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target and the diameter of the crater on the front face.
Furthermore, Figs. 26b—26e show the compression

damage caused by the projectile penetrating the target.

The predicted damage was distributed mainly around
the trajectory, and dense compression cracks were
also generated near the crater on the face. However,
the compressive damage cracks predicted by our

model were more consistent with the experimental
results than those predicted by the HIC model.

In addition, our model was able to predict the
tensile micro-cracks and the main tensile cracks
caused by the projectile penetrating the UHTCC tar-
get (Figs. 27 and 28), which intuitively shows the
crack propagation of the test target’s front surface.

Fig. 26 Comparison of penetration experiment results (a) with compressive damage contours: (b) front surface (proposed
model); (c) front surface (HJC model); (d) interior of the target (proposed model); (e) interior of the target (HJC model)

Fig. 27 Distribution of micro-cracks in the UHTCC target subjected to projectile penetration: (a) front surface; (b)

interior of the target
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Fig. 28 Tensile damage to the UHTCC target subjected to projectile penetration: (a) front surface; (b) interior of the

target

The tensile damage in the UHTCC target body was
insignificant. This was due mainly to the bridging
effect of the UHTCC matrix and the PVA fiber, giv-
ing the UHTCC excellent deformability, which ab-
sorbs the tensile stress waves formed by the projectile
impacting the target body, greatly reducing the
damage to the target body due to impact stretching
(Wang et al., 2016).

5 Conclusions

By performing theoretical analyses on the elasto-
plasticity of concrete materials and on the mechanical
properties of UHTCC, a computational constitutive
model suitable for UHTCC materials subjected to
dynamic loadings was developed. The model was
then implemented using an explicit dynamic finite
element software package. The following conclusions
were drawn from this study:

1. The dynamic constitutive model constructed
for UHTCC materials accounted for pressure de-
pendence, strain softening, strain rate effect, and po-
rosity of these materials, and also reflected their duc-
tile and tensile properties.

2. The proposed model was embedded in
LS-DYNA and was used to simulate the stress—strain
curves of a UHTCC material under uniaxial, biaxial,
and triaxial tension and compression. The proposed
model approximated the experimental data much
more accurately than the HIC and K&C models, and

could accurately reproduce the fundamental me-
chanical properties of UHTCC.

3. The UHTCC constitutive model was used to
simulate the detonation of an explosive charge buried
at a certain depth inside a UHTCC target. Based on
comparisons with experimental data, our constitutive
model was much more accurate (with errors of less
than 5%) than the HIC model in predicting the size of
the blast crater and the tension damage inside the
UHTCC target.

4. The model proposed in this study can better
predict the tensile and compressive damage failure of
UHTCC materials under an impact load, and can
show the distribution of tensile micro-cracks and
compressive damage cracks in a UHTCC target.
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