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Abstract: Data-driven damage-detection schemes are usually unsupervised machine-learning models in practice, as these do not 
require any training. Vibration-based features are commonly used in these schemes but often require several other parameters to 
accurately correlate with damage, as they may not globally represent the model, making them less sensitive to damage. Modal 
data, such as frequency response functions (FRFs) and principal component analysis (PCA) reduced FRFs (PCA-FRFs), inherits 
the dynamic characteristics of the structure, and it changes when damage occurs, thus showing sensitivity to damage. However, 
noise from the environment or external sources such as wind, operating machines, or the in-service system itself, can reduce the 
modal data’s sensitivity to damage if not handled properly, which affects damage-detection accuracy. This study proposes a 
noise-robust operational modal-based structural damage-detection scheme that uses impact-synchronous modal analysis (ISMA) 
to generate clean, static-like FRFs for damage diagnosis. ISMA allows modal data collection without requiring shutdown 
conditions, and its denoising feature aids in generating clean, static-like FRFs for damage diagnosis. Our results showed that the 
FRFs obtained through ISMA under noise conditions have frequency response assurance criterion (FRAC) and cross signature 
assurance criterion (CSAC) scores greater than 0.9 when compared with FRFs obtained through experimental modal analysis 
(EMA) under static conditions; this validates the denoising feature of ISMA. When the denoised FRFs are reduced to PCA-FRFs 
and used in an unsupervised learning-based damage-detection scheme, zero false alarms occur.

Key words: Impact-synchronous modal analysis (ISMA); Frequency response function (FRF); Principal component analysis 
(PCA); Unsupervised learning; Damage detection

1 Introduction 

Structural health monitoring (SHM) involves peri‐
odic monitoring of a structure or system for damage 
diagnosis. Digital sensors and storage devices are widely 
available nowadays, which leads to more data-driven 
SHM approaches in the current market (Lydon et al., 
2022). Machine-learning algorithms are used in these 
data-driven methods to build damage-diagnosis models. 
Two main categories of machine-learning algorithms are 
supervised learning and unsupervised learning. Super‐
vised learning-based models are trained with labelled 
data to build a relationship between the input features 
and the labels. Hence, with sufficient training data, 

supervised models can become accurate (Garcia-Perez 
et al., 2013; Gordan et al., 2020b; Kim et al., 2020; Nick 
and Aziminejad, 2021). However, it is not practical to 
create real damage to a structure or wait for damage 
events to obtain the training samples, which leads to 
the cold-start problem, especially for new and unob‐
served structures. When there are insufficient training 
samples, the extrapolation capacity of the supervised 
models is generally poor, and overfitting can happen. 
Therefore, unsupervised learning-based models are 
more commonly used in actuality, as training is not 
required.

Most unsupervised models cluster samples based 
on their unique characteristics, in order to help experts 
or engineers visualize the overall structure of the dataset 
and make better decisions in damage diagnosis. Exam‐
ples of unsupervised learning algorithms are k-means, 
self-organizing maps, hierarchical clustering, and fuzzy 
clustering, where the unsupervised k-means algorithm 
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clusters a dataset into k number of groups; k is defined 
by the user. In unsupervised damage-detection applica‐
tions, the anomaly-detection method is commonly used. 
The undamaged samples form the baseline cluster, 
and the structure is considered damaged when an out‐
lier is detected. Santos et al. (2016) applied an unsu‐
pervised method using multi-layer perceptron (MLP) 
and a k-means algorithm for damage detection of a 
cable-stayed bridge, whereas Sarmadi et al. (2021) used 
k-medoids with a probabilistic-based alarm threshold 
for bridge monitoring. Svendsen et al. (2022) applied 
the Mahalanobis squared distance (MSD) unsuper‐
vised approach for bridge monitoring. All three studies 
showed positive results in detecting early damage with 
minimal false detections. Bouzenad et al. (2019) imple‐
mented k-means with an alarm threshold-setting method 
to detect damage to pipelines and tubes. Entezami and 
Shariatmadar (2018) used an autoregressive model to 
detect damage presence and applied damage indices 
to further identify the severity and locations of the 
damage. Daneshvar and Sarmadi (2022) proposed 
an information-based anomaly detector with a novel 
threshold-limit-setting approach for damage detection in 
civil structures. Results showed accurate discrimination 
of damaged and undamaged samples. Most studies on 
unsupervised models recommend lower dimensional 
data for more effective clustering. High-dimensional 
data can be too complex and also contaminated by 
noise, leading to lower data sensitivity. Therefore, sev‐
eral studies of this kind applied dimension-reduction 
or feature-extraction techniques to the dataset before 
clustering so that only the important features would 
be extracted. The principal component analysis (PCA) 
algorithm is commonly applied before unsupervised 
clustering to reduce data complexity and remove noise. 
Kumar et al. (2020) applied PCA to time series data to 
extract the damage-sensitive feature for unsupervised 
damage detection, and the results were more than 90% 
in accuracy for damage detection. Solimine et al. (2020) 
applied PCA to the acoustics data to reduce data dimen‐
sionality before sending them for k-means clustering-
based damage detection for a wind-turbine blade. The 
results showed that PCA helped maximize the spread 
of the dataset, which enabled outliers to be easily de‐
tected. Kouadri et al. (2020) applied PCA to extract the 
damage-sensitive features to be used in a hidden Mar‐
kov model (HMM) for fault diagnosis of wind energy 
converter systems. Generally, unsupervised methods 

have been shown to be practical and effective in detect‐
ing damage, and PCA is effective in reducing the dimen‐
sions of the data and extracting the important features 
from it to be used for these methods.

The features that are sensitive to damage are the 
key to accurate damage detection. A common condition-
monitoring setup involves placing different sensors to 
collect various parameters. Statistical features from the 
collected raw data, which usually consist of several 
parameters, are often used to determine structural health. 
However, the correlation between these features and 
damage needs to be built through multiple sources of 
variability that may not globally represent the model, 
which raises uncertainties in damage detection. On the 
other hand, modal parameters such as natural frequen‐
cies and mode shapes are directly related to structural 
dynamic behaviour. A change in modal parameters such 
as natural frequencies and mode shapes, indicates a 
change in the structural dynamic behaviour, and is thus 
a sign of structural damage.

In general, there are two main approaches to using 
modal parameters as the features for damage identifi‐
cation: physics-based and data-driven. An example of a 
widely used physics-based method is the inverse finite 
element (FE) model, which is updated using modal 
parameters. The changes or differences in the modal 
data between the FE model and the actual structure 
suggest potential structural damage, and the location 
and severity of the damage can also be identified. To 
build a reliable FE model, calibration using field mea‐
surements is required (Brownjohn et al., 2001). How‐
ever, the number of parameters measured is more likely 
to be lower than that of the actual parameters in an FE 
model, which results in a low- to medium-fidelity-level 
FE model with uncertainties that can reduce the confi‐
dence level in the assessment stage. Thus, high-fidelity 
models are much preferred, but they are computation‐
ally intensive. Recent years have seen active research 
on reducing the computational burden and modelling 
the uncertainties of FE models (Wan and Ni, 2018; 
Xin et al., 2019; Zhou and Tang, 2021). On the other 
hand, data-driven methods use statistical and machine-
learning algorithms, and the damage-assessment model 
is derived based on the available data. Several investi‐
gations have used natural frequencies and mode shapes 
as the damage features for machine-learning-based 
methods (Ozdagli and Koutsoukos, 2019; Fleet et al., 
2020; Gordan et al., 2020a; Gillich et al., 2022). Modal 
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parameters need to be extracted from the frequency 
response functions (FRFs). As the modal parameters are 
not the upstream data, they incur measurement errors 
from the extraction process and thus reduce the overall 
sensitivity to damage. Therefore, more researchers are 
using the FRFs directly as the damage features. The main 
limitation of using raw FRFs for damage detection is 
the high complexity of data, especially when there are 
many measurement points on the structure; this could 
be computationally exhaustive. Hence, some research‐
ers have applied PCA to reduce the dimensions of the 
FRFs before using them for machine-learning-based 
damage identification (Elyasi et al., 2019; Chen et al., 
2020; Jayasundara et al., 2020; Padil et al., 2020; Bokae‐
ian et al., 2021; Siow et al., 2021). The first few prin‐
cipal components generated are then selected based on 
their cumulative contribution and used to reconstruct the 
lower-dimensional FRFs, which are used as the features 
in a machine-learning-based method. In general, PCA is 
effective in reducing the dimensions and denoising 
the FRFs, making the PCA reduced FRF (PCA-FRF) a 
damage-sensitive feature in a machine-learning-based 
method.

Modal analysis is required to extract the FRFs for 
damage detection. Experimental modal analysis (EMA) 
has been the most conventional technique used by 
researchers and engineers over the years. EMA is an 
input-output method which requires measurement of 
both input and output signals to obtain the FRFs. As 
the input force needs to be measured, EMA is usually 
performed in controlled environment, for example, in a 
laboratory or on a static or shutdown system; this is not 
practical for industrial applications due to high down‐
time costs. Noise that is unaccounted for may contam‐
inate the FRFs and reduce the modal parameters’ sen‐
sitivity to damage. Another technique is operational 
modal analysis (OMA), which is an output-only method. 
OMA measures the response of a structure excited by 
ambient white noise, and it has been performed on real-
world structures such as bridges (Xie et al., 2020; Fava‐
relli et al., 2022; Mao et al., 2022) and buildings (Foti 
et al., 2020) exposed to environmental noise such as 
wind. A recent study also showed that OMA could be 
performed on a variable-mass structure such as an aero‐
space structure with decreasing fuel (Ma et al., 2020). 
It has also been applied for operating machinery but 
requires additional data-processing methods to elimi‐
nate the harmonic excitation frequencies that are close 

to the structural modes (Chen et al., 2021; Kang et al., 
2021). Meanwhile, the harmonic frequencies must be 
known beforehand, which makes the actual implemen‐
tation of OMA more difficult and costly than it would 
be otherwise (Liu et al., 2022). Although OMA seems to 
be more practical than EMA, unaccounted-for input 
forces could affect the normalization of mode shapes.

Impact-synchronous modal analysis (ISMA) is an 
alternative method developed to overcome the draw‐
backs of EMA and OMA. It is an input-output method 
with impact-synchronous time averaging (ISTA), which 
removes harmonic signals and noise through time-
averaging of the impact forces and responses. The past 
decade has witnessed gradual improvements and devel‐
opments in the ISMA method, particularly in reducing 
the number of impacts through controlled impact tim‐
ing (Lim et al., 2019; Ong et al., 2019; Zahid et al., 
2020). The impact is imparted at off-phase angles to 
eliminate the non-synchronous components and cyclic 
loads without the need for a large number of averages 
(Ong et al., 2017). Ong et al. (2018) developed an auto-
impact device using ISMA to control the impact tim‐
ing for effective denoising, and found it to be suitable 
for operational modal testing. Another recent develop‐
ment integrated human behaviour recognition and 
machine learning into ISMA for more accurate impact-
time prediction, and the results showed an overall low 
mean prediction error of 5.1% (Zahid et al., 2021).

Overall, unsupervised methods require damage-
sensitive features for accurate damage detection. Modal 
parameters are well known for their direct relationship 
with damage, as they describe structural dynamic behav‐
iour. The FRFs are more damage-sensitive because they 
are the upstream data, but they are complex, especially 
when there are many measurement points. FRF-based 
methods involve conventional modal analysis tech‐
niques that would either require shutdown conditions or 
compromise the accuracy of modal data. Therefore, we 
propose a robust operational damage-detection scheme 
utilizing the denoising feature of ISMA. The damage 
scheme applies an unsupervised method and uses the 
PCA-FRF as the damage-sensitive feature. We used a 
plate-like structure and a beam-like structure for the case 
studies. Different in-service noise conditions were simu‐
lated using an electric motor and an electrodynamic 
shaker. To evaluate the denoising feature of ISMA, we 
compared FRFs obtained using ISMA under noise con‐
ditions with FRFs obtained using EMA under static 
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conditions. The damage scheme was also tested with the 
ISMA’s PCA-FRF to validate its overall noise robust‐
ness. The main objective of this work was to demon‐
strate the noise robustness of the proposed ISMA-based 
scheme. We focused on the importance of having clean 
data to avoid false alarms at the first step of damage 
detection: differentiating between an undamaged state 
and damaged state of the structure.

2 Theoretical background 

2.1 ISMA

ISMA is a modal analysis technique developed to 
overcome the drawbacks of conventional modal anal‐
ysis techniques, i.e., EMA and OMA. Like the EMA 
technique, ISMA is an input-output modal analysis 
technique that requires measurement of both input and 
output signals. The main difference between ISMA and 
EMA is the averaging technique used.

For EMA, spectral averaging is applied and block 
averaging is performed after fast Fourier transform 
(FFT) in the frequency domain. It is normally used 
to smooth the spectrum by averaging a series of spec‐
tra together; the greater the number of averages, the 
smoother the spectrum will be. Eq. (1) (Rahman et al., 
2011a) shows the spectral averaging process in mathe‐
matical form, where Y (ω) represents the averaged vibra‐
tion signal in the frequency domain, N represents the 
number of averages, Xi (ω) represents the ith average 
vibration signal in the frequency domain, and i repre‐
sents the average number.

Y (ω)=
1
N∑

i = 1

N

Xi (ω). (1)

The spectral averaging technique is adequate when 
the measurement is performed on static structures, as 
only the structural responses due to the known impact 
are measured. Although the spectral averaging technique 
can smooth noise-contaminated FRFs with sufficient 
averages, it may be insufficient to effectively suppress 
the noise and remove the cyclic load due to their unpre‐
dictable or random nature (Rahman et al., 2011a).

ISTA is applied in ISMA. It is a time-synchronous 
averaging technique applied in the time domain. Using 
the impact force signal as the reference, all other re‐
sponses that are non-synchronous to the impact are 
eliminated through block averaging, leaving only the 

responses generated due to the impact hammer. Eq. (2) 
(Rahman et al., 2011b) shows the time-averaging pro‐
cess in mathematical form, where Y (t) is the averaged 
vibration in the time domain, y(t) is the vibration in 
the time domain, t is the time, K is the total number of 
impacts, u is the number of impacts, and T0 is the time 
interval between the impacts. FFT is then performed 
on Y (t) to get the FRFs.

Y (t)=
1
K ∑

u = 0

K - 1

y(t + uT0 ). (2)

When modal testing is performed on an operating 
structure, the total time response measured, y ( t), con‐
sists of two types of signals: x ( t), which is the desired 
deterministic response signal due to impact which con‐
sists of the summation of all modes r, and is synchro‐
nous with every impact force applied; e ( t), which is the 
summation of the undesired deterministic signal of the 
periodic response of the cyclic load with frequency ω 
and random ambient noise. Eq. (3) describes the sig‐
nals in the total time response y ( t), and Eq. (4) is an 
alternative equation in trigonometric form for Eq. (3) 
(Ong et al., 2017):

y(t)= x(t)+ e(t)=

         ∑
r = 1

n

Ar e-σrt sin(ωdrt + β1 )+R2 sin(ωt + β2 ) (3)

y(t)=∑
r = 1

n

e-σrt[ ar cos(ωdrt)+ br sin(ωdrt)] +

           f1 cos(ωt)+ g1 sin(ωt). (4)

As for the parameters in Eqs. (3) and (4), σr rep‐
resents the decay rate, ωdr is the modal frequency, n 
equals the maximum number of modes, Ar represents 
the amplitude of mode r for x ( t), R2 is the amplitude 
of e ( t) of the cyclic load, β1 is the phase of x ( t), and 
β2 is the phase of e ( t). ar and br are the real and imagi‐
nary parts of x(t), where

Ar = ( )a2
r + b2

r

1
2  (5)

β1 = arctan ( )br /ar . (6)

Signal x ( t) is triggered consistently with impact 
force and thus it is synchronous with the summation 
of βr for each natural mode. Thus, small variation 
could average ar and br to amplitude Ar. Because x ( t) 
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is synchronous with the impact force, while e ( t) is 
non-synchronous with it, one could diminish the non-
synchronous components (f1 and g1) through block aver‐
aging, as their phase β2 is inconsistent with the impact 
signature; this would leave only the desired deterministic 
response signals because phase β1 is consistent with the 
impact. Fig. 1 illustrates the elimination of the running 
speed or cyclic load through ISTA and the clean FRF 
generated after FFT.

To effectively suppress the noise in a minimum 
number of averages with ISMA, impact timing needs 
to be controlled; impacts have to be imparted at the 
phase which is inconsistent with the phase of response 
due to cyclic load (Lim et al., 2018). Studies have shown 
that a minimum of only four averages is required when 
impacts are consecutively applied at 180° out of phase, 
and the cyclic peak can be suppressed up to 82.25% 
(Ong et al., 2017, 2019).

In our proposed scheme, ISMA is applied to elim‐
inate noise and cyclic load components, so that a set 
of clean and static-like FRFs that only consists of the 
structural dynamic characteristics can be generated for 
damage-identification purposes.

2.2 FRF and its correlation techniques

The set of FRFs is obtained from the frequency 
domain after FFT of the cleaned time-domain signal. 
For this study, we evaluated the denoising performance 
of ISMA by comparing the qualities of FRFs generated 
by EMA and ISMA performed under noise condi‐
tions. The benchmark FRFs were generated by EMA 
under static conditions. The denoising performance was 

considered good if the FRFs generated resembled or 

had high correlation with the benchmark FRFs.

We used the frequency response assurance crite‐

rion (FRAC) (Shin, 2016) and cross signature assur‐

ance criterion (CSAC) (Lim et al., 2019) to measure 

the correlation between two sets of FRFs. The FRAC 

is used to quantify the correlation between two FRFs 

of a single measurement point over a frequency range. 

Eq. (7) (Shin, 2016) shows the mathematical equation 

for the FRAC:

FRAC =
|| H aH

H b
2

(H aH

H a )(H bH

H b )
 (7)

where H a represents a set of FRFs with H aH

 as its con‐

jugate transpose and H b represents the other set of FRFs 

with H bH

 as its conjugate transpose. The FRAC scores 

range from 0 to 1, with 0 indicating zero correlation 

and 1 indicating full correlation between the two sets.

The CSAC is used to quantify the correlation of 

two sets of FRFs at a frequency point. Eq. (8) (Lim 

et al., 2019) shows the mathematical equation for the 

CSAC:

CSAC(ωc) =
|| H aH

(ωc )H b (ωc )
2

(H aH

( )ωc H a( )ωc )(H bH

(ωc )H b (ωc ))


(8)

where H(ωc ) represents the FRFs at frequency point c.

Fig. 1  Elimination of the running speed with ISTA and the generated FRF (Zahid et al., 2020)
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2.3 Principal component analysis for PCA-FRF 
construction

FRFs can be complex, especially when dense mea‐
surements are involved, so dimension reduction is usu‐
ally required before unsupervised clustering-based 
damage detection to extract the main features that are 
sensitive to damage. Several researchers have used PCA 
to reduce the dimensions of FRFs before damage 
identification (Bandara et al., 2014; Khoshnoudian 
and Talaei, 2017; Das and Roy, 2022). Through orthog‐
onal projection, the variables in the original dataset 
are linearly transformed into uncorrelated variables, 
also known as principal components (PCs), which form 
a new coordinate system that can better show the vari‐
ability in the dataset. The total number of PCs equals 
to the total number of variables in the dataset. The first 
principal component PC1 indicates the direction of 
the original data by means of the maximum variance 
(eigenvalue). The next principal component PC2 is 
orthogonal to PC1 with the maximum variance, and so 
on. The ranks of the PCs correspond to their contribu‐
tion to the original dataset, and higher-ranked PCs 
are the main features of the dataset. Thus, the lower-
dimension dataset only requires the first few PCs. The 
cumulative contribution of the PCs needs to be investi‐
gated to determine the optimum number.

For the proposed scheme, after generating clean 
FRFs through ISMA, we applied PCA to the FRFs to 
generate the PCs. The first two PCs (PC1 and PC2) were 
used to construct the single-lined PCA-FRF, because 
according to a previous study done by our team, the 
fact that the cumulative contribution of the first two PCs 
was more than 99.9% indicated that the first two PCs 
represented the original FRFs by 99.9% (Siow et al., 
2021). The PCA-FRF peaks were shown to be sensi‐
tive to damage when an unsupervised k-means damage-
detection method is used. Therefore, we constructed 
PCA-FRF with the first two PCs, and other construc‐
tion details can be referred to in the published work 
done by our team (Siow et al., 2021). The peaks of 
the PCA-FRF were then extracted to be used as the 
features for the unsupervised clustering-based damage-
detection method.

2.4 Unsupervised k-means clustering for damage 
detection

The details of the k-means algorithm can be found 
in (Siow et al., 2021). Generally, it starts with k randomly 

generated initial cluster centroids within the dataset 
and is followed by assigning the points to the nearest 
centroid available. The centroids are updated iteratively 
until either the centroids are the same or all data points 
are assigned to the same cluster compared to the pre‐
vious iteration.

To determine the clustering quality, several cluster-
validation indices can be used. External validation 
indices such as Rand index and confusion matrix are 
used to compare the clustering result with the actual 
labelled data distribution. Internal validation indices 
such as Dunn’s index, the Silhouette criterion, and the 
Davies-Bouldin index are used to evaluate cluster qual‐
ity based on the intra-cluster and inter-cluster distances. 
For the proposed scheme, we used Dunn’s index. Eq. (9) 
is the equation of Dunn’s index (Manochandar et al., 
2020), where D is the damage-presence indicator by 
evaluating the clustering result; d'min represents the 
minimum inter-cluster distance and dmax represents the 
maximum intra-cluster distance.

D =
d ′min

dmax

. (9)

For the proposed scheme, we used the unsuper‐
vised k-means algorithm and preset the value of k as 2. 
An undamaged cluster and a damaged cluster are ex‐
pected when damage is present. We used Dunn’s index 
to evaluate the clustering result each time a new data 
point was added. The peaks of the PCA-FRF were used 
as the features for the unsupervised k-means-based 
damage-detection method. When damage occurred, the 
peaks shifted horizontally from the undamaged peaks 
due to stiffness reduction. Thus, when the damaged and 
undamaged peaks were sent for clustering, two dis‐
tinct clusters formed, resulting in a high Dunn’s index. 
When only the undamaged peaks were sent for clus‐
tering, the clusters formed were less distinguishable 
due to the unchanged structural dynamic behaviour, 
resulting in a lower Dunn’s index if there were a suffi‐
cient number of undamaged peaks. In application, only 
undamaged samples will be available for clustering ini‐
tially, so Dunn’s index is expected to be lower than 
that when there is damaged data; there is only one clus‐
ter in actuality when a structure is undamaged. There‐
fore, for the proposed scheme, the damage threshold 
is Dunn’s index of the undamaged or baseline cluster. 
Damage would be detected when the updated Dunn’s 
index surpassed the baseline Dunn’s index.
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3 Methodology 

3.1 Framework of the proposed damage-detection 
scheme

Fig. 2 shows the overall framework of the proposed 
ISMA-based damage-detection scheme. Basically, it 
consists of three stages: signal denoising using ISMA, 
dimension reduction and feature extraction using PCA, 
and damage detection using the unsupervised k-means 
algorithm. First, the structural responses due to impact 
are collected and ISTA is performed to eliminate the 
cyclic load components and random noise in the sig‐
nals. The cleaned signals are then processed through 
FFT to generate clean FRFs. As the FRFs are highly 
dimensional in nature, especially when dense measure‐
ment points are implemented, the dimensions of the 

FRFs need to be reduced before using FRFs as fea‐
tures for damage detection in an unsupervised machine-
learning method. Thus, PCA is applied to the FRFs to 
generate the PCs. The first two PCs are then selected 
and used to construct the single-lined PCA-FRF, and the 
peaks are extracted to be used as the input features of the 
unsupervised k-means method. As the proposed scheme 
implements the anomaly-detection concept, a baseline 
cluster, which consists of undamaged peaks, is first re‐
quired. Dunn’s index, which is generated after an itera‐
tion of clustering of the undamaged peaks, is monitored 
as more undamaged peaks are added for clustering. In 
this study, we considered the baseline cluster ready 
for use when Dunn’s index of the undamaged peaks 
started to converge or remained constant at a certain 
value, which was used as the damage threshold. Once the 

Fig. 2  Framework of the proposed operational modal-based damage scheme with ISMA
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baseline cluster was ready, damage detection was initi‐
ated. When the added peak surpassed the damage thresh‐
old (undamaged Dunn’s index), damage was detected.

3.2 Experimental setup

Figs. 3 and 4 show the experimental setups for 
the plate-like and beam-like structures, respectively, and 
Table 1 defines the labels shown in the two figures. In 
general, an impact hammer was used to excite the struc‐
ture and accelerometers were used to collect structural 
responses to the impact. The FRFs of the undamaged 
structure obtained using EMA under static conditions 
were set as the benchmark FRFs. When noise was simu‐
lated on the undamaged structures, EMA and ISMA 
were performed. The FRFs obtained through the two 
modal analysis techniques were then compared in terms 
of FRAC and CSAC to quantify the correlation between 
the FRFs and the benchmark FRFs.

Table 2 shows the noise conditions generated in 
this study and their descriptions. Two types of noise con‐
ditions were generated: harmonic excitation and random 
noise excitation. For the plate-like structure, harmonic 
excitation with a sine wave of 40 Hz was generated by 
a motor to simulate the in-service conditions of a plate-
like structure, i.e., automobile chassis. For the beam-like 
structure, reciprocating excitations with square waves 
of 20 Hz and 35 Hz were generated by a shaker to 
simulate the in-service conditions of a pipe structure. 
Random noise was generated by the same shaker on the 
beam-like structure to simulate exposure of the struc‐
ture to various noise sources that would be present in 
actual scenarios.

Table 3 describes the simulated damage condi‐
tions for the plate-like and beam-like structures. The 
screws that secured the plate-like and beam-like struc‐
tures to the corresponding supports were loosened to 
create stiffness-reduced damage conditions. We simu‐
lated single-damage cases at each of the supports of the 
plate-like and beam-like structures.

Fig. 3  Experimental setup and schematic diagram of the 
plate-like structure

Fig. 4  Experimental setup and schematic diagram of the 
beam-like structure

Table 1  Description of the labels from Figs. 3 and 4

Structure

Plate-like

Beam-like

1

PCB model 086C03 
impact hammer

PCB model 086C03 
impact hammer

2

Wilcoxon research model 
S100C accelerometer

Analog model 
EVAL-CN0532-EBZ 
MEMS sensor

3

NI-USB9234 signal-
acquisition module

NI-USB9234 signal-
acquisition module

4

SWIS DD60 F024030 permanent 
magnet direct current (DC) motor 
with DC220C-24V DC controller

LDS V201 electrodynamic shaker

MEMS: micro-electro-mechanical system
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3.3 Unsupervised k-means clustering-based 
damage-detection method

PCA was used to reduce the dimensions of the 
FRFs for each state (damaged and undamaged). The 
peaks of the PCA-FRF were used as the damage-
sensitive features in the unsupervised damage-detection 
method. The unsupervised k-means algorithm was used 
and k was set as 2, which indicated the presence of an 
undamaged and a damaged cluster when damage was 
present, assuming that there were sufficient undam‐
aged peaks. Dunn’s index is an index that quantifies 
the k-means clustering quality based on the ratio of the 
minimum inter-cluster distance to the maximum intra-
cluster distance. A high Dunn’s index indicates well-
clustered results. We expected Dunn’s index to be 
lower when there were only undamaged peaks, com‐
pared to when there were both undamaged and dam‐
aged peaks, due to the unchanged structural dynamic 
behaviour. As it is rare to have damaged samples, we 
determined the damage threshold (Dunn’s index) based 
on the available undamaged samples. With the gradual 
addition of the undamaged samples for clustering, and 
with k set as 2, we observed Dunn’s index of the clus‐
tering result for only the undamaged samples.

For the plate-like and beam-like structures, we 
used 50 undamaged samples. Each of the PCA-FRF 
peaks was sent for clustering and the value of Dunn’s 
index was observed. Figs. 5 and 6 show Dunn’s indices 
for the undamaged peaks of the plate-like and beam-
like structures, respectively. In general, it was clear that 

for both structures, Dunn’s index deviated below 2 as 
more undamaged samples were added for clustering. 
Therefore, the damage threshold was set as 2 for both 
structures, so that when a new data point was added 
for clustering and Dunn’s index was greater than 2, 

Table 2  Simulated noise conditions with descriptions

Noise condition

1

2

Description

Harmonic/reciprocating excitation

Random noise excitation

Fig. 5  Dunn’s indices for the undamaged PCA-FRF peaks 
1 (a), 2 (b), and 3 (c) into the baseline cluster of the plate-like 
structure

Table 3  Simulated damage conditions on the plate-like and 

beam-like structures

Plate-like 
damage case

Damage at Edge 1

Damage at Edge 2

Damage at Edge 3

Damage at Edge 4

Beam-like 
damage case

Damage at 
Support 1

Damage at 
Support 2

Damage at 
Support 3

Damage at 
Support 4

Description

Loosened bolts at 
Edge/Support 1

Loosened bolts at 
Edge/Support 2

Loosened bolts at 
Edge/Support 3

Loosened bolts at 
Edge/Support 4

Fig. 6  Dunn’s indices for the undamaged PCA-FRF peaks 
1 (a) and 2 (b) into the baseline cluster of the beam-like 
structure
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the structure would be detected as damaged. The dam‐
age threshold should be set based on undamaged sam‐
ples from the individual structure, and other factors 
should also be considered, such as the environmental 
conditions of the undamaged structure. As the main 
objective of this study is to demonstrate the noise 
robustness of the proposed ISMA-based damage scheme 
and the focus is therefore on the denoising perfor‐
mance of ISMA, the damage threshold (Dunn’s index) 
was set as 2 for both structures we studied.

4 Results and discussion 

4.1 Denoising feature of ISMA on FRFs

Fig. 7 shows the FRFs of the undamaged state for 
the plate extracted using EMA and ISMA under noise 
conditions, with the FRFs extracted using EMA under 
static conditions set as the benchmark. A harmonic 

excitation of 40 Hz was applied to the plate-like struc‐
ture for noise condition 1 to simulate the in-service 
conditions of a motor-driven plate-like structure. Based 
on the benchmark FRFs of the plate-like structure shown 
in Fig. 7a, we would like to point out that there are five 
notable peaks at 17.5 Hz, 34.0 Hz, 43.0 Hz, 93.0 Hz, 
and 168.5 Hz within the frequency range of 0–200 Hz, 
which are the structural modes. When noise condition 1 
was simulated on the plate-like structure and EMA was 
performed, an additional sharp peak with a frequency 
of 40.0 Hz was observed in the FRFs. We also noted 
that the FRF lines were not as smooth as the bench‐
mark FRFs when EMA was performed in the presence 
of noise. On the other hand, the 40.0-Hz peak was absent 
and the FRF lines were smooth when ISMA was per‐
formed on the noise-induced plate. In general, the num‐
ber of structural modes in the ISMA FRFs was equal 
to that in the benchmark FRFs, indicating the capability 
of ISMA for removing non-structural modes.

Figs. 8 and 9 show the FRAC and CSAC of the 
FRFs, with the FRFs obtained under static conditions 
as the benchmark. Based on Figs. 8 and 9, we found 
that when another set of EMA static FRFs was com‐
pared with the benchmark FRFs, the FRAC and the 
average CSAC were generally greater than 0.999. This 
showed that when the structure was still undamaged, 
the structural dynamic behaviour remained unchanged; 
thus, the FRFs were generally the same as the bench‐
mark set when EMA was performed under static con‐
ditions. However, when EMA was performed under 
noise conditions, the FRAC and average CSAC indi‐
ces dropped even when the structure was still undam‐
aged. The minimum FRAC dropped from 0.999103 to 
0.992063, whereas the average CSAC dropped from 
0.99912 to 0.99579 when noise was induced. Based on 
Fig. 9, we noted that within the frequency range of 35–
40 Hz, the CSAC dipped to 0.95923 for the EMA-noise 
FRFs, which indicated a poorer correlation of the FRFs 
in that range with the benchmark FRFs. When ISMA 
was performed under the same noise conditions, both 
FRAC and average CSAC indices were greater than 
0.999, indicating a high correlation with the benchmark 
FRFs in general, even though noise was present. At 
the frequency range of 35–40 Hz, the minimum CSAC 
for ISMA FRFs was 0.998; this was higher than the 
EMA-noise FRFs, indicating a higher correlation with 
the benchmark FRFs due to the absence of the cyclic 
peak. Therefore, it was evident that the ISMA was 

Fig. 7  FRFs of an undamaged plate-like structure using: 
(a) EMA under static conditions as the benchmark FRFs; 
(b) EMA with noise condition 1; (c) ISMA with noise 
condition 1
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capable of removing the cyclic load and thus produc‐
ing static-like FRFs for a plate-like structure when noise 
was present.

Fig. 10 shows the FRFs of the undamaged state 
for the beam-like structure, extracted using EMA and 
ISMA under noise conditions, with the FRFs extracted 
using EMA under static conditions set as the bench‐
mark. Based on the benchmark FRFs of the beam-like 
structure in Fig. 10a, we saw that there were four nota‐
ble peaks at 25.5 Hz, 45.5 Hz, 78.0 Hz, and 100.0 Hz, 
which were the structural modes. A square wave of 
35.0 Hz was applied for noise condition 1 to simulate the 
in-service conditions of a pipe, and random noise was 
applied in noise condition 2 to simulate the exposure of 
a beam-like structure to various noise sources in actu‐
ality. When EMA was performed for the beam-like 

structure with noise condition 1, the FRFs showed sharp 
peaks at 35.0 Hz and 105.0 Hz, and smaller peaks 
throughout the FRFs. When ISMA was performed, 
the 35.0-Hz peak and its 3× harmonic (105.0 Hz) were 
absent in the FRFs. This showed that when ISMA was 
performed on an in-service beam-like structure, the 
cyclic load and its harmonics could be removed. When 
the beam-like structure was excited by noise condi‐
tion 2 and EMA was performed, we observed that the 
structural modes in the FRFs displayed multiple sharp 
peaks throughout the frequency range of 0–200 Hz. 
The structural modes were visible when ISMA was 
performed, even though the beam-like structure was 
under noise condition 2. This showed that ISMA could 
remove the random noise to unveil the structural modes 
in the FRFs.

Fig. 8  FRAC between the FRFs of the plate-like structure, as measured by EMA and ISMA. The FRFs measured by 
EMA under static conditions were used as the reference

Fig. 9  CSAC between the FRFs of the plate-like structure, as measured by EMA and ISMA. The FRFs measured by 
EMA under static conditions were used as the reference
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Figs. 11 and 12 show the FRAC and CSAC of the 
FRFs, with the static FRFs using EMA as the bench‐
mark for the beam-like structure. One can see from 
Fig. 11 that when EMA was performed under noise 
conditions, the minimum FRAC was 0.565454 and 
0.333459 for noise conditions 1 and 2, respectively. 
The average CSAC values for noise conditions 1 and 2 
were 0.81714 and 0.76449, respectively (Fig. 12). This 

shows that the FRFs obtained during operation and 
noise exposure using EMA are poorly correlated with 
the benchmark FRFs even when there are no changes 
in the structural dynamic behaviour. However, the 
ISMA FRFs show a higher correlation with the bench‐
mark FRFs; the minimum FRACs were 0.966341 and 
0.947158 for noise conditions 1 and 2, respectively. 
We also noted that the average CSAC values for the 

Fig. 11  FRAC between the FRFs measured by EMA and ISMA of the beam-like structure. The FRFs measured by EMA 
under static conditions are used as the reference

Fig. 10  FRFs of undamaged beam-like structure obtained using: (a) EMA under static conditions; (b) EMA with noise 
condition 1; (c) EMA with noise condition 2; (d) ISMA noise with condition 1; (e) ISMA with noise condition 2
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ISMA FRFs were 0.968000 and 0.983000 for noise con‐
ditions 1 and 2. The higher FRAC and average CSAC 
values shown when ISMA is performed indicate a 
higher correlation of the FRFs with the benchmark 
FRFs. Thus, it is evident that ISMA is capable of 
denoising the FRFs and producing static-like FRFs. It 
can therefore be applied on in-service plate-like and 
beam-like structures in actual scenarios to generate 
clean data for modal-based damage identification.

4.2 Robustness-to-noise effect of ISMA implemen‐

tation in an unsupervised damage-detection method

Figs. 13 and 14 show the overlaid undamaged 

PCA-FRFs for noise conditions of the plate-like and 

beam-like structures, respectively, with the PCA-FRF 

obtained from EMA during static conditions used 

as the benchmark. Generally, it is shown that when 

EMA is performed under noise conditions, Dunn’s 

Fig. 12  CSAC between the FRFs of the beam-like structure measured by EMA and ISMA. The FRFs measured by EMA 
under static conditions are used as the reference

Fig. 13  Overlaid undamaged PCA-FRFs and unsupervised clustering results when EMA and ISMA are performed on a 
plate-like structure with noise condition 1
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index exceeds the damage threshold of 2, which indi‐
cates damage presence. As the shift of the PCA-FRF 
peaks from the undamaged state is applied for damage 

detection, the additional peaks due to noise lead to 
false alarms. On the other hand, we observed that 
when ISMA is performed under noise conditions, the 

Fig. 14  Overlaid undamaged PCA-FRFs and unsupervised clustering results when EMA and ISMA are performed on a 
beam-like structure with noise condition 1 (a) and noise condition 2 (b)
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PCA-FRF resembles the benchmark PCA-FRF, where 
only the resonance peaks were shown in the figures.

Fig. 15 shows Dunn’s indices of undamaged 
and damaged samples for the first three PCA-FRF 
peaks of the plate-like structure. Damage was detected 
when one of the peaks was identified as an outlier. 
Table 4 shows the overall results of the unsupervised 
damage-detection method for the plate-like structure. 

Fig. 15 illustrates the fact that when damage occurs, 
Dunn’s indices of all or at least one of the peaks are 
greater than the damage threshold, which indicates that 
there is a shift in the PCA-FRF. We also observed that 
there were only two damaged samples that did not 
surpass the damage threshold for all three peaks. The 
two damaged samples were from damage at Edge 4 
of the plate-like structure. As the shift of the peaks is 

Fig. 15  Dunn’s indices for the PCA-FRF peaks 1 (a), 2 (b), and 3 (c) of undamaged and damaged samples of the plate-like 
structure
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insignificant, Dunn’s index for this damage case is low. 
Compared to other locations, damage at Edge 4 was 
less sensitive to the shift in natural frequencies.

When noise was induced on the undamaged struc‐
ture and EMA was performed, false detection was 
observed; 7 out of 8 sets showed Dunn’s index of a 
peak exceeding the damage threshold. This was due to 
the sharp peak in the PCA-FRF caused by the noise pres‐
ent as the third peak, which gave the mistaken impres‐
sion that there was a shift due to damage. The detection 
accuracy for EMA with noise condition 1 was thus 
12.5%; only 1 out of 8 samples was successfully detected 
as undamaged. However, the structure was detected as 
undamaged for all ISMA samples with noise condition 

1; all samples showed Dunn’s index values below the 
damage threshold, resulting in an accuracy of 100%.

Fig. 16 shows Dunn’s indices of undamaged and 
damaged samples for the first two PCA-FRF peaks of 
the beam-like structure. Damage was detected when 
one of the peaks was identified as an outlier. Table 5 
shows the overall results of the unsupervised damage-
detection method for the beam-like structure. Fig. 16 
clarifies that when damage occurs, Dunn’s indices of 
all or at least one of the peaks are greater than the 
damage threshold, indicating a shift of PCA-FRF due 
to the presence of stiffness-reduced damage. There were 
also two damage samples that did not surpass the dam‐
age threshold of either peak. The two damage samples 
were from damage at Support 3 of the beam-like struc‐
ture. As the shift of the peaks was insignificant, Dunn’s 
index for this damage case was low. Note that com‐
pared to other locations, damage at Support 3 was less 
sensitive to the shift in natural frequencies.

When noise was induced on the undamaged struc‐
ture and EMA was performed, we observed false detec‐
tion: 7 out of 8 sets showed that Dunn’s index of a 

Fig. 16  Dunn’s indices for the PCA-FRF peaks 1 (a) and 2 (b) of undamaged and damaged samples of the beam-like structure

Table 4  Overall results of the unsupervised damage-

detection method for the plate-like structure

Condition

Damaged (EMA static)

Undamaged (EMA with noise condition 1)

Undamaged (ISMA with noise condition 1)

Accuracy (%)

100.0

12.5

100.0
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peak exceeded the damage threshold. The peaks due 
to noise that were present before the structural modes 
led to false detection. The detection accuracy for EMA 
with noise conditions was also 12.5%, and only one 
sample could be successfully detected as undamaged. 
When ISMA was performed under noise conditions, all 
samples could be detected accurately as undamaged 
and all peaks showed Dunn’s index values below the 
damage threshold. This shows that ISMA permits FRF 
data collection in noisy environment and on in-service 
plate-like and beam-like structures; the FRFs would 
be cleaned up initially before being used for damage 
detection in an unsupervised manner.

Based on the overall results, we would like to note 
that when there is damage, the peaks of the PCA-FRF 
shift from the undamaged peaks, and the shift of the 
peaks is detected by the unsupervised k-means algo‐
rithm. This also applies for multiple damage, in which 
case there would also be shift in the peaks of the 
PCA-FRF due to structural stiffness reduction.

5 Conclusions 

We proposed a noise-robust damage-detection 
scheme for operating machinery using the denoising 
feature of ISMA. Our results show that ISMA can pro‐
duce static-like FRFs with FRAC and CSAC values 
greater than 0.9 in general. The noise and cyclic loads 
or harmonic components can be removed, showing the 
effectiveness of the denoising approach. We infer that 
the proposed damage scheme can be performed on a 
structure without requiring shutdown conditions; it can 
produce EMA-like or static-like FRFs that only con‐
sist of the structural dynamic information for damage 
assessment. The clean FRFs obtained through ISMA 
are then processed to generate the PCA-FRF for unsu‐
pervised damage detection. The results in our tests 
showed 100% accuracy when the ISMA’s PCA-FRFs 
were used for unsupervised damage detection for both 
plate-like and beam-like structures, whereas when EMA 
was performed under noise conditions, the percentage 
of error was 87.5% for both plate-like and beam-like 

structures. This further validates the idea that imple‐
mentation of ISMA in the proposed scheme aids in 
the fundamental level of damage assessment. By sup‐
pressing the effect of noise, the state of structural health 
can be correctly determined to avoid false alarms. Thus, 
we validated that the proposed scheme with ISMA is 
robust to noise and applicable for operating structures.

Because impact timing is key to achieving effec‐
tive denoising performance with a minimum number 
of averages for ISMA, it could be optimized by using 
an automated impact device known as automated phase 
controlled impact device (APCID) that has been devel‐
oped to enable accurate impact timing. However, the 
device lacks practicality for commercial and industrial 
use due to its large size and heavy weight. Our team’s 
ongoing research includes the development of a semi-
auto impact device, in which machine learning is inte‐
grated into the APCID scheme for human-based impact. 
In addition, future work could include investigation into 
different types of unsupervised methods for the pro‐
posed scheme in order to determine the best-performing 
algorithm. Optimization of the damage threshold could 
also be a separate topic for study, and researchers could 
look at factors such as environmental conditions to 
further improve the overall proposed damage-detection 
scheme.
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