

discrepancies of fluid resonant frequencies predicted 
by semi-analytical methods and present 3D diffrac-
tion analysis are more obvious with the increase of 
separation distances. This may be caused by the 
Wigley hull approximation.  

Generally speaking, the Molin’s simplified the-
ory can provide an accurate estimation of resonant 
frequencies and be a practical tool for analyzing the 
fluid resonant phenomena of gaps in-between two 
floating bodies. 

 
 

6  Conclusions 
 

In this study, numerical simulations of fluid and 
force resonance in narrow gaps in-between two float-
ing structures are conducted based on potential flow 
theory taking the effect of fluid viscosity by includ-
ing the viscous damping force. Furthermore, the 
methods used to predict the resonant frequencies are 
introduced and their practical applications for ship 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Resonant frequencies of “longitudinal sloshing 
mode” for elevation in gap between two barges with 
Dy=1.097 m (n=0 mode, k0L) 

Method 
Resonant frequency 

1, 0 3, 0 5, 0 7, 0 

TheoryN 4.571 9.933 15.928 22.487

TheoryD 2.784 8.929 15.392 21.819

k0L=(2m−1)π 3.142 9.425 15.708 21.991

Present 4.452 9.528 16.250 23.380Fig. 13  Wave elevation of P3 at beam seas with Dy=1.097 m 

0 4 8 12 16 20 24 28
0

1

2

3

4

 k
0
L

|
|

23.38
16.25

9.528

4.452

Table 6  Resonant frequencies of “longitudinal sloshing mode” for elevation in gap between two barges (n=0 
mode, k0L) 

Dy (m) Method 
Resonant frequency 

1, 0 3, 0 5, 0 7, 0 9, 0 

1.2 

TheoryN 5.581 10.402 16.131 22.618 28.545 

TheoryD 3.928  9.637 15.734 21.978 28.259 

k0L=(2m−1)π 3.142  9.425 15.708 21.991 28.274 

Present 4.351  8.706 14.605 20.915 26.677 

1.5 

TheoryN 5.054 10.142 16.017 22.551 28.517 

TheoryD 3.345  9.278 15.561 21.898 28.223 

k0L=(2m−1)π 3.142  9.425 15.708 21.991 28.274 

Present 3.630  7.059 11.449 20.778 25.579 

1.6 

TheoryN 4.939 10.089 15.995 22.538 28.512 

TheoryD 3.215  9.197 15.523 21.880 28.215 

k0L=(2m−1)π 3.142  9.425 15.708 21.991 28.274 

Present 3.355  6.785 10.626 19.406 23.796 
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hulls are investigated. Some of our key findings are 
outlined as follows: 

1. The numerical results from present potential 
theory with appropriate damping coefficients pro-
duce results which corroborate experimental data 
both for forces and wave elevation. The accuracy of 
the predicted resonant wave height and force can 
thus be greatly improved. In addition, the dissipate 
parameter can be calibrated by comparing the wave 
elevation results of potential theory to those of 
measurements in experiments or the viscous  
fluid model, and the latter is more convenient and 
practical. 

2. With regards to the two side-by-side Barges 
system and side-by-side Wigley-Barge system,  
the frequencies and magnitude of the peaks in the 
wave elevations and forces are generally dependent 
on the spacing and body’s motion. With an increase 
of gap width, the peaks occur at lower frequencies.  

3. The semi-analytical model gives reliable pre-
dictions of the peak frequencies calculated by the 
present 3D panel method at different lateral clear-
ances of the two Barges system. Additionally, the 
fluid resonant mode in the gap corresponding to each 
resonant frequency has also been confirmed. This 
model can be used to predict the peak frequencies for 
ship hulls with complex geometries, such as Wigley 
& Barge system. 

Generally speaking, the Molin’s simplified the-
ory can give a reliable estimation of resonant fre-
quencies and serve as a practical tool to analyze the 
fluid and force resonant phenomena of gaps in-
between two Barge systems and the Wigley & Barge 
systems. Future studies will focus on the fluid and 
force resonance of two structures advancing in 
waves with forward speed. These cases are more 
complicated but are very important for advancing the 
underway replenishment operation. 
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中文概要 

 
题 目：近距两浮体间流体共振分析 

目 的：基于三维线性势流理论，通过在近距两浮体间

的自由液面上引入“粘性耗散系数”，建立计及

粘性影响的波浪中近距两浮体水动力干扰效应

分析数值计算方法，以准确分析两浮体的干扰

力及浮体间液面升高；并探讨“粘性耗散系

数”的确定方法、两浮体间流体共振频率及共

振模式的数值计算方法。 

方 法：1. 通过理论分析，在三维线性势流理论基础

上，引入流体“粘性耗散”（公式 2、10~12、18

和 19）以准确模拟近距两浮体波浪中的水动力

及浮体间液面抬升；2. 采用雷诺应力平均方程

（RANSE）方法或试验方法确定“粘性耗散系

数”（图 2 和 3）；3. 采用数值计算和理论分析的

方法给出近距两浮体间的流体共振模式（图 8）

及共振频率估算方法（公式 21~ 25）。 

结 论：1. 采用三维线性势流理论并引入流体“粘性耗

散系数”可较为准确地计算得到近距两浮体波

浪作用下的受力及浮体间液面抬升；“粘性耗散

系数”可通过 RANSE 方法或试验方法获得；2. 

相比于其它因素（浪向角等）， 近距两浮体间的

干扰效应受横向间距影响较大；3. 采用类似于

“月池”中流体共振频率分析方法获得的共振

频率计算公式可用于估算近距两浮体间的流体

共振频率，同时不同共振频率时浮体间的流体

共振模式得到了数值计算结果的验证。 

关键词：流体共振；水波；边界元方法；人工阻尼力；晃

荡模式 

 
 
 
 
 
 
 


