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Fig. 6 Influence of butene isomer on mixed-butene conversion: (a) 1-butene; (b) trans-2-butene; (c) cis-2-butene
1 represents 1-butene; T represents trans-2-butene; C represents cis-2-butene. Reaction conditions: butene/oxygen/steam=
1/0.82/10.4; reaction temperature is 375 °C; GHSV is 438 h™' on the basis of butene; the ratio of isomers in the initial feed was
maintained at 1-butene/trans-2-butene/cis-2-butene=6.5/11.2/8.3 when adding different isomers to the system; the catalyst bed
was formed by packing ZnFe,0,4 on the top and CosFe;Bi;Mo;,05; on the bottom

of butene isomers between the catalyst beds would
enhance the catalytic performance of the second bed,
leading to higher conversions of all butene isomers.
On the other hand, the presence of all butene isomers
would inhibit their isomerization to a certain degree.
This inhibition could result in a higher proportion of
mixed-butenes in the ODH reactions, for its highest
reaction rate in the system (Zhang et al., 1992). The
above effects would contribute to a higher conversion
of each butene isomer, and finally the increased BD
yield.

Comparative experiments were conducted to
prove such a mechanism. The results of mixed feeds
consisting of two butene isomers were compared with
those of single and mixed-butenes. The conversion of
1-butene and mixed-butenes increased as the feed
changed with the addition of either trans-2-butene or
cis-2-butene (Fig. 6a). Similar results are also shown
in Figs. 6b and 6¢c. The increased conversion of each
butene isomer confirmed the enhanced catalytic per-
formance of the second bed. The increased BD yield
also indicated the increased proportion of ODH reac-
tion in the system (Fig. 6¢). These comparisons pro-
vide solid evidence in support of the proposed
mechanism of the synergistic effect.

Note that the isomerization process follows the
rules of thermodynamic equilibrium. The changed
composition of butene isomers could affect only the
final concentration of the butene isomers. The

equilibrium constant remained the same because the
reaction temperature was kept constant.

3.5 Packing volume optimization in different
packing sequences

Fig. 7 illustrates the optimization of the catalyst
packing volume in the bed and the correlation be-
tween packing volume and catalytic performance.
Both packing sequences tested showed that the dual
bed catalyst systems exhibited better catalytic per-
formance than single catalysts. As the catalyst pack-
ing volume ratio changed, the conversion of butene
isomers underwent an initial increase followed by a
decrease (Figs. 7a and 7c). In Figs. 7b and 7d, the BD
yield shows the same tendency.

The mixed-butene conversion increased as the
packing ratio approached 5/5 (Fig. 7a). The conver-
sion of 1-butene remained relatively constant, while
those of both trans-2-butene and cis-2-butene in-
creased with increasing amounts of ZnFe,O4. The
conversion of mixed-butenes was relatively high
when the packing volume ratio of ZnFe,O4 and
CooFe;BiMo1,0s5; was kept between 6/4 and 4/6. In
Fig. 7c, the change in conversion is relatively mild,
but the highest conversion is still found at a ratio of
4/6. The 1-butene conversion increased dramatically
as the volume of CooFe;Bi;Mo0;,0s; increased above
60% in the dual bed catalyst system.

In Fig. 7b, the packing ratios showing high cat-
alytic performance were between 4/6 and 6/4. Further
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Fig. 7 Packing volume optimization in the dual bed catalyst system
(a) & (c): Conversion of three butene isomers and total conversion; (b) & (d): Selectivity of products and yield of 1,3-butadiene;
(a) & (b): Packing ZnFe,04 on top; (c) & (d): Packing CogFe3Bi;Mo0;,05; on top. Reaction conditions: butene/oxygen/steam=
1/0.82/10.4; reaction temperature is 375 °C; GHSV is 438 h™! on the basis of butene; the ratio of isomers in the initial feed was
maintained at 1-butene/trans-2-butene/cis-2-butene=6.5/11.2/8.3

increases in the volume of CogFe3;Bi;Mo1,05; would
lead to increasing CO, selectivity. In Fig. 7d, the BD
selectivity is higher than that in Fig. 7b. This result
would compensate for the lower conversion over this
packing sequence. A high yield was achieved when
the packing ratios were between 7/3 and 3/7. How-
ever, the highest yields of the two packing sequences
were rather close, with packing ZnFe,O,4 on top being
slightly better than CogFe;Bi;Mo0;,0s; on top (73.3%
versus 70.7%, respectively).

In summary, packing ratios between 4/6 and
6/4 where ZnFe,0O4 was packed on the top gave better
results in terms of BD yield. This also provided
further proof for the existence of the synergistic
effect.

4 Conclusions

ZnFe,0,4 showed better catalytic performance in
ODH of both trans-2-butene and cis-2-butene, while
CogFe;BiiMo1,0s; showed a better catalytic activity
over 1-butene. The dual bed catalytic system gave a
better catalytic performance than either individual
catalyst alone. A synergistic effect of the dual bed
system was proposed based on the increased
conversion of mixed-butenes resulting from the
redistribution of butene isomers between the catalyst
beds. The redistribution makes use of the advantages
in both catalyst beds. Also, as all butene isomers were
included in the feed, the suppression of isomerization
would be enforced. The ODH reaction became a more
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predominant reaction in the system, leading to the
improved overall conversion of mixed-butenes. A
series of experiments involving different mixed-
butene compositions were conducted to prove the
above mechanism. Further optimization of this
catalytic system revealed that loading ZnFe,O,4 on top
while maintaining the volume ratio between 4/6 and
6/4 led to better overall conversion and increased BD
yield. The optimized results provide instructive
information for the production of a composite catalyst
for the ODH of mixed-butenes.
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