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Biophysical neurons, energy, and synapse controllability: a review
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Abstract: Diffusive intracellular and extracellular ions induce a gradient electromagnetic field that regulates membrane potential, 
and energy injection from external stimuli breaks the energy balance between the magnetic and electric fields in a cell. Indeed, 
any activation of biophysical function and self-adaption of biological neurons may be dependent on energy flow, and synapse 
connection is controlled to reach energy balance between neurons. When more neurons are clustered and gathered closely, field 
energy is exchanged and shape formation is induced to achieve local energy balance. As a result, the coexistence of multiple 
firing modes in neural activities is fostered to prevent the occurrence of bursting synchronization and seizure. In this review, a 
variety of biophysical neuron models are presented and explained in terms of their physical aspects, and the controllability of 
functional synapses, formation of heterogeneity, and defects are clarified for knowing the synchronization stability and cooperation 
between functional regions. These models and findings are summarized to provide new insights into nonlinear physics and 
computational neuroscience.
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1 Introduction 

Decision-making in the nervous system controls 
the motion and gait of animals and human, and it 
depends on cooperation and competition between neu‐
rons, both within the same functional region and in 
other regions of the brain. The application of mag‐
netic resonance imaging technology (MRIT) (Geetha‐
nath and Vaughan, 2019) provides helpful evidence 
for building a functional brain network (Davison et al., 
2015; Fraschini et al., 2016; Telesford et al., 2016; 
Vecchio et al., 2017) and for exploring the neural ac‐
tivities and occurrence mechanisms in defects and ab‐
normalities of the brain. Some results are helpful for 
discovering the working mechanisms and applying ap‐
propriate schemes which can cure nervous diseases 
(He and Yao, 2020; Shi et al., 2020; Yang and Sawan, 
2020; Ahmad et al., 2022; Yan et al., 2022). In the ner‐
vous system, biological neurons (Manor and Nadim, 
2001; Mishra et al., 2006; Grassia et al., 2011; Bailoul 

and Alaa, 2020; Nasiraee et al., 2022) have the main 
role in signal exchange and information encoding, and 
more evidence have confirmed the contribution from 
astrocytes (Ricci et al., 2009; Brekke et al., 2015; 
Durkee and Araque, 2019; Khakh, 2019; Bonvento 
and Bolaños, 2021). It appears that astrocytes regulate 
calcium flow, which can effectively adjust muscle 
contraction and heartbeat (Silverman et al., 2006; Cal‐
abrese et al., 2016; Giuriato et al., 2020; Kuhtz-
Buschbeck et al., 2021). There is a distinct difference 
between biological neurons and generic neuron models, 
although both of them can estimate and predict the 
mode of transition in neural activities. Indeed, the ef‐
fect of ion channels becomes very important in dis‐
cerning mode selection and pattern development; this 
allows the propagation of calcium, potassium, and so‐
dium along membrane channels to be better addressed.

On the other hand, special anatomic structure 
should be considered with regard to signal processing 
and control of neural activities. For example, cable 
neuron models (Tuckwell, 2006; Elbasiouny, 2014; 
Guo et al., 2016; Latorre and Wårdell, 2019) can de‐
scribe signal propagation along an axon. Wang et al. 
(2017) mentioned that the formation of autapses on 
some interneurons results from injury to the axon, and 
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an auxiliary loop is then created to correct signal propa‐
gation. Autaptic driving can be excitatory or inhibitory 
(Song et al., 2019; Yao et al., 2019; Zhao et al., 2020; 
Wu et al., 2021; Qi et al., 2022), and based on what 
type of autaptic current it generates, it is classified as 
an electrical or chemical autapse. With regard to dy‐
namics, when an autapse connects to a neuron it simply 
applies time-delayed feedback to the membrane po‐
tential, and the normalized parameters can be tamed 
to control the firing modes and pattern. In a neural 
network, local distribution of inhibitory autapses can 
promote development of defects that block wave prop‐
agation (Qin et al., 2015), while a local excitatory 
autapse can induce heterogeneity for emitting wave 
fronts (Ma et al., 2015a, 2015b; Yilmaz et al., 2016; 
Protachevicz et al., 2020; Baysal et al., 2021). Indeed, 
activation of an autapse can enhance the self-adaption 
of neurons for selecting suitable firing modes and pro‐
tect them from electromagnetic radiation (EM) (Ren 
et al., 2017; Xu et al., 2017; Ge et al., 2019, 2021; 
Njitacke et al., 2022).

A model approach for neurons should mainly 
consider biophysical properties during the generation 
of neural activities and action potentials. Mathemati‐
cally, discrete model and maps can reproduce the mode 
selection in neural activities (Hemby et al., 2002; 
Ibarz et al., 2008; Bashkirtseva et al., 2018; Nouri 
et al., 2019; Muni et al., 2022), and they are more suit‐
able for realization of digital circuits via field program‐
mable gate array (FPGA) (Graas et al., 2004; Matsub‐
ara et al., 2011; Nazari et al., 2015; Malik and Mir, 
2020). Differential-equation–based neuron models are 
helpful for predicting mode selection and transition in 
electric activities, and the effect of electromagnetic in‐
duction can be estimated by introducing the magnetic 
flux variable (Wu et al., 2017; Baysal and Yilmaz, 
2020; Kafraj et al., 2020; Yuan et al., 2020; Upadhyay 
et al., 2022). Fractional-order neuron models are help‐
ful to show the memory effect and non-diffusive prop‐
erties in neurons (Shi and Wang, 2014; Teka et al., 
2018; Chen et al., 2019; Mondal et al., 2019; Ab‐
delAty et al., 2022). In fact, reliable neuron models 
are critical in discerning the collective behaviors of 
neural networks; once this is accomplished one can 
understand controllability in synapses, biophysical ef‐
fects during occurrence of action potentials, noisy dis‐
turbance and electromagnetic radiation, energy ex‐
change, and wave propagation in the nervous system. 

For previous discussion and suggestions, readers can 
find explanations and possible guidance in these re‐
views and the references therein (van Geit et al., 2008; 
Ma and Tang, 2017; Wang and Ma, 2018; Ma J et al., 
2019; Wang CN et al., 2019; Lin et al., 2021; Ma, 
2022).

In this review, we primarily introduce the func‐
tional synapse, some biophysical neurons and their en‐
ergy role in controlling firing modes and growth of 
synapses, and formation of heterogeneity and defects 
in neurons and networks. As is well known, some 
nonlinear circuits can be tamed to reproduce the main 
dynamical properties of biological neurons, and thus 
more neural circuits are obtained to develop reliable 
physical neuron models, which exhibit stronger synap‐
tic function due to enhancement of the biophysical 
properties of channels.

For simplicity, we will use a simple neural circuit 
(Kyprianidis et al., 2012) composed of one capacitor, 
inductor, nonlinear resistor, constant voltage source, 
and external forcing source to clarify some physical 
properties of the neural circuit, and obtain different 
functional neuron models from this. The neural circuit, 
driven by a time-varying voltage source Vs, is pre‐
sented in Fig. 1.

In practice, the external stimulus can be selected 
as a voltage source, piezoelectric ceramic part, photo‐
tube, or even output end from another nonlinear cir‐
cuit, and then the neural circuit can be excited to gen‐
erate different firing patterns. The circuit equations 
for Fig. 1 can be obtained by

Fig. 1  Schematic diagram of a resistor-inductor-capacitor 
(RLC) neural circuit. NR is a nonlinear resistor and E 
denotes a constant voltage expressing the reverse potential 
in the ion channel. Rs and R are ideal linear resistors, and 
C and L represent the capacitor and inductor, respectively. 
Vs denotes a periodic voltage source. i is the current
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   (1)

The channel current across the nonlinear resistor 
NR can be approached by

iNR =-
1
ρ (V -

1
3

V 3

V 2
0 )  (2)

where V denotes the voltage across the nonlinear resis‐
tor and equals the output voltage from the capacitor, 
and the parameters ρ and V0 represent the dimension‐
less conductance and inverse voltage for the nonlinear 
resistor, respectively. In addition, the field energy (FE) 
in this neural circuit is defined by

FE =
1
2

CV 2 +
1
2

Li2
L . (3)

For further nonlinear analysis, the dynamics of the 
neural circuit is replaced by an equivalent generic 
neuron model by applying scale transformation to the 
physical variables and parameters in the circuit equa‐
tions, as follows:
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ρ2C
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ρ
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us =
Vs ρ
RsV0

= ξ
Vs

V0

.
(4)

As a result, a simple neuron and its Hamilton energy 
function are given in
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= c ( )x + a - by 

H =
FE

CV 2
0

=
1
2
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1
2c

y2.

(5)

Dynamically speaking, the equivalent external 
stimulus us can be changed to regulate the firing modes 
of the neural activities. From a physical viewpoint, elec‐
tric field energy and magnetic field energy will change 
the ratio to the total energy when the neuron is ex‐
cited, and the energy flow will then control the mode 

selection for the electric activities completely. As a re‐
sult, external energy injection will break the balance 
between the magnetic and electric fields in the neuron, 
and mode transition will be induced as soon as possi‐
ble. By changing the external stimulus, the neuron is 
excited to present spiking, bursting, and chaotic states, 
and it has been found that spiking neurons can exhibit 
higher energy values, while bursting and chaotic neu‐
rons will have lower energy values. Therefore, energy 
flow is propagated along the coupling channel and the 
distribution of the neuron’s inner field energy is guided 
to exhibit suitable firing patterns. When more neurons 
are clustered in the same region, energy flow in each 
neuron is exchanged and propagated to adjacent neu‐
rons to reach the best possible local energy balance, 
and phase lock occurs when there is field coupling 
and synaptic coupling among neurons.

2 Enhancement of synapse functions in 
biophysical neurons 

Synapses are important in perceiving external 
stimuli prior to excitation of biological neurons to pro‐
duce suitable firing patterns. For two or more neurons, 
electric and chemical signals are propagated from pre‐
synaptic to postsynaptic, accompanied by the genera‐
tion of an electromagnetic field and exchange of en‐
ergy flow. Because of the anatomic structure of biologi‐
cal neurons, the cell membrane enables distinct capac‐
itance properties, diffusive ions induce an electromag‐
netic field, and the channel currents across the cell 
membrane show clear effects of a magnetic field, 
which can be associated with the induction coil and 
functional channels. When ion channels embedded into 
the cell membrane are activated, more channel currents 
pass through to change the gradient distribution of intra‑
cellular ions including calcium, sodium, and potassium; 
then action potential is induced under external stimuli.

When biological neurons are treated as artificial 
neural circuits, more branch circuits can be applied to 
estimate the effect of channel currents and physical ef‐
fects. Therefore, it is important to discuss the realiza‐
tion of these biophysical functions by incorporating 
specific electric components including memristors 
(Joglekar and Wolf, 2009; Kim et al., 2015; Corinto 
and Forti, 2016; Olumodeji and Gottardi, 2017), 
thermistors (Schmidt et al., 2004; Nenova and Nenov, 
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2009; Yakovleva et al., 2013; Liu et al., 2018), photo‐
tubes (Radziemska and Klugmann, 2002; Hu et al., 
2010; Tomimatsu et al., 2022), piezoelectric ceramics 
(Flynn and Sanders, 2002; Priya et al., 2017; Sugino 
et al., 2020), and Josephson junctions (Abidi and Chua, 
1979; Crotty et al., 2010; Hens et al., 2015; Zhang Y 
et al., 2020b) into the branch circuits of generic neural 
circuits; then external physical signals can be per‐
ceived and converted into equivalent electric stimuli 
imposed on the neurons. In addition, these electronic 
components can be combined to build hybrid syn‐
apses for connecting neurons, and field coupling is ac‐
tivated for fast energy exchange, which allows syn‐
chronous behaviors to be controlled completely.

2.1 Memristive synapse in biophysical neurons

A memristor is a specific type of electric compo‐
nent whose conductance is dependent on the flow 
passed through the channel, and the relation between 
magnetic flux and charges in a memristor can be one 
of two kinds. When the charge flux is controlled by 
magnetic flux φ as q=q(φ), a magnetic-flux-controlled 
memristor is formed, and its memductance is esti‐
mated by M(φ)=dq/dφ=a+bφ2, tanh(φ). For a charge-
flux-controlled memristor, the mem-resistance is ap‐
proached by W(q)=dφ/dq=a′+b′q2, tanh(q). For isolate 
biological neurons, continuous diffusion of intracellu‐
lar and extracellular ions will induce formation of a 
changeable electromagnetic field, which has signif‐
icant impact on the membrane potential and firing 
modes of neural activity. Inspired by the scheme for 
a memristive neuron model designed by Lv et al. 
(2016), which can estimate electromagnetic induction, 
a magnetic flux variable is usually applied to the 
neuron model and induction current is used to control 
the membrane potential. By applying a similar mem‐
ristive function (Lv et al., 2016) on the neuron shown 
in Eq. (5), it is updated by
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dx
dτ

= x ( )1 - ξ -
1
3

x3 - y + us - kM ( )φ′ x

dy
dτ

= c ( )x + a - by 

dφ′
dτ

= kx + φ′ext.

(6)

Physically, a memristor is connected to the RLC 
neural circuit in an additive branch circuit, activating 
a memristive channel via magnetic flux. φ′ext discerns 

the effect of external electromagnetic radiation, which 
has a significant impact on the magnetic flux that cov‐
ers the cell membrane. The normalized parameter k=
1/N, which means that the inner magnetic field in the 
cell is approached by the field in the induction coil 
with N turns. Therefore, field energy is kept as elec‐
tric field energy and magnetic field energy in the in‐
ductor and memristor as well. For a magnetic flux-
controlled memristor, the inner field energy is esti‐
mated by

HM =
EM

CV 2
0

=
1
2

LMi2
M

CV 2
0

=
1
2
φiM

CV 2
0

=
1
2
φM ( )φ VM

CV 2
0

=

1
2

kφ( )a + 3bφ2 xV0

CV 2
0

 

 φ′=
φ

ρCV0

=
1
2

kxφ′ρ(a + 3bC 2 ρ2V 2
0 φ′

2) =

1
2

kxφ′(a′+ 3b′φ′ 2) . 

(7)

Therefore, the involvement of memristors in a 
neural circuit enables activation of a memristive channel/
synapse, allowing field energy to be saved and exch‑
anged among the three kinds of electronic components.

2.2 Memristive synapses connecting neurons

When a memristor is used to couple two neural 
circuits, the coupling channel becomes controllable 
by means of an external physical field, and the chan‐
nel current iM=kM(φ)(x−x′) across the memristor effec‐
tively regulates the synchronous behaviors of two neu‐
rons. The similar induction current kM(φ)x can be in‐
troduced into other neuron models to obtain more 
memristive neurons to explore control of neural activi‐
ties in an isolated neuron and neural networks (Xu 
et al., 2018b; Etémé et al., 2019; Mondal et al., 2019; 
Mostaghimi et al., 2019). In particular, this scheme 
can be used to improve the cardiac tissue model, 
which enables assessment of the effect of electromag‐
netic radiation on wave propagation in the heart (Ma 
et al., 2017; Wu et al., 2017). For example, the initial 
state begins from a spiral wave, which is associated 
with arrhythmia; breakup occurs with increased inten‐
sity of EM, and ventricular fibrillation (VF) causes 
rapid death of the heart. When a target wave is initiat‐
ed for behaving normal wave emitting from the sino‐
atrial node (SN), higher EM will block propagation 
and diffusion of the target wave; then regulation of 
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the calcium current is terminated, resulting in suppres‐
sion of the heartbeat that blocks blood from being 
pumped in the heart.

On the other hand, field coupling is activated be‐
tween these biological neurons via exchange of mag‐
netic flux. The collective behaviors of neural network 
under field coupling (Guo et al., 2017; Xu Y et al., 
2018a, 2019; Lv et al., 2019; Zhou and Wei, 2021; 
Ramakrishnan et al., 2022) accompanied by synapse 
connections can be explored by
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dxi

dτ
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S ( )xi + 1 + xi - 1 - 2xi 
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= c ( )xi + a - byi 

dφ′i
dτ

= kxi +D∑
j = 1

N ( )xj - xi + φ′ext

     (8)

where S denotes synaptic intensity. The array indi‐
cates an electric synapse at constant S and how setting 
a specific function for S can represent functional syn‐
apses. The second term in the third formula in Eq. (8) 
means that superposition of a magnetic field on the 
ith neuron in the network and the gain D can be de‐
pendent on the node position or considered as a con‐
stant for uniform field coupling. In the absence of syn‐
aptic coupling, these memristive neurons can be ex‐
cited to exhibit resonance synchronization.

Above all, memristive terms are introduced to es‐
timate the effect of the inner magnetic field of biologi‐
cal neurons, and the exchange of field energy be‐
tween neurons is approached by using the exchange 
and accommodation of magnetic flux. In fact, when 
capacitors, inductors, and memristors are used to 
bridge connections to neural circuits, pure functional 
synapses and hybrid synapses (Yu et al., 2012, 2017; 
Liu et al., 2019a; Yao and Wang, 2021, 2022) are 
built for trigger-field coupling (Liu et al., 2019b, 
2020; Ma SY et al., 2019; Xu YM et al., 2019; Yao 
et al., 2021b).

2.3 Thermosensitive neurons and temperature- 
dependent neural circuits

Thermistor resistance is dependent on tempera‐
ture, and the current across a thermistor is controlled 
by external temperature when it is connected to a 
branch circuit of a nonlinear circuit. For a thermistor 

with negative temperature coefficient (NTC), the re‐
sistance is often estimated by

RT =R¥e
B
T  B =

Q
K
 (9)

where R∞ represents the resistance when the tempera‐
ture T is extremely high (T→ ∞); the parameter B is 
associated with the material property; Q and K de‐
scribe the activation energy and Boltzmann’s con‐
stant, respectively. When the linear resistor R (Fig. 1) 
is replaced by a thermistor RT, the channel current 
across the induction coil will also be controlled by 
temperature. On the other hand, replacing Rs in Fig. 1 
means that external stimulus is controlled by temper‐
ature, and thus any changes will adjust the excitability 
of neuron and electric activity as well. In particular, 
when two thermistors are used to replace the two resis‐
tors in the model shown in Fig. 1, the neural circuit 
is controlled by temperature, and a thermosensitive 
neuron model is obtained as follows (Xu et al., 2020):
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dV
dt

=
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RT

- iL - iNR

L
diL

dt
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(10a)
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dx
dτ

= x[ ]1 - ξ ( )T -
1
3

x3 - y + us( )T 

dy
dτ

= c[ ]x + a - b ( )T y .
(10b)

That is, more parameters and external stimuli are 
dependent on the temperature, and this neuron can be 
used to detect changes in temperature (Zhu et al., 
2021). In the presence of noisy disturbance, stochastic 
resonance can be induced, and regularity in electric 
activity under appropriate noise intensity can be de‐
tected in the sampled time series for membrane poten‐
tial x. When more thermosensitive neurons are con‐
nected in a neural network, the spatial patterns can be 
controlled by the temperature and the distribution of 
Hamilton energy in the neural network shows distinct 
patterns (Xu and Ma, 2022).
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ẋij = xij( )1 - ξ -
1
3

x3
ij - yij + us +

D ( )xi + 1j + xi - 1j + xij + 1 + xij - 1 - 4xij 

ẏij = c [ ]xij + a - b ( )Tij yij .

 (11)
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By changing the temperature-dependent parame‐
ters, the synchronization factor SF in the square array 
is estimated to predict the synchronization stability, as 
follows:

F =
1

N 2 ∑
i = 1

N ∑
j = 1

N

xij  SF =
F 2 - F

2

1
N 2 ∑

i = 1

N ∑
j = 1

N ( )x2
ij - xij

2
 . 

(12)

The symbol  represents an average of a vari‐
able over time within a certain transient period. In the 
case of uniform coupling (the same coupling intensity 
D for each neuron), any fluctuation in temperature 
will induce certain shifts and jumps in parameter b, 
and multiplicative noise is triggered to develop regu‐
lar patterns in the neural network composed of ther‐
mosensitive neurons. When the coupling intensity 
is further increased, the synchronization SF shows 
growth and perfect synchronization is obtained for 
the developing homogeneous state. Lower values 
of SF indicate corruption of synchronization, which 
causes spatial patterns to develop in the network. In 
addition, when a thermistor is used to connect neural 
circuits, the coupling channels are sensitive to temper‐
ature and temperature-dependent synapses are formed 
to regulate the collective behaviors of neural networks. 
When there is a gradient distribution of temperature, a 
target wave is formed in neural networks coupled by 
thermistors (Zhang XF et al., 2021b). For two neural 
circuits, synchronization stability becomes dependent 
on the temperature, because the coupling intensity is 
completely controlled by temperature (Zhang XF et al., 
2020). To prevent seizure and bursting synchroniza‐
tion, hybrid synapses are designed to pump energy 
and break the energy balance via field coupling, and 
desynchronization is thus realized between thermosen‐
sitive neurons (Guo et al., 2022).

2.4 Auditory neurons and piezoelectric neural 
circuits

Piezoelectric ceramics can convert acoustic waves 
and mechanical force into electric signals, and they 
are often used as sensors and energy harvesters to col‐
lect energy from external noisy disturbance. As de‐
scribed by Zhou et al. (2021a), piezoelectric ceramics 
were used to capture an external voice, and a piezo‐
electric neural circuit was designed by replacing the 

signal source vs (Fig. 1), while a piezoelectric neuron 
was proposed to simulate the response mechanism of 
auditory neurons. The external acoustic wave and vi‐
bration was perceived by the piezoelectric ceramics, 
and equivalent voltage was induced to excite the neural 
circuit.

VPC=VPC( F μ) =
F
S'

d33

ε
h=Pgh P=

F
S'
 g=

d33

ε
   (13)

where ε is the dielectric constant; S' and h represent 
the cross-sectional area and thickness of the piezoelec‐
tric ceramics, respectively. As is well known, humans 
have a pair of ears, so they respond to external acoustic 
waves synchronously. In Fig. 2, one can see how the 
coherence response was investigated by driving two 
piezoelectric neural circuits without synaptic coupling.

The coupled auditory neurons predict the reso‐
nance synchronization based on the dynamical equa‐
tions derived from the circuit equations for Fig. 2, as 
follows:
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dx
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1
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x3 - y + ξuPC

dx′
dτ

= x′( )1 - ξ -
1
3

x′ 3 - y′+ ξuPC

dy
dτ

= c[ ]x + a - by 

dy′
dτ

= c[ ]x′+ a - by′ 

(14)

where uPC defines the current generated from the piezo‐
electric ceramic.

The equivalent voltage generated from the piezo‐
electric ceramic part can be considered as a combina‐
tion of periodic signal accompanied by Gaussian white 
noise.

Fig. 2  Non-coupling FHN neural circuits driven by the 
same voice behave auditory neurons (Zhou et al., 2021a). 
PC, NR, C, L, R, Rs, and E denote a piezoelectric ceramic 
component, nonlinear resistor, capacitor, inductor, linear 
and ideal resistors, and constant voltage source as reverse 
potential in an ion channel

114



    J Zhejiang Univ-Sci A (Appl Phys & Eng)   2023 24(2):109-129

ξuPC =A cos(2πωτ)+ ζ ( τ) . (15)

It was found that noisy disturbance was helpful to 
discern periodic signals exactly under stochastic reso‐
nance because of additive energy injection, and two au‐
ditory neurons reached perfect resonance synchroniza‐
tion even when synaptic coupling was removed com‐
pletely. When more signal sources were activated, the 
auditory neuron received signals from more channels 
and signal detection became competitive. That is, when 
nervous systems are stimulated by more signals, fast 
and accurate selection of body gaits is dependent on 
the mode selection in an isolated neuron and cooper‐
ation between more functional neurons (Fourcaud-
Trocmé et al., 2003; Guan and Rao, 2003; Mukamel 
et al., 2010; Turrigiano, 2012; Yu et al., 2021). As men‐
tioned in recent studies, auditory neurons prefer to re‐
spond to external stimuli with higher energy and the 
final firing pattern is mainly controlled by the firing 
mode resulting from external forcing hold with high‐
er energy (Xie and Ma, 2022; Xie et al., 2022c).

2.5 Visual neurons and light-sensitive neural circuits

Animal eyes can see objects by capturing reflected 
light; this causes a fast response in visual neurons 
which enables gait safety and promotes good decision-
making. Light passes through the pupil and causes 
sensitization in the retina, and then electric signals are 
propagated to wake the neurons in the visual cortex for 
further signal processing. As reported by Liu Y et al. 
(2020) and Xie et al. (2021a), a phototube is incorpo‐
rated in the RLC circuit of a model and external illu‐
mination is applied to activate the phototube to gener‐
ate photocurrent. This model can be considered an ar‐
tificial eye under photoelectric conversion. That is, the 
voltage source vs is replaced by a photocell in Fig. 1. In 
fact, the form of photocurrent across the phototube is 
relative to the resistance of resistor Rs and will reach a 
saturation value when the frequency of external illu‐
mination is beyond a certain threshold.

ig=
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ï
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ï

2IH

π
arctan ( )Vg-Va    Rs>R0 current source 

Vs-V
Rs

=
Vg-V

Rs

         Rs<R0 voltage source
(16)

where R0 is a finite value. The phototube can be con‐
sidered as a current source when the resistor Rs 

connected to the phototube is applied with larger re‐
sistance; otherwise, it is regarded as a voltage source. 
Indeed, the photocurrent is dependent on external illu‐
mination and the physical properties of the cathode 
material of the phototube. Like the generic form in 
Eq. (5), the equivalent current across the phototube can 
be selected with periodic form or a combination of 
more periodic signals. In (Xie et al., 2021a) the photo‐
tube was connected to different branch circuits of the 
RLC circuit (Fig. 1), and the neural circuit had differ‐
ent sensitivities to external illumination. Furthermore, 
two light-dependent neurons were coupled to reach 
phase lock, and in another study, the same group esti‐
mated the consumption of Joule heat HJ (Xie et al., 
2021b):
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ï

ï
ïï
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JRk
=

( )V1 -V2

2

Rk

× ρC 

J ′Rk
=HJ =

JRk

CV 2
0

= r(x - x′ )2 = r(x1 - x2 )2
(17)

where Rk denotes the coupling resistor, and r repre‐
sents the coupling intensity for two neurons via elec‐
tric synapse coupling. Because of its controllability, a 
phototube is used to couple two neural circuits, and 
external illumination is applied to adjust the coupling 
channel, while phase lock is controlled completely 
(Zhang XF et al., 2021a). In (Yao et al., 2021a), a hy‐
brid synapse was designed to trigger field coupling 
between a light-sensitive neuron and a thermosensi‐
tive neuron, and the results reveal the cooperation be‐
tween neurons from different functional regions.

2.6 Josephson junction coupled neuron under a 
magnetic field

A Josephson junction is a specific electric com‐
ponent with particular inductance properties (Crotty 
et al., 2010). Zhang Y et al. (2021) used an ideal 
Josephson junction to replace the external voltage 
source vs as shown in Fig. 1, and described the circuit 
equations:
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C
dV
dt

= ICsinϕ - iL - iNR

L
diL

dt
=V +E -RiL

V -Rs ICsinϕ =
ℏ
2e

dϕ
dt

 .

(18)
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The parameter ħ=h/(2π), h is the Planck constant, 
and e is the electron charge. The variable ϕ calculates 
the phase error for the Josephson junction. Similar 
scale transformation is applied for the physical vari‐
ables and parameters in Eq. (18), as follows:
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V0
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ρIC
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  (19)

In addition, the dynamics of a neural circuit cou‐
pled with a Josephson junction were calculated by 
Zhang Y et al. (2021):
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= c ( )x + a - by 
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= gx -msinz.

(20)

In the presence of an external magnetic field, the 
phase error for the junction and channel current are 
updated by
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IJJ = IC sin ( )ϕ -
2e
ℏ ∫

1

2

Α × dl 
(21)

where A is the magnetic vector potential for the exter‐
nal magnetic field, and 1, 2 indicate the two end sides 
of the junction. That is, the external magnetic field 
generates additive phase error in the junction and then 
the channel current is regulated by the external field. 
As a result, the fluctuation of the magnetic field will 
induce changes in the channel current, which controls 
the firing modes of the neuron; in this way, the neural 
circuit can be used to detect the magnetic field. Fur‐
thermore, both a memristor and a Josephson junction 
are incorporated into the RLC circuit to discern the ef‐
fect of magnetic field and inner electromagnetic in‐
duction (Zhang Y et al., 2020a). Zhang et al. (2018a, 
2018b) estimated the distribution in each electronic 
component and detected similar stochastic resonance 

when there was noise. The involvement of a Joseph‐
son junction allows accurate description of the effect 
of a magnetic field on ion channels. Readers can refer 
to more studies on the application of Josephson junc‐
tions in neural circuits and synchronization stability 
of neurons under magnetic field (Segall et al., 2017; 
Zhang et al., 2018a, 2018b; Foka et al., 2021; Goteti 
and Dynes, 2021; Mishra et al., 2021; Chalkiadakis 
and Hizanidis, 2022; Fossi et al., 2022).

3 Selection and filtering in frequency 

The realistic nervous system can perceive exter‐
nal physical stimuli within specific bands. In the pres‐
ence of noise and electromagnetic radiation, external 
energy is injected partially and appropriate firing modes 
can be triggered. As reported in our previous work, 
auditory neurons developed from piezoelectric neural 
circuits are preferable because they respond to exter‐
nal forces with higher energy (Xie and Ma, 2022; 
Xie et al., 2022c). As a result, multiple inputs and ex‐
citing from more channels induce competition in the 
response mode in the neuron, and the final firing pat‐
terns are mainly controlled by the firing mode associ‐
ated with higher energy. Animal eyes are sensitive to 
visible lights with wave lengths between 390 nm and 
780 nm and frequency bands of 380–750 THz. Hu‐
mans can perceive acoustic waves within the frequency 
band 20–20000 Hz, while bat can discern the ultra‐
sonic beyond 20000 Hz. Physically speaking, wave 
filtering in biological neurons and functional electric 
components achieves restriction of amplitude and fre‐
quency as well.

3.1 Phase-space compression and amplitude 
restriction

For dynamical systems, the variables develop 
their orbits in the phase space and the orbits become 
dense in the presence of chaos. When some of the or‐
bits are restricted and re-guided, chaotic states will be 
suppressed because dense orbits are reduced and com‐
bined to develop periodic orbits or stable equilibrium 
points. Luo (1999) suggested a scheme to control 
chaos and hyperchaos by using phase-space compres‐
sion, by which the output variables are constrained 
within a range. In addition, Ma et al. (2008) explained 
the dynamical mechanism as amplitude restriction 
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and physical realization for the scheme of phase-
space compression via the Heaviside function. For a 
low-dimensional chaotic system, the dynamics are 
represented by
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dx
dτ

= f ( )xyz 

dy
dτ

= g ( )xyz 

dz
dτ

= h ( )xyz .

(22)

The output variables (x, y, z) are restricted as fol‐
lows by setting different thresholds (xmax, ymax, zmax, xmin, 
ymin, zmin).

x ( τ) =
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zmin    z ( )τ < zmin.

 

(23)

In experiment and dynamical control, the control 
criteria in Eq. (23) mean appropriate controllers are 
applied on the right side of the chaotic system Eq. (22), 
and these controllers can be achieved by using the 
Heaviside function as follows:
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ϑ ( )p = 1 p ³ 0 ϑ ( )p = 0 p < 0 

(24)

where k is the feedback gain. By setting the same 
thresholds in Eq. (24) as for Eq. (23), the gain k can 
be adjusted to reach the same target orbits. The imple‐
mentation of controllers in Eq. (24) explains the dy‐
namical and physical mechanism for the scheme of 
phase-space compression, and it is seen to be a kind of 
amplitude control scheme. The scheme is also effective 

for controlling collective behaviors in networks com‐
posed of chaotic oscillators (Zhang and Shen, 2001; 
He et al., 2003; Zamen and Dehghan-Niri, 2019). 
For example, target waves can be developed when a 
few nodes are controlled by phase-space compression 
by inducing continuous wave fronts (Gao et al., 2008). 
This scheme is also effective for controlling spiral 
waves and spatiotemporal chaos in neural networks 
(Ma et al., 2009; Li Y et al., 2017).

3.2 Wave filtering and frequency selection in 
neurons

Realistic acoustic waves and visible lights often 
present finite wavelengths and frequency bands. Pho‐
toelectric conversion and piezoelectric conversion de‐
pend on the material properties of the photocell and 
piezoelectric device, and only finite frequency bands 
can be perceived and converted into effective electric 
signals. External electromagnetic waves and acoustic 
waves are filtered by the electronic components and 
organs of animals, and the sampled time series for re‐
alistic signals are represented as s(t); these can be de‐
rived from chaotic systems or experimental data.

As suggested by Guo et al. (2021) and Zhang 
and Ma (2021), a criterion for frequency selection can 
be defined to control the photocurrent and piezoelec‐
tric current in order to regulate the visual neuron and 
auditory neuron, respectively.

s ( τ) = ξuPC =A(ωτ) cos(ωτ)+ ζ ( τ) =

∑
i = 1

N

Ai(ω i) cos(ω iτ)+ ζ ( )τ  
(25a)

A(ωτ) =
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A0 exp ( )-
τ
λ1

 ω ≥ωmax

A0                      ωmin <ω <ωmax

A0 exp ( )-
τ
λ2

 ω ≤ωmin .

    (25b)

The realistic signal is often accompanied with 
certain noise. The electric components for the energy 
harvester and signal conversion just pass physical sig‐
nals within a specific frequency band, and the other 
frequency bands are absorbed completely. The gains 
(λ1, λ2) are associated with the intrinsic material prop‐
erties of the electric components. Frequency selection 
can be realized experimentally via combined Heavi‐
side functions, and noise is also filtered as follows:

117



|    J Zhejiang Univ-Sci A (Appl Phys & Eng)   2023 24(2):109-129

ξuPC =A(ω) cos(ωτ)=

[ H (ω-ωmax) +H (ωmin -ω) ] A0 exp( - τ
λ )cos(ωτ)+

A0[ H (ωmax -ω) +H (ω -ωmin) - 1]cos(ωτ) (26)

or another expression as follows:

us =A(ω) cos(2πωτ)=

[ H (ω -ωmax) +H (ωmin -ω) ] ´
A0 exp ( - τ

λ )cos(2πωτ)+

[ H (ωmax -ω) H (ω -ωmin) ] A0 cos(2πωτ). (27)

This scheme is much different from the phase-
space compression scheme focused on amplitude con‐
trol. After wave filtering and frequency selection, 
the external stimuli regarded as mixed signals s(τ)=
a1cosω1+a2cosω2+…+ancosωn+…+aNcosωN are filtered 
to keep a combination of signals with specific fre‐
quencies rather than a distinct periodic signal. Chaotic 
series from the known chaotic systems can be used 
practically as realistic signals with wide frequency, 
and these chaotic signals are described by an equiva‐
lent frequency spectrum in the frequency domain 
space. The functional components can be coated with 
different films including piezoelectric ceramic and 
photocell films, and then the thresholds for wave fil‐
tering can be controlled effectively. The coated film 
absorbs the physical stimuli when their intrinsic 
frequency is beyond or below the suggested thresh‐
old. As a result, wave filtering is accomplished and 
external stimuli within a specific frequency band can 

be precisely discerned. For a pair of eyes and ears, 
two piezoelectric neurons and two light-sensitive neu‐
rons developed from neural circuits driven by pho‐
tocurrents can be used to investigate with a resonance 
synchronization approach, without synaptic coupling 
between neurons. For more extensive application, the 
two functional biophysical neurons can be connected 
in a chain network or networks on a square array with 
a long-range connection, and gradient stimuli can be 
applied to study the formation and regulation of wave 
propagation from heterogeneity and defects in the 
neural network.

In the phototube and piezoelectric ceramics, a 
coating film can control the thresholds for wave filter‐
ing. For auditory and visual neurons, similar frequency 
selection can be realized due to specific biophysical 
functions in the retina and eardrum. In most previous 
research, distinct periodic stimuli have been imposed 
on finite neurons/nodes in local areas of the network, 
and this pinning control induces continuous wave 
fronts and development of regular patterns. Inspired 
by the previously mentioned scheme of wave filtering, 
mixed signals with finite frequency bands can be used 
to control the collective behaviors of neural networks, 
and wave propagation and pattern formation can thus 
be regulated in practice.

4 Hamilton energy and synapse growth 

Static intracellular ions including calcium, sodium, 
potassium, and chloride can develop static electric 

Fig. 3  Schematic diagram for a piezoelectric neural circuit and workflow in the auditory system
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fields, and continuous pumping and diffusion of these 
intracellular ions can induce time-varying magnetic 
fields. In presence of external stimulus or stimuli ac‐
companied with noise and EM, channel currents are 
changed to adjust membrane potential and the distri‐
bution of the inner electromagnetic field is changed. 
These biological neurons are charged bodies with non-
uniform distribution of the electromagnetic field, and 
energy exchange occurs when more neurons are clus‐
tered (gathered) closely in the same region because of 
superposition in the electromagnetic field. Biological 
neurons and cells are often flexible, and their synapses 
are forced to bridge connections to adjacent neurons 
for fast balancing of ion concentration, membrane po‐
tential, and energy. Most previous work has empha‐
sized the functions of electric synapses, chemical syn‐
apses, and even hybrid synapses in informing encod‐
ing, as well as synchronous regulation in neurons and 
neural networks (Sun and Si, 2020; Paul Asir et al., 
2021; Si and Sun, 2021; Xu et al., 2021; Peng et al., 
2022; Zhou et al., 2022b). Synaptic coupling is also 
effective in controlling synchronous electric activity 
because of synaptic plasticity (Yang et al., 2017; Lu 
et al., 2019; Taher et al., 2022; Tuo and Yang, 2022). 
Dynamically, synaptic plasticity enables self-adaption 
of biological neurons and feasible adjustment of cou‐
pling channels. It is interesting to explain the control‐
lability mechanism of synapses connecting to biologi‐
cal neurons. First, the author of this review clarified 
that the creation and growth of synapses result from 
the energy diversity between neurons, and the intensity 
of synaptic coupling is controlled to reach a saturation 
value, while energy balance is maintained between 
neurons (Xie et al., 2022b; Zhou et al., 2022a). Fur‐
thermore, the adaptive growth criterion is used to in‐
vestigate the activation and growth of hybrid synapses, 
while field coupling is controlled to regulate phase 
lock and synchronous firings in neurons (Ma and Xu, 
2022; Wang and Ma, 2022; Wang CN et al., 2022; 
Wang Y et al., 2022; Xie et al., 2023). The energy 
in biological neurons and neuron models is different 
from the metabolic energy in the nervous system 
(Bélanger et al., 2011; Jha and Morrison, 2018; Yuan 
et al., 2018; Bonvento and Bolaños, 2021; Pal et al., 
2021), and the energy function is composed of mem‐
brane potential and recovery variables for currents 
(Pinto et al., 2000; Torrealdea et al., 2006, 2009; Mou‐
jahid et al., 2011). Sarasola et al. (2004) defined 
generic Hamilton energy function for chaotic systems 

and approached it using the Helmholtz theorem 
(Kobe, 1986; Heras, 2016). The generic dynamical 
system is expressed with equivalent vector form, as 
follows:
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where J(X ) and R(X ) define the skew symmetric 
matrix and principal diagonal matrix, respectively. 
Fc(X ) and Fd(X ) represent the transverse vortex 
field and gradient field, respectively, and H denotes 
the Hamilton energy for this dynamical system. Zhou 
et al. (2021b) also clarified that the most suitable 
Lyapunov function should be the Hamilton energy 
function, which can be mapped from the field energy 
function for equivalent nonlinear circuits. For the 
simple neuron in Eq. (5), it can be updated by
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The Hamilton energy H for the two-variable neu‐
ron model can be derived from

( - y)
¶H
¶x

+ cx
¶H
¶y

= 0. (30)

Surely, the sole Hamilton energy function in 
Eq. (5), H=0.5x2+0.5y2/c, meets the criterion in Eq. (28). 
For two neurons, the energy diversity is defined as 
follows:

DH= | H1 -H2 | =
1
2

|

|

|
||
| ( x2

1 +
1
c1

y2
1 ) - ( x2

2 +
1
c2

y2
2 ) ||||||.   (31)
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For neural networks, the energy diversity for 
each neuron is mainly dependent on the adjacent 
neurons.
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(32)

The coupling intensity k can be selected with an 
appropriate function to describe the electric synapse, 
chemical synapse, memristive synapse, and even hy‐
brid synapse. Synapse growth is controlled by the 
Heaviside function when energy diversity between neu‐
rons is beyond the threshold ε (about 0.00001). When 
two neurons reach energy balance and the energy di‐
versity is decreased to be close to ε, the coupling in‐
tensity and gain terminate its further increase and a 
saturation value is reached, accompanied by complete 
synchronization between two identical neurons, as 
well as phase lock among non-identical neurons. Fur‐
thermore, additive noise and multiplicative noise can 
be imposed to discuss the synchronization approach 
between neurons, and this growth criterion for syn‐
aptic coupling provides new insights for understand‐
ing the growth and creation of synapses in biological 
neurons.

5 Heterogeneity and defects in neural 
networks

Neural activities in the nervous system can be 
explored in neural networks by investigating the wave 
propagation and pattern formation in one-layer or 
multi-layer networks. In a uniform network, the local 
kinetics is described by neurons with the same param‐
eter settings, and coupling channels are often endowed 
with the same biophysical properties. In realistic bio‐
logical networks and neural networks, each node has 
some difference in the biophysical properties and link 
densities; as a result, heterogeneity and defects develop 

(Xie et al., 2022a). In a generic network, the dynam‐
ics are described by
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(33)

For simplicity, the local kinetics of the network 
can be described by the above-described two-variable 
neuron. The coupling intensity D is controlled by the 
energy diversity among adjacent neurons. Xie et al. 
(2022d) claimed that fast energy accommodation or 
external energy injection into a local area would in‐
duce shape deformation, causing some intrinsic pa‐
rameters to show particular shapes. When the local 
area collects and maintains a higher energy value, het‐
erogeneity is formed, and wave fronts can be emitted 
to regulate the collective behaviors of the network. 
On the other hand, defects are formed when a local 
area continues to release energy and has a lower energy 
value, and wave propagation will be blocked in the 
network. In fact, heterogeneity and defects can be de‐
veloped in the excitable media and oscillatory media, 
and this phenomenon can also be described by net‐
works and reaction-diffusion equations (Chen and 
Chandra, 2004; Chen et al., 2009; Benmarhnia et al., 
2018; Rostami and Jafari, 2018; Huang et al., 2020; 
Rajagopal et al., 2021). Readers can explore the for‐
mation of heterogeneity in networks controlled by 
energy flow according to the suggestions in (Xie et al., 
2022d).

Above all, the studies summarized here provide 
scientific evidence that clarifies the biophysical func‐
tion of new neuron models. Neuron models which are 
claimed to be reliable should discern the physical ef‐
fect clearly. Many neuron models described by contin‐
uous differential equations are improved by supplying 
additive magnetic variables and induction current 
terms, and memristive neuron models are thus ob‐
tained. However, it is a challenge to estimate the ef‐
fect of electromagnetic induction on discrete neuron 
models. Based on the Rulkov neuron model (Rulkov, 
2001), a discrete memristor can be introduced to esti‐
mate the field effect by adding induction current in a 
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discrete form. The current across the discrete memris‐
tor is defined by

ì
í
î

ïïin = vn sin ( )φn  

φn + 1 = φn + εhvn .
 (34)

The second formula in Eq. (34) is regarded as a 
discrete form for Faraday’s law of electromagnetic in‐
duction, and the intrinsic parameter εh can be viewed 
as a time scale factor dependent on the physical prop‐
erties of the memristor. The memductance of the dis‐
crete memristor is described by sin(φn) or another 
form, tanh(φn), and vn represents the voltage across the 
memristor. When the memristor is connected to the 
Rulkov neuron and additive channel current is shunted, 
the effect of electromagnetic induction can be deter‐
mined as follows (Li et al., 2022):
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1 + x2
n

+ yn + kxn sin ( )φn 

yn + 1 = yn - σxn
φn + 1 = φn + εh xn

(35)

where the gain k is relative to the property of the neu‐
ral circuit, and the normalized parameters (k, εh, α) 
and initial value for magnetic flux φ can be adjusted 
to change the excitability of the neuron; then the burst‐
ing patterns can be controlled effectively. The same 
scheme can be applied for other discrete chaotic maps, 
and the chaos can be controlled effectively (Bao BC 
et al., 2020; Peng et al., 2020; Bao H et al., 2021; 
Deng and Li, 2021). Based on these memristive neu‐
ron models, external electromagnetic radiation is 
often estimated by imposing noisy disturbance on the 
magnetic flux. In particular, Li JJ et al. (2016) sug‐
gested another algorithm to estimate electromagnetic 
radiation by converting absorption power into equiv‐
alent transmembrane current on the temperature-
dependent neuron. Besides, enhancement of biophysi‐
cal function of neuron models, interaction with astro‐
cytes (Li J et al., 2016; Li JJ et al., 2017; Du et al., 
2018; Yu et al., 2022), and clarification of their role 
provide helpful clues to possibilities for curing sei‐
zures. More importantly, as suggested by Wang R et al. 
(2019), a clear brain functional network is useful for 
combining these biophysical neurons to build a realis‐
tic neural network for discerning cooperation between 
different functional regions in the brain.

We believe that the most valuable aspect of this 
review is the clarification of proposals for some func‐
tional biophysical neuron models from the physical 
angle. In particular, the functional role of intrinsic en‐
ergy in neurons is explained. It guides energy flow to 
control the firing modes and growth of neural syn‐
apses. When energy flow is shunted and pumped, self-
adaption of biophysical neurons is activated and re‐
leased. Energy flow accounts for the biophysical regu‐
lation of neural activities in the brain and nervous sys‐
tem. For extensive guidance and help, readers can be 
inspired by the following important reviews (Trench‑
ard and Perc, 2016; Parastesh et al., 2021; Gosak et al., 
2022; Majhi et al., 2022). The references therein, as 
well as the collective behaviors described (including 
coexistence of synchronization and desynchronization, 
chimeras, and higher-order interaction in neural net‐
works) are worthy of further exploration.

6 Conclusions 

In this review, we describe how a group of bio‐
physical neuron models has been developed from 
neural circuits by incorporating different specific elec‐
tronic components including memristors, thermistors, 
phototubes, piezoelectric ceramics, and Josephson junc‐
tions. Synapse function is enhanced by designing hy‐
brid synapses with the physical aspects in mind. The 
inner field energy of neurons can be described by 
equivalent Hamilton energy, which decides the firing 
modes and patterns. The creation and growth of syn‐
apses to connect biological neurons are explained from 
a physical viewpoint, which allows us to confirm that 
energy diversity controls synaptic regulation to main‐
tain a stable energy balance. In particular, the forma‐
tion of heterogeneity results from energy accommoda‐
tion, and shape deformation is generated, accompa‐
nied by a parameter shift in the theoretical model. 
Some new insights within this review will be helpful 
for further investigation in nonlinear dynamics, com‐
putational neuroscience, and application of artificial 
neural circuits.
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