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Abstract: In engineering practice, the stability of a slope is often analyzed as a 2D problem assuming a plane-strain condition,
which may lead to significant errors. In this paper, a comprehensive study is carried out to compare the results of 2D and 3D
slope stability analyses, using the strength reduction method for deterministic analysis and the random field approach for
probabilistic analysis, respectively. The results of this comparison study confirm that in the deterministic stability evaluation,
the 2D analysis tends to obtain a smaller factor of safety than does its 3D counterpart. In the probabilistic evaluation that
considers the spatial variability of soil properties, the 2D analysis tends to yield a larger probability of failure than its 3D
counterpart. A significant feature of the 3D probabilistic slope stability analysis is the presence of multiple local failures
distributed along the slope longitudinal direction. This paper provides insights regarding the degree of errors in modeling a 3D
slope as a 2D problem, which can be regarded as a complement to the previous 3D slope stability analyses.
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1 Introduction

Slope failure is one of the most commonly
encountered geohazards around the world, which could
cause significant losses of human lives and properties
(Tang et al., 2019; Gong et al., 2021). The stability of
a slope is often evaluated in terms of factor of safety
(FS) that may be determined with either limit equilib‐
rium methods (Spencer, 1967) or numerical methods
(Jin et al., 2020; Yin et al., 2021). In the routine analy‐
sis and design of a slope, the slope stability is usually
analyzed as a 2D problem adopting a plane strain
assumption (Abusharar and Han, 2011). However, the
field investigations illustrate that the failure of most
realistic slopes or landslides behaves as a 3D problem,
exhibiting spherical, ellipsoidal, or other complex slip
surfaces (Jaboyedoff et al., 2020). There are arguments
and practical reasons for adopting the 2D analysis.

First, the 2D analysis is often easy to implement, as
there is no need to formulate complex 3D geometries
and boundary conditions. The 2D analysis is also much
less computationally demanding for the same reason.
Furthermore, the FS derived from the 2D analysis is
generally smaller than that derived from the 3D analy‐
sis (Griffiths and Marquez, 2007). As such, the 2D anal‐
ysis usually leads to a more conservative slope design.

The 2D analysis may lead to significant errors
in the computed FS. For example, the plane strain
assumption might not be valid if the longitudinal length
of a slope is not sufficiently large. The error becomes
even more profound if the longitudinal variation of the
slope geometry, loading conditions, or soil proper‐
ties is significant. In such cases, the ‘true’ stability
behavior of a slope may not be captured by the FS
values of selected slope cross-sections computed with
the 2D analysis. Over the past decades, the advances
in computation power coupled with the recognition
of the limitations and deficiencies of the 2D analysis
have led to the increasing use of the 3D slope stability
analysis (Griffiths et al., 2009; Hicks and Spencer,
2010), and the significance of the 3D analysis has
been discussed (Zhang et al., 2015).
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Nevertheless, it would be of interest from the
perspective of engineering practice to know the degree
of errors in modeling a 3D slope as a 2D problem,
which can only be assessed from a systematic compar‐
ison of the results obtained from both 2D and 3D
analyses. To this end, it is noted that such a comparison
of the stability analysis can be further complicated by
choice of the approach, deterministic versus probabi‐
listic. As has been well recognized, a higher FS
(obtained from the deterministic approach) does not
always guarantee a higher level of safety (Duncan,
2000), and the slope’s probability of failure (obtained
from the probabilistic approach) is also related to the
uncertainty of the adopted geological model, including
stratigraphic uncertainty and geo-properties uncertainty
(Gong et al., 2019, 2020). Thus, a comprehensive
comparison of the 2D versus 3D analysis should be
carried out using both deterministic and probabilistic
approaches.

Although the probabilistic slope stability analysis
has long been advocated (Zhou et al., 2019), most of
the previous studies were based upon 2D probabilistic
analyses (Griffiths et al., 2009; Hicks and Spencer,
2010; Ji and Chan, 2014; Hicks and Li, 2018). In the
earlier studies of the 3D probabilistic slope stability
analysis using limit equilibrium methods, Vanmarcke
(2011) compared the 2D and 3D methods for assessing
the risk of long slopes (with an assumption of cylinder
slip surfaces), and concluded that the 2D analysis was
conservative and the occurrence of the local failures
was random along the slope longitudinal direction. Ji
(2014) studied the widths of the local failures for a
long embankment, and concluded that the widths of
the local failures were proportional to the horizontal
scale of fluctuation of soil properties. In a pioneering
study of the 3D probabilistic slope stability analysis
using the random finite element method (RFEM),
Griffiths et al. (2009) concluded that the 2D probabi‐
listic slope stability analysis tended to overestimate
the reliability index of a 3D slope. Hicks and Spencer
(2010) summarized the potential failure modes of 3D
slopes according to the relationship between the hori‐
zontal scale of fluctuation (of soil properties) and slope
geometries. These failure modes yielded noticeable
3D features that could not be captured by the failures
revealed from 2D slope stability analyses. The incon‐
sistency in the derived reliability indexes between 2D
and 3D probability slope stability analyses may be

attributed to the difference in the failure modes revealed
from the two approaches (Hicks et al., 2014; Hicks
and Li, 2018). Because of these multiple local failures,
determining the reliability index of a 3D slope is more
like a system reliability problem (Ji and Chan, 2014).
All these studies re-confirmed the significance of the
3D probabilistic slope stability analysis. With advances
in computational science (Spencer, 2007) and the
availability of efficient sampling methods (Au and
Wang, 2014; Juang et al., 2017; Li et al., 2019), the
practicality of 3D probabilistic slope stability analyses
is gradually being enhanced.

This paper presents a comprehensive study com‐
paring 2D and 3D slope stability analyses, in which
the slope stability is evaluated with both deterministic
and probabilistic approaches. It is noted that some
previous studies have compared 2D and 3D slope
stability analyses. For instance, Xiao et al. (2016)
analyzed the relations between the FS of the 3D slope
(whose soil parameters were spatially varied) and that
of its cross-sections. Xiao et al. (2017) studied the 3D
slope failure mechanisms and analyzed the features
of local slope failures. However, the effects of the
boundary conditions have not been sufficiently dis‐
cussed in the previous studies, and the influence of
the horizontal scale of fluctuation on the failure
pattern of 3D slopes has not been sufficiently addressed.
The emphasis is placed on the influences of the hori‐
zontal scale of fluctuation (of soil properties) and the
longitudinal length (of the slope). Compared to the
existing literature on the comparison study between
2D and 3D slope stability analyses, the new contribu‐
tions of this study can be summarized as follows: (1) a
more comprehensive comparison study between 2D
and 3D slope stability analyses is conducted, using both
deterministic and probabilistic approaches; (2) the
effects of the horizontal scale of fluctuation (of soil
properties) and the longitudinal length (of the slope)
on the comparison are more systematically analyzed;
(3) the spatial variability of both cohesion and friction
angle is included in probabilistic slope stability analy‐
ses; (4) the statistics of the local slope failures (e. g.
their number, width, volume, and position) in 3D
probabilistic slope stability analyses are studied in a
more systematic manner.

The rest of this paper is organized as follows.
First, the critical components involved in this study,
such as the solution model adopted for slope stability
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analyses and the random field modeling for soil prop‐
erties, are introduced. Second, a comparison between
the 2D and 3D deterministic slope stability analyses is
conducted. Third, a comparison between 2D and 3D
probabilistic slope stability analyses is undertaken,
focusing on the influence of the horizontal scale of fluc‐
tuation and the longitudinal length. Finally, the conclud‐
ing remarks are made based on the results presented.

2 Methodologies adopted for the comparative
study

Neither deterministic nor probabilistic slope sta‐
bility analyses are new topics. However, it should be
of use to briefly review the methodologies adopted in
2D and 3D slope stability analyses herein to set the
stage for the comparative study.

2.1 Deterministic solution model for slope stability
analyses

The stability of a slope (either 2D or 3D) may be
evaluated using either numerical or limit equilibrium
approach. For explicit consideration of the spatial vari‐
ability of input soil properties, the strength reduction-
based numerical method (Zienkiewicz et al., 1975;
Dawson et al., 1999) is adopted in this study, and the
3D explicit finite difference program FLAC3D Version
7.0 (Itasca, 2020) is selected as the solution model for
evaluating the slope stability (both 2D and 3D). Within
FLAC3D Version 7.0, the strength reduction method
(Dawson et al., 1999) is employed for computing the
FS, in which the shear strength of soil, in terms of its
cohesion (c) and the friction angle (φ), is progressively
reduced (or increased) to bring the slope to a state
of limiting equilibrium. With this strength reduction
method, the shear strength of the soil for a trial value
of FS, denoted as fsi (generally greater than 1.0), can
be reduced as follows.

cri =
c
fsi

 (1a)

tan φri =
tan φ

fsi

 (1b)

where cri and φri represent the reduced cohesion and
friction angle, respectively. A series of FLAC simula‐
tions are made using different trial values of fsi until

the occurrence of slope failure, and the critical trial
value of fsi is taken as the FS of the concerned slope.
Notice that in FLAC3D Version 7.0, the FS of a 2D
slope can be easily estimated, assuming a unit longitu‐
dinal length of the slope.

2.2 Random field modeling for soil properties in
slope stability analyses

In numerical modeling of a slope (either 2D or
3D), the geometrical domain of the slope is discretized
into a set of small elements (or zones), thus permit‐
ting an easy assignment of different geotechnical
properties to different numerical elements. It should
be noted that the property within a specified element
is captured by a fixed value. Thus, the property is
averaged over an element domain, rather than taken at
the mesh grids. They should be sampled as such, and
considered in the numerical model. For illustration
purposes, the stationary lognormal random field (Jiang
et al., 2014; Gong et al., 2017; Qu et al., 2021) is
adopted in this study to model the spatial variability
of soil properties. For a lognormal random field of the
soil property s with the knowledge of the mean μs and
the coefficient of variation (COV) δs, the mean μlns

and the standard deviation σlns of the equivalent
normal random field lns, are computed as follows:

σ ln s = ln(1 + δ2
s )  (2a)

μ ln s = ln μs - 0.5σ 2
ln s. (2b)

The other feature of the equivalent normal field
lns is the autocorrelation structure ρ. In this study, the
anisotropic exponential autocorrelation structure is
adopted as an example and the correlation coefficient
of the soil property lns at two different positions of
(xi, yi, zi) and (xj, yj, zj), denoted as ρ(|xj–xi|, |yj–yi|, |zj–zi|),
is estimated as follows:

ρ (| xj - xi |  | yj - yi |  | zj - zi | ) =
exp ( - 2 || xj - xi

λx

-
2 || yj - yi

λy

-
2 || zj - zi

λz ) (3)

where |xj–xi|, |yj–yi|, and |zj–zi| represent the absolute
distances between the two positions of (xi, yi, zi) and
(xj, yj, zj) along the X, Y, and Z directions, respectively;
λx, λy, and λz represent the scales of fluctuation of the
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equivalent normal field lns along the X, Y, and Z direc‐
tions, respectively. It is noted that the correlation
coefficient (Eq. (3)) can be decomposed into the corre‐
lation coefficients in the X, Y, and Z directions:

ρ (| xj - xi |  | yj - yi |  | zj - zi | ) =
ρ (| xj - xi | ) × ρ (| yj - yi | ) × ρ (| zj - zi | )  (4a)

where

ρ (| xj - xi | ) = exp ( - 2 || xj - xi

λx )  (4b)

ρ (| yj - yi | ) = exp ( - 2 || yj - yi

λy )  (4c)

ρ (| zj - zi | ) = exp ( - 2 || zj - zi

λz ) . (4d)

While the mean of the soil property lnsE that is
averaged over the element domain, μlnsE, is expected to
be equal to that of the local soil property lns, μlns, the
standard deviation of the averaged soil property lnsE,
σlnsE, could be smaller than that of the local soil property
lns, σlns (Xiao et al., 2016). With the autocorrelation
structure established in Eq. (3), the variance reduction
factor of the concerned element, which ranges from 0
to 1, can be estimated according to the formulations
in (Knabe et al., 1998; Huang and Griffiths, 2015).
Thus, the standard deviation of the averaged soil prop‐
erty lnsE, σlnsE, could be readily obtained. Further, there
is generally more than one random field in slope
stability analyses, and these random fields are cross-
correlated. For example, both cohesion c and friction
angle φ of soil are characterized as random fields. In
this study, the cross-correlations among the random
fields are represented by a cross-correlation matrix Rc,
which is an nR by nR matrix, and its component ρRc(i,j)

is the cross-correlation coefficient between the ith
random field and the jth random field (i, j=1, 2,… , nR),
where nR represents the number of random fields.

2.3 Sampling of the random fields of soil properties
for slope stability analyses

In this study, the stepwise covariance matrix
decomposition introduced by Li et al. (2019) is adopted
because it is simple to implement and sufficiently

accurate. In this stepwise covariance matrix decompo‐
sition, the correlation matrix of the soil property
(among the numerical elements) is formulated in each
and every direction separately. As a result, three corre‐
lation matrices of the soil property can be derived.
They are Rlnsx, Rlnsy, and Rlnsz, where the component ρRlnsx(i,j)

in Rlnsx denotes the correlation coefficient between the
soil property lns of the ith numerical element and
that of the jth numerical element in the X direction
(Eq. (4b)), and the components in Rlnsy and Rlnsz are
estimated similarly. The dimensions of Rlnsx, Rlnsy, and
Rlnsz are nEx by nEx, nEy by nEy, and nEz by nEz, respectively,
where nEx, nEy, and nEz are the numbers of numerical
elements discretized in the X, Y, and Z directions,
respectively. The Cholesky decomposition of these
three correlation matrices is then applied.

ì

í

î

ïïïï

ïïïï

R lnsx =L lnsx ´LT
lnsx

R lnsy =L lnsy ´LT
lnsy

R lnsz =L lnsz ´LT
lnsz

(5)

where Llns represents a lower triangular matrix and
LT

lns represents the transpose matrix of Llns. The cross-
correlation matrix of Rc can be decomposed similarly.

Rc =LRc ´LT
Rc. (6)

Based on the decomposed lower triangular matri‐
ces of Llnsx, Llnsy, Llnsz, and LRc, a possible sample (or
realization) of the random field of the soil property s
can be generated.

sij = exp ( μ ln sEj + σ ln sEj × ln sij )  (7)

where sij denotes the soil property that is sampled
within the jth numerical element of the ithsample of
the random field s (i=1, 2, … , N; j=1, 2, … , nE), in
which N denotes the number of samples of the random
field and nE denotes the number of discretized numeri‐
cal elements (i.e. nE=nEx×nEy×nEz); μlnsEj and σlnsEj are the
mean and standard deviation of the soil property lns
that is averaged over the jth numerical element, respec‐
tively; lnsij denotes the normalized soil property lns
that is sampled within the jth element of the ith sample
of the random field, which is derived as follows:

lns i = (L ln sz⊗L ln sy⊗L ln sx )ξ i L
T
Rc (8)
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where ⊗ denotes the Kronecker product; ξi is an nE

by nR standard normal sample matrix (i=1, 2, … , N),
which may be obtained with the Latin hypercube sam‐
pling. The generated N samples of soil properties are
then taken as the inputs to the built numerical model
of the concerned slope. With the outcomes of the
numerical analyses, the statistics of the FS and the
probability of failure of the slope can be estimated
through Monte Carlo simulation (MCS).

3 Comparison between 2D and 3D determin-
istic slope stability analyses

In this section, the boundary conditions and the
mesh size settings in the numerical model for the slope
stability analysis (either 2D or 3D) are discussed.
Then, the results between 2D and 3D deterministic
slope stability analyses are compared. The results also
provide a background for comparisons between 2D
and 3D probabilistic analyses.

3.1 Boundary conditions in the numerical model
for slope stability analyses

In reference to a 3D slope shown in Fig. 1, the
slope stability is often analyzed as a 2D problem
adopting a plane strain assumption; thus, the boundary
condition for the stability analysis is assumed as
follows: a fixed boundary is applied to the slope
bottom while the roller boundary is applied to the
slope back and front faces. However, the boundary
condition for the 3D slope stability analysis is quite
complicated. For example, three types of boundary
conditions, namely, the rough-rough (RR), rough-
smooth (RS), and smooth-smooth (SS) boundaries,
are generally employed for the slope leftmost and
rightmost faces (Griffiths and Marquez, 2007). Here,
the rough boundary represents the fixed boundary
while the smooth boundary represents the roller
boundary. Since the RS boundary is often applied to
symmetric slope problems, and it is expected that the
RS boundary analysis (with a slope longitudinal length
of L) and the RR boundary analysis (with a slope
longitudinal length of 2L) could yield the same results;
this RS boundary condition is not discussed in this
paper. Spencer (2007) stated that the boundary condi‐
tion applied to the slope leftmost and rightmost faces
exerted a vital influence on the behavior of 3D slopes,

especially for short slopes (i.e. the longitudinal length
is small). The difference between RR and SS bound‐
aries in the 3D slope stability analysis may be attrib‐
uted to the difference in the soil behaviors near the
leftmost and rightmost faces. Thus, both RR and
SS boundaries are studied in the 3D slope stability
analysis.

To minimize the boundary effect on the FS
calculation of the slope (both 2D and 3D), a suffi‐
ciently large geometric domain should be employed.
However, the computational efficiency of the numer‐
ical analysis tends to decrease with the increase of the
geometric domain. A parametric analysis is undertaken
herein to determine the suitable geometric domain,
which is captured by the dimension parameters, dback,
dfront, and ddown (Fig. 1). Without loss of generality, a
homogenous 3D slope with longitudinal length L of
15 m, height H of 10 m, and slope angle θ of 45° is
adopted in this parametric analysis. In the established
numerical model, the soil behaviors are modeled with
the elastic-perfectly plastic Mohr-Coulomb model,
the soil properties are tabulated in Table 1, and the
size of the discretized element is set at 0.5 m×0.5 m×
0.5 m. Based on the results of the parametric study,
the plot of which is not shown in this paper, when the
values of the dimension parameters dback, dfront, and ddown

are smaller than 0.5H, the development of the poten‐
tial slip surface within the slope may be interrupted
by the applied boundaries; as such, the FS calculation
would be affected. On the other hand, when the values
of the dimension parameters dback, dfront, and ddown are
greater than 0.5H, the increase of the dimension param‐
eters does not improve the FS calculation. Thus, the
geometric domain for the slope stability analysis in
this study is set as dback=H, dfront=H, and ddown=0.5H.

With the aforementioned geometric domain as
input, the stability of this 3D slope can readily be

Fig. 1 Conventional 2D stability analysis of a 3D slope
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evaluated, adopting RR and SS boundaries, and the
resulting FS values are 1.40 and 1.16, respectively.
The failure modes, represented by the contour of soil
displacement, of this slope derived with these two
boundary conditions are shown in Figs. 2a and 2b. As
seen in Fig. 2a, the 3D slope stability analysis with
RR boundary yields a 3D failure mode, which is
consistent with the 3D failure mode of the realistic
landslide, the Qianjiangping landslide, described by
Zhang et al. (2018). Both of the 3D slip surfaces
obtained from the numerical simulation results with
RR boundary and field surveys of the Qianjiangping
landslide are ellipsoid-shaped. Whereas, the failure
mode of the slope derived with SS boundary is consis‐
tent with that obtained from conventional 2D slope

stability analyses, as illustrated in Fig. 2b. Note that
the 3D deterministic slope stability analysis with SS
boundary and the conventional 2D slope stability anal‐
ysis are theoretically identical. The SS boundary is
not considered in the comparison between 2D and 3D
deterministic slope stability analyses.

3.2 Mesh sizes in the numerical model for slope
stability analyses

It is well known that a finer mesh in the numerical
model can lead to a more accurate evaluation of a
geotechnical system while a coarser mesh does the
opposite. Here, a parametric study is undertaken to
investigate the influence of the mesh size in the
FLAC model on the results of slope stability analyses.
For ease of illustration, the mesh size in this study
is denoted by the numbers of numerical elements
discretized in the slope domain along the X, Y, and Z
directions, namely, nEx, nEy, and nEz. The results of this
parametric study are plotted in Fig. 3. Fig. 3a depicts
that the resulting FS of the 3D slope, with RR bound‐
ary, decreases with the decrease of the mesh size
(indicated by the increase of the number of numerical
elements). Relative to the effect of the mesh size in
the 2D slope cross-section (represented by nEx and nEz),

Table 1 Soil properties adopted in the deterministic slope

stability analysis

Parameter

Density, ρ (kg/m3)

Cohesion, c (kPa)

Friction angle, φ (°)

Young’s modulus, E (MPa)

Poisson’s ratio, v

Value

2000

24

12

100

0.30

0.00 0.03 0.06 0.08 0.12

Displacement (m)

Sliding mass

Slip  surface

FS=1.40

Displacement (m)

0.00 0.06 0.12 0.18 0.24

Sliding mass

Slip surface

FS=1.16

(a) (b)

Fig. 2 Comparisons between two boundary conditions in 3D slope stability analyses (L=15 m, H=10 m, and θ=45°): (a) contour
of nodal displacement obtained with RR boundary; (b) contour of nodal displacement obtained with SS boundary
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the FS of the 3D slope is less sensitive to the mesh
size along the longitudinal direction (represented by
nEy). The obtained FS of the 3D slope tends to converge
with the decrease of the mesh size.

Though the decrease of the mesh size can lead
to more accurate FS calculation of the slope, a finer
mesh would reduce the computational efficiency.
To this end, the relationship between the computa‐
tional time and the mesh size adopted in the numeri‐
cal model is studied, and the results are plotted in
Fig. 3b. Note that the calculation is conducted on a
desktop computer equipped with 64 GB RAM and
an AMD Ryzen Threadripper 2990WX 32-Core
CPU clocked at 3.00 GHz. As can be expected, the
computational time increases with the number of el‐
ements discretized in the geometric domain. As the
accuracy of FS calculation also increases with the
number of elements, a tradeoff relationship exists be‐
tween the accuracy of FS calculation and the compu‐
tational time.

As shown in Fig. 3, when the mesh size adopted
in the built FLAC model is set at 0.5 m×0.5 m×0.5 m
(i. e. nEx=20, nEy=30, and nEz=20), a converged FS of
this 3D slope can be obtained with RR boundary.
When the mesh size is set at 1.0 m×1.0 m×1.0 m (i.e.
nEx=10, nEy=15, and nEz=10), a compromised solution
(i.e. the knee point on the tradeoff relationship) be‐
tween the accuracy of the FS calculation and the
computational time can be achieved. Therefore, the
finer mesh (i. e. 0.5 m×0.5 m×0.5 m) is adopted in
the subsequent comparison using the deterministic
approach. In contrast, the compromised solution of
the mesh size (i. e. 1.0 m×1.0 m×1.0 m) is initially
selected in the comparison using the probabilistic
approach.

3.3 Comparison between 2D and 3D deterministic
slope stability analyses

With the adopted boundary conditions and mesh
sizes, comparisons between 2D and 3D deterministic
slope stability analyses can readily be conducted. In
the deterministic slope stability analysis (either 2D or
3D), the soil properties are fixed values while the
spatial variability of soil properties is not considered.
Here, the soil properties listed in Table 1 are employed
in the deterministic analysis, and the results from the
2D and 3D analyses are compared in Fig. 4.

Fig. 4 compares the FS obtained from the 3D
slope stability analysis with RR boundary and those
obtained from the 2D analysis. For ease of comparison,
the longitudinal length L of the 3D slope is normal‐
ized by the slope height H; the term SEy represents
the mesh size along the longitudinal direction while
the mesh size in the 2D slope cross-section is set at
0.5 m×0.5 m. The plots in Fig. 4 depict that the FS
obtained from this 3D analysis (with RR boundary)
decreases with the longitudinal length of the slope,
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Number of numerical elements
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Fig. 3 Effect of the mesh size on the FS calculation of 3D slopes with RR boundary (L=15 m, H=10 m, and θ=45°):
(a) calculated FS; (b) computational time

0 2 4 6 8 10
0

2

4

6

8

FS

Normalized longitudinal length, L/H

  

  

  

  

FS=1.16 (2D analysis)

SEy=0.3 m
SEy=1.0 m
SEy=2.0 m
SEy=3.0 m

SEy=0.5 m
SEy=1.5 m
SEy=2.5 m
SEy=5.0 m

Fig. 4 Comparison between the 2D and 3D deterministic
slope stability analyses with RR boundary (H=10 m and
θ=45°)
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and it tends to converge to the FS obtained from
the conventional 2D analysis (i.e. FS=1.16). When
the normalized longitudinal length L/H is greater than
5.0, the difference between the FS obtained from the
3D analysis and that obtained from the 2D analysis
becomes negligible. In other words, the stability of a
homogeneous slope that is sufficiently long can be
accurately analyzed with the conventional 2D approach.
However, the 2D analysis is likely to underestimate
the FS of the short slope. Griffiths and Marquez (2007)
derived a similar observation but with a stricter crite‐
rion that the normalized longitudinal length L/H should
be larger than 10.

4 Comparison between 2D and 3D probabilistic
slope stability analyses

In this section, the 2D and 3D probabilistic slope
stability analyses are compared. In these comparisons,
the influence of the slope longitudinal length and the
horizontal scale of fluctuation of soil properties are
also studied. In the 3D probabilistic slope stability
analysis, both RR and SS boundaries are examined,
and the mesh size is set at 1.0 m×1.0 m×1.0 m (with
due consideration of the tradeoff relationship between
the accuracy of FS calculation and the computational
time shown in Fig. 3). Table 2 summarizes the statis‐
tical properties of the soil parameters for the probabi‐
listic analysis.

4.1 Method adopted for estimating probabilities
of failure of slopes

Although the MCS is widely utilized for sampling
the random properties, it lacks efficiency, especially
for problems of low probabilities of failure. As such,
a hybrid approach that takes advantage of the effec‐
tiveness of the MCS in sampling the random fields of
soil properties and the efficiency of moment methods

in estimating the probability of failure is adopted.
Here, the MCS is adopted for deriving the dimension‐
less moments of the performance function, and the
derived moments are then utilized for estimating the
probability of failure using the moment methods (Zhao
and Ono, 2001). First, a performance function, denoted
as G, is formulated for the probabilistic slope stability
analysis.

G = FS - 1.0 (9)

where a slope is deemed feasible (or safe) if the ob‐
tained performance function G is greater than 0 (i. e.
FS>1.0). Based on the outcome from the MCS analysis,
the general statistics and dimensionless central moments
of the performance function G are computed as follows:

μG =
1
N∑i = 1

N

Gi  (10a)

σG =
é

ë
êêêê

1
N∑i = 1

N (Gi - μG ) 2ù

û
úúúú

1
2

 (10b)

mGk =

1
N∑i = 1

N

(Gi - μG )k

σ k
G

 k = 3 4 (10c)

where μG and σG represent the mean and the standard
deviation of the performance function G, respectively;
Gi represents the performance function value that is
obtained with the ith sample of soil properties (i=1,
2, …, N), in which N is the number of samples taken
in the MCS; mGk represents the kth dimensionless
central moment of the performance function G.

Fig. 5 illustrates the derived relationships between
the central moments of the performance function G
and the sample number adopted in the MCS. Fig. 5
shows that the moments of the performance function
G tend to converge with the increase of the number of
MCS samples, and in this case, the convergence of the
derived moments can be secured when the number of
MCS samples exceeds 900. Hence, the number of
MCS samples is set at 1000 in this study. With the aid
of the derived central moments, the reliability index
(β) of the concerned slope can readily be estimated
with the moment method. The fourth-moment method
FM-1 in (Zhao and Ono, 2001) is adopted in this
study. The probability of failure Pf is related to the
estimated reliability index β as follows:

Table 2 Statistical information of soil properties adopted

for the probabilistic slope stability analysis

Item

Distribution
Mean
Coefficient of

variation

Cohesion, c

Lognormal
24 kPa

0.3*

Friction
angle, φ

Lognormal
12°
0.2*

Correlation
coefficient, ρc,φ

−0.5*

* Data from (Jiang et al., 2014)

215



| J Zhejiang Univ-Sci A (Appl Phys & Eng) 2022 23(3):208-224

Pf =Φ ( - β)  (11)

where Φ(∙) is the cumulative distribution function
(CDF) of the standard normal variable.

Fig. 6 validates the accuracy of the adopted fourth-
moment method FM-1 in estimating the probability of
failure Pf of the slope. In the context of the brute
MCS, the COV of Pf, denoted as δPf, is approximated
as follows (Ang and Tang, 2007):

δPf »
1 -Pf

N ×Pf

. (12)

With the estimated Pf (through counting the
number of failure samples) and its COV, the 90%
confidence interval of Pf from the MCS can be
obtained with an assumption that the estimated Pf

follows a lognormal distribution. From there, the
accuracy of the adopted fourth-moment method FM-1
can be validated. For the validations shown in Figs. 5
and 6, the analyses are carried out for 30 slope scenarios
covering various combinations of the longitudinal
lengths of the 3D slope and the horizontal scales
of fluctuation of soil properties. Note that only the
estimated large probabilities of failure are validated
here due to the issue of computational efficiency of
the brute MCS. As shown in Fig. 6, the probabilities
of failure from the fourth-moment method FM-1 are
well bracketed by the 90% confidence intervals of the
probabilities of failure from the MCS. The Pearson
correlation coefficient between the Pf obtained from
the brute MCS and that from the fourth-moment
method FM-1 can also be calculated as 0.990, which
implies a strong linear relation between them. Further,
the emphasis of this study is on the influences of
the horizontal scale of fluctuation and the longitu‐
dinal length on the estimated slope probability of
failure, which might not be affected much by the
improvement of the accuracy of the estimated failure
probability. Thus, the validations are considered
adequately performed.
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Fig. 5 Convergence of the central moments of the per-
formance function with the number of MCS runs: (a) mean;
(b) standard deviation; (c) third dimensionless central
moment; (d) fourth dimensionless central moment
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4.2 Comparison between 2D and 3D probabilistic
slope stability analyses

As demonstrated previously, the stability of a
homogeneous slope that is sufficiently long can be
studied with the 2D analysis. Two long slopes, the
normalized longitudinal length L/H of which are set
at 5 and 10, respectively, are first analyzed for the
comparison between the 2D and 3D probabilistic anal‐
yses. The results that compare 2D versus 3D analyses
for these two slope scenarios are presented in Fig. 7,
in which the vertical scale of fluctuation λv is set as a
constant value of 4.0 m, as commonly adopted in
previous studies (Jiang et al., 2014; Li DQ et al.,
2015; Xiao et al., 2016). The obtained probability
of failure Pf generally increases with the horizontal
scale of fluctuation (i.e. λx=λy=λh) in both 2D and 3D
probabilistic analyses. The trend of increase in the
probability of failure may be explained by the stronger
correlation and higher homogeneity of soil properties
within the horizontal plane, caused by the rise of the
horizontal scale of fluctuation. The influence of the
horizontal scale of fluctuation is more evident in the
slope longitudinal direction. Thus, the increase of the
probability of failure with the horizontal scale of fluctu‐
ation is more profound in the 3D probabilistic analysis.
Note that when the horizontal scale of fluctuation is
sufficiently large, the probability of failure derived with
the SS boundary can converge to that derived from
the 2D analysis. For the two slope scenarios analyzed,
the longer slope yields a higher probability of failure,
as there is a greater chance of encountering a weak
zone that triggers the slope failure and a longer slope
tends to have more local failures along the longitudinal
direction (as will be demonstrated below). This 3D
nature of individual failures can be explicitly accounted
for in 3D slope stability analyses. Thus, the 2D proba‐
bilistic analysis tends to overestimate the probability
of failure of 3D slopes, and the degree of this error
depends on the horizontal scale of fluctuation of soil
properties and the slope longitudinal length.

Hicks et al. (2014) showed that it was more chal‐
lenging to calibrate the horizontal scale of fluctuation
of soil properties than that of the vertical scale of fluc‐
tuation. Hicks and Spencer (2010) indicated that the
failure mode of a 3D slope might be influenced much
more by the horizontal scale of fluctuation and the
slope longitudinal length. To this end, a parametric
analysis is further undertaken to address the influences

of the horizontal scale of fluctuation (of soil properties)
and the slope longitudinal length in the comparison of
the 2D and 3D analyses.

In this parametric analysis, the slope height and
angle are fixed values (i.e. H=10 m and θ=45°), and
the vertical scale of fluctuation (of soil properties) is
set as a constant value of λv=4.0 m. In contrast, the
horizontal scale of fluctuation and the slope longitu‐
dinal length can vary. The vertical scale of fluctuation
of soil properties typically ranges from 0.1 m to 8.0 m
while the horizontal scale of fluctuation ranges from
10 m to 92 m (Phoon and Kulhawy, 1999; Li DQ
et al., 2015). The scales of fluctuation in this parametric
analysis fall well within these typical ranges. In refer‐
ence to Figs. 3 and 4, the results of the 3D slope
stability analysis are hardly affected by the mesh size
SEy in the slope longitudinal direction. Thus, a larger
mesh size SEy in the slope longitudinal direction may
be adopted. However, the previous study Huang and
Griffiths (2015) depicted that the mesh sizes in the
probabilistic slope stability analysis should be no
larger than 0.25 times the scales of fluctuation. To
improve the computational efficiency of this parametric
analysis, the mesh size in the slope cross-section,
which dominates the result of the 3D slope stability
analysis, is set at 1.0 m×1.0 m. In contrast, in the longi‐
tudinal direction, it is set at 0.1λy. The parametric anal‐
ysis results are illustrated in Fig. 8.

Hicks and Spencer (2010) showed that the failure
mode of a 3D slope could be more influenced by
the ratio of the slope longitudinal length over the
horizontal scale of fluctuation, thus the slope longitu‐
dinal length in this parametric analysis is also normal‐
ized by the horizontal scale of fluctuation (L/λh). As
can be seen from Fig. 8, the parametric analysis results

10 100 1000
10-10

10-8

10-6

10-4

10-2

100

 2D analysis results
 L/H=5 (SS boundary), 3D analysis
 L/H=5 (RR boundary), 3D analysis
 L/H=10 (SS boundary), 3D analysis
 L/H=10 (RR boundary), 3D analysis

P
f  
de

riv
ed

 fr
om

 th
e

fo
ur

th
-m

om
en

t m
et

ho
d

FM
-1

 (Z
ha

o 
an

d 
O

no
, 2

00
1)

Horizontal scale of fluctuation, λh (m) 

Fig. 7 Effect of the horizontal scale of fluctuation of soil
properties λh on the estimated probability of failure of the
slope (H=10 m, θ=45°, and λv=4.0 m)
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generally agree with the observations shown in Fig. 7.
For example, the difference between the 2D and 3D
probabilistic analysis tends to decrease with the hori‐
zontal scale of fluctuation and the slope longitudinal
length. In the 3D analysis, the probability of failure
obtained with the RR boundary is always smaller than
that obtained with the SS boundary. The difference
between the probabilities of failure obtained with these
two boundaries also decreases with the horizontal
scale of fluctuation and the slope longitudinal length
(Fig. 8b), owing to the fact that a large value of the
horizontal scale of fluctuation tends to result in a
large width of the local failure and a sufficient longitu‐
dinal length of the slope considerably tends to weaken
the effect of the boundaries applied to the leftmost
and rightmost faces. Furthermore, the probability of
failure obtained from the 3D analysis is affected more
by the horizontal scale of fluctuation (of soil proper‐
ties), compared to its 2D counterpart.

Although the 3D deterministic analysis could
yield a converged stability evaluation when the slope
longitudinal length is sufficiently large (e. g. L/H>
5.0), such a convergence cannot be reached in the

3D probabilistic analysis. For example, the probability
of failure obtained from the 3D probabilistic analy‐
sis is always smaller than that obtained from its
2D counterpart, and this difference could not vanish
even if a large horizontal scale of fluctuation (i.e. λh=
80 m) or a long slope (i. e. L/λh=12 and λh=80 m) is
taken. Hence, the probability of failure for a 3D slope
(either short or long) with spatially varying soil prop‐
erties cannot be approximated well with the 2D prob‐
abilistic analysis; the 2D analysis tends to overesti‐
mate the probability of failure in this scenario.

4.3 Statistics of the local failures in 3D probabilistic
slope stability analyses

The previous results show that in the deterministic
evaluation, the stability of a homogeneous slope that
is sufficiently long can be modeled as a 2D problem.
In contrast, the 3D probabilistic slope stability analysis
may not be approximated well with the 2D analysis.
The reason behind this difference could be attributed
to the multiple local slope failures distributed along
the longitudinal direction of the 3D slope, which is
due to the spatial variability of the soil properties. As
illustrated in Fig. 9, there exist multi-local failures
along the longitudinal direction of a 3D slope (L=
480 m and λh=40 m), and the number and locations of
these local failures are greatly affected by the sampled
soil properties. On the other hand, only a global slope
failure can be detected in the 3D deterministic slope
stability analysis. As presented previously, the global
failure characteristics of a 3D slope that is homoge‐
neous and sufficiently long can be adequately captured
by the 2D analysis. Thus, it is possible to estimate the
FS of a 3D slope using the conventional 2D determin‐
istic approach.

In a numerical analysis of the slope stability using
the strength reduction method, two methods are mainly
adopted to automatically locate the critical slip surface
(Wang et al., 2020). One is the shear strain-based
approach and the other is the nodal displacement-based
approach, and the latter is more extensively applied
due to its simplicity. Huang et al. (2013) separated
the sliding mass and the stable soil element according
to the k-means clustering of the nodal displacement.
Ji and Chan (2014) adopted 10% of the maximum
nodal displacement as a criterion for locating the slip
surface. In this study, the slip surface is derived based
on the computed nodal displacement and the method
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presented in (Ji and Chan, 2014) is adopted. The built
numerical model is first discretized into a set of small
numerical elements; and, if the displacement of all the
nodes in a numerical element exceeds 10% of the
maximum nodal displacement, this numerical element
will be regarded as a sliding soil element. Then, the
boundary between the sliding soil elements and the
stable soil elements is taken as the slip surface. It is
noted that the threshold value of 10% of the maximum
nodal displacement is validated through a parametric
study, in which the influences of the threshold value
of the maximum nodal displacement and the FS on
the located slip surfaces are investigated. In this study,
the sliding direction is assumed to be perpendicular to
the slope longitudinal direction, which is confirmed by
the numerical simulation results. Based on the geome‐
tries of the local failures determined with this criterion,
the number and the total width and volume of these
local failures can be estimated. For instance, three
local failures (local failure I, local failure II, and local
failure III) might occur in one 3D probabilistic slope
stability analysis as illustrated in Fig. 10. The total
width b in this simulation can be calculated as the sum
of the width b1, b2, and b3 for local failure I, local

failure II, and local failure III, respectively. The total
volume V in this simulation can be similarly computed
as the sum of the volume V1, V2, and V3 for local
failure I, local failure II, and local failure III, respec‐
tively. The position P of each local failure can be
defined as the ratio of the length L1, which is the
distance along the slope longitudinal direction from
central point of the local failure to the rightmost face
of the slope, to the slope longitudinal length L. Li et al.
(2015) and Hicks and Li (2018) concluded that the
characteristics of these local failures were mainly
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Fig. 10 Estimate of the characteristics of local slope failures
in 3D slope stability analyses
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affected by the longitudinal length (of the slope) and
the horizontal scale of fluctuation (of soil properties).
A parametric analysis is conducted herein to address
the influences of these factors on the characteristics of
local slope failures. The results of this parametric study,
which cover the number of local failures, the total
width, and the total volume, are discussed below.

As shown in Fig. 11, multiple local failures can
be observed in many 3D slope scenarios; however,
the single failure mode has the highest frequency,
which is in good agreement with the findings of Li YJ
et al. (2015). Fig. 11a shows that the number of
local failures is strongly affected by the slope longitu‐
dinal length (with either RR or SS boundary). For
example, when the horizontal scale of fluctuation
(of soil properties) is a fixed value (e.g. λh=40 m), the
increase in the slope longitudinal length leads to a

decrease in the frequency of the single failure mode
and an increase in the incidence of multiple failures.
In other words, a larger slope longitudinal length tends
to yield more local failures in the 3D probabilistic
slope stability analysis (because of a greater chance
of encountering a weak zone that triggers the slope
failure), providing a convincing reason for the increase
of the probability of failure as the slope longitudinal
length increases. Compared with the longitudinal
length, the number of local failures within the 3D
slope is less influenced by the horizontal scale of fluc‐
tuation, as shown in Fig. 11b. Note that a higher value
of the horizontal scale of fluctuation decreases the
incidence of multiple failures (Hicks and Li, 2018).
When the slope longitudinal length and the horizontal
scale of fluctuation are proportionally increased (e.g.
L/λh=12), the similar trend of the number of local
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Fig. 11 Effect of input parameters on the number of local failures (H=10 m, θ=45°, and λv=4.0 m): (a) λh=40 m; (b) L/λh=12
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failures (with either RR or SS boundary) can be
obtained, which implies the influence of the slope
longitudinal length on the incidence of local failures
covers that of the horizontal scale of fluctuation.

To remove the influence of the longitudinal
length, we normalize the total width and total volume
of the local slope failures with the slope longitudinal
length. Fig. 12 shows the influence of the slope longi‐
tudinal length and the horizontal scale of fluctuation
on the normalized total width of local failures. The
mean of the normalized total width of the local failures
decreases with the slope longitudinal length (at a spec‐
ified horizontal scale of fluctuation of soil properties)
and the horizontal scale of fluctuation. On the other
hand, the COV of the normalized total width of the
local failures increases with the slope longitudinal
length and the horizontal scale of fluctuation. Further‐
more, as the geometry of the 2D slope cross-section
is fixed in this parametric study, the effects of the
slope longitudinal length and the horizontal scale of
fluctuation on the normalized total volume of the local
failures are similar to those on the normalized total
width.

The mean of the normalized total width and that
of the normalized total volume obtained with the RR
boundary are both larger than those obtained with the
SS boundary. In contrast, the COVs of the normalized
total width and the normalized total volume obtained
with the RR boundary are smaller than those obtained
with the SS boundary. The different behaviors of the
statistics of the normalized total width and the normal‐
ized total volume may be attributed to the fact that the
local slope failures close to the leftmost and rightmost
boundaries are constrained by the stricter RR bound‐
ary, as illustrated in Fig. 13. The frequency for the
local failures close to the leftmost and rightmost
boundaries is less than that obtained with the SS
boundary, which provides another reason for the larger
probabilities of failure obtained with the SS boundary
(in comparison to those obtained with the RR boundary).
Similar results with different scales of fluctuation of
Fig. 13 can be also obtained, which indicate that the
influence of the boundaries on the distribution of the
local failures is not affected much by the scales of
fluctuation. The relatively uniform distribution of the
local failures along the longitudinal direction shown
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in Fig. 13 indicates that the occurrence of the local fail‐
ures is random along the slope longitudinal direction
(Vanmarcke, 2011), revealing the complexity of the
3D probabilistic slope stability analysis.

5 Conclusions

This paper presented a comprehensive study to
compare 2D and 3D slope stability analyses, using
both deterministic and probabilistic approaches. In the
deterministic evaluation, the soil properties were
simulated as fixed values, and the primary purpose
was to examine the suitability of the conventional 2D
slope stability analysis in a 3D slope problem. In the
probabilistic evaluation, the spatial variability of soil
properties was explicitly considered, while the empha‐
sis was on the impact of the longitudinal length (of
the 3D slope) and the horizontal scale of fluctuation
(of soil properties) when comparing the 2D analysis
with the 3D analysis. The occurrence and effect of
multiple local failures in the 3D probabilistic slope
stability analysis were also examined. Based on the
results presented, the following conclusions were
reached.

1. In light of the 3D failure mode of real slopes
or landslides observed in the field, the RR boundary
was judged most suitable for a strict 3D slope stability
analysis. In contrast, the 3D analysis with the SS
boundary should be viewed only as an extension of
the conventional 2D analysis. In the deterministic
evaluation, the results showed that the FS of a long
homogeneous slope (i.e. L/H>5.0) could be accurately
analyzed with the conventional 2D analysis. For shorter
slopes, the 2D analysis generally underestimated the
FS.

2. In the probabilistic evaluation, the 3D analysis
generally yielded a probability of failure smaller than
that obtained from its 2D counterpart. The difference
in the computed probabilities of failure, between 2D
and 3D analyses, decreased with the slope longitudinal
length and the horizontal scale of fluctuation (of soil
properties). The probability of failure obtained from
the 3D analysis was more sensitive to the horizontal
scale of fluctuation than did its 2D counterpart. In the
face of the spatial variability of soil properties, the
probability of failure for a 3D slope (either short or
long) cannot be approximated with the conventional

2D analysis. Indeed, the 2D analysis generally overes‐
timated the probability of failure in such scenarios.
Furthermore, in the context of the 3D probabilistic
slope stability analysis, the probability of failure
obtained with the RR boundary was found to be
smaller than that obtained with the SS boundary.

3. The multiple local failures distributed along
the slope longitudinal direction (caused by the exis‐
tence of the weak zones) were found to be a factor
that could explain the difference in the computed
failure probabilities between 2D and 3D analyses.
Although multiple local slope failures were found in
many 3D slope scenarios, the single failure mode was
still the most likely scenario. The number of local
failures was found to be less influenced by the hori‐
zontal scale of fluctuation than by the longitudinal
length of the slope. The mean values of the normalized
total width and the normalized total volume (of local
slope failures) decreased with the slope longitudinal
length and the horizontal scale of fluctuation. At the
same time, their COVs generally increased with the
slope longitudinal length and the horizontal scale of
fluctuation. The mean values of the normalized total
width and the normalized total volume (of local slope
failures) obtained with the RR boundary were greater
than those obtained with the SS boundary, while their
COVs obtained with the RR boundary were smaller
than those obtained with the SS boundary.
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