
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)   in press 

www.jzus.zju.edu.cn; www.springer.com/journal/11582 

E-mail: jzus_a@zju.edu.cn 

 

 

 

Bifurcat ion control of solid angle car-following model through a 

time-delay feedback method 
 

Qun JI
1
, Hao LYU

1
, Hang YANG

1
, Qi WEI

2
, Rongjun CHENG

1* 

 
1Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China 
2Ningbo University of Finance & Economics, Ningbo 315175, China 

 

Abstract:  In this paper, the principle of time-delay feedback control is applied to suppress or weaken the bifurcation of the traffic 

system so as to suppress traffic congestion. The key to this method is to find a stable time delay and feedback gain interval, that is 

to say, how to choose an appropriate parameter combination of time-delay and feedback gain to stabilize the solid angle model 

(SAM). Considering the effect of time-delay, the time-delay differential equation (DDE) is used to describe the traffic model with 

delay feedback control. However, it is difficult to make a dynamic analysis of DDE because of the infinite dimensional phase space. 

Existing studies of car-following models involving time-delay often ignore the time-delay term directly or use the small-delay 

approximation. Although the small delay approximation is simple and can easily be used to truncate the delay term, the results 

obtained are only valid for very small delays. To overcome this limitation and obtain an accurate stable interval, the definite 

integral stabilization method and the stable switching criterion are used to determine the stable interval of the reaction delay and 

feedback gain. Then a control strategy is designed to suppress the traffic congestion and stabilize the unstable traffic flow in the 

SAM. Numerical simulations are carried out to verify the practicability of the system. Numerical results demonstrate that rea-

sonable feedback gain and delay settings can indeed effectively improve the stability of traffic flow.  
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1  Introduction 

 

With the continuous development of 

urbanization, traffic accidents and congestion have 

increasingly become obstacles to urban development. 

To cope with the increasing traffic demand, improve 

traffic efficiency and suppress traffic congestion, 

scholars have conducted research on these three types 

of traffic flows and have proposed many traffic flow 

models that can describe the characteristics of real 

traffic flows. These models include hydrodynamic 

models (Ge et al., 2014a, 2014b), queuing models 

(Geroliminis et al., 2009a, 2009b), gas kinetic models 

(Helbing and Treiber, 1998) car-following models 

(Sun and Zheng, 2018) and cellular automata models 

(Kong et al., 2021a, 2021b). Among them, the 

car-following model is the most extensively studied in 

micro traffic flow. It employs a dynamic approach to 

investigating the appropriate behavior of the 

following car resulting from changes in the motion 

state of the preceding vehicle. Currently, the most 

widely used research on car-following models is the 

OV model proposed by Bando (1995) in 1995, which 

uses acceleration changes to describe car-following 

behavior. For the practical deceleration situation, 

Helbing and Tilch (1998) established a GFM 

(Generalized Force Model) to resolve these questions. 

Jiang et al. (2001a, 2001b) proposed a FVDM (Full 

Velocity Difference Model) to further improve the 

acceleration and deceleration of the vehicle by 

considering the influence of both negative and 

positive speed differences on the acceleration of the 

rear vehicle. Based on the velocity difference model, 

Yu et al. (2013a, 2013b) proposed the FVDAM (Full 

Velocity Difference and Acceleration Model) by 

considering the distance from the preceding vehicle, 

and the differences in velocity and acceleration from 
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it. Cheng et al. (2017a, 2017b) established a newly 

continuous macroscopic model on the basis of FVDM, 

which successfully solved problems of small 

perturbations that previous models ignored. 

With the continuous development and wide 

application of psychological research, scholars have 

gradually tried to put aside the vehicle factor and to 

use the human factor to describe car-following 

behavior by proposing a psycho-physiological model, 

which is based on the perception and response 

characteristics of the driver. This idea was first put 

forward by Michaels and Cozan (1963). The idea is 

that the driverôs psycho-physiological characteristics 

have a certain promotion effect on the driverôs safe 

driving, which is embodied in the driverôs visual 

range or size of the previous car. Meanwhile, 

Wiedemann (1974) had also begun, in 1974, to 

discover how psychophysiological characteristics 

affect car-following behavior, and proposed a basic 

model of car-following, which became a core model 

for the well-known microscopic simulation software 

Vissim. The ideas of Michaels and Wiedemann have 

important implications for the study of the influence 

of driver psycho-physiological characteristics on 

driving behavior, but they have also slowed down the 

speed of research on this topic because it is not 

represented by more specific models and factors. Van 

Winsumôs (1999) research results make up for this 

deficiency. He developed a basic car-following model 

when integrating the research results of many 

psychologists on car-following behavior. Andersen 

and Sauer (2007) further improved the basic model 

and proposed the DVA (Driving by Visual Angle) 

model. In addition, Jin et al. (2001a, 2001b) based on 

the full velocity difference (FVD) model of Jiang et al. 

(2001a, 2001b), improved the physiological 

car-following model, and proposed the VAM (Visual 

Angle Model) in 2023. Considering the 

characteristics of the driverôs perspective, scholars 

believe that driverôs perspective will influence safe 

driving during the processes of car-following and 

lane-changing. For this reason, Zhang et al. (2023a, 

2023b) proposed a bi-directional visual angle 

car-following model (BDVAM) model that 

considered the collision sensitivity coefficient, the 

rearview perspective ratio and multiple vehicles. Also, 

Jiang et al. (2021a, 2021b) considers the actual scene 

of a two-way road without isolation belt, believed that 

the change of vehicle types in adjacent lanes would 

affect the driverôs decision-making in car-following. 

Therefore, an extended visual angle model based on 

the FVD model was established to verify this feature 

and the results of the analysis proved it. Considering 

that the vehicle height will also affect the driverôs 

perspective to a certain extent, in 2020, Ma et al. 

(2020a, 2020b) proposed adding a stereo perspective 

to the original basic car-following model. The 

specific model expression and perspective view are as 

follows: 

 

() () (){ } ()
d

,
d

n n n na t V t u t t
t

a W l W= - -è øê ú         (1) 

 

where ()( )nV tW  represents the optimal speed of the 

driver in this perspective, and ()n tW  represents the 

perspective of the driver n  at the moment t . 

 

Fig. 1  The schematic diagram of solid angle 

 

In the car-following model, the follower is af-

fected by many factors. The main ones are the actual 

road design, the mechanical performance of the ve-

hicle and the individual characteristics of the driver 

(including psychological quality, driving experience, 

driving age, etc.). The driver's individual characteris-

tics are mainly reflected in the response time lag in the 

model. For the study of time delay, Chandler et al. 

(1958a, 1958b) assumed that the driver's response 

came from the stimulus of the relative speed change 

signal and, considering that there is a certain delay in 

the driver's response to that stimulus, established the 

first time-delay car-following model. Bando et al. 

(1998a, 1998b) introduced the reaction time delay 

into the optimal speed model and proposed a 

time-delay optimization speed model. The results 

show that the stability of the fleet depends not only on 

the size of the driver's reaction time delay, but also on 

the number of vehicles in the fleet. To this end, 

Treiber et al. (2006a, 2006b) incorporated the driver's 

response time delay into the intelligent driving model. 
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Treiber pointed out that the negative impact of the 

driver's reaction time lag can be compensated by 

considering the behavior of multiple vehicles ahead. 

To further explore the influence of time delay on the 

system, the time delay parameters that are most 

conducive to the stability of the system are studied. 

Konishi et al. (1999a, 1999b) added a time-delay 

feedback control term based on the OV model to 

improve traffic flow stability while suppressing traffic 

congestion. 

In addition, the time-delay control strategy was 

first proposed by Konishi et al. (1998a, 1998b), and 

from his conclusions we can find that time delays are 

important to traffic flow. On the one hand, delay can 

degrade control performance and even lead to system 

instability. On the other hand, a well-designed 

time-delay control system can improve the stability of 

traffic flow (Konishi et al., 1998a, 1998b). For ex-

ample, Konishi et al. (2000a, 2000b) added a 

time-delay feedback control term on the basis of op-

timizing the speed model to improve the stability of 

uniform traffic flow and achieved the purpose of 

restraining traffic congestion. Zhao and Gao (2006) 

designed a new feedback controller with hysteresis 

based on the coupled map-following model, which 

effectively suppressed traffic congestion in the bot-

tleneck section. Fang et al. (2015a, 2015b) designed 

static and dynamic feedback controllers for sup-

pressing traffic congestion after considering the effect 

of continuous vehicle speed difference on traffic flow 

stability. In addition, bifurcation research (Jin and Xu, 

2016; Zhang et al., 2019a, 2019b) is also highly re-

garded as a theoretical research method for feedback 

control. Igarashi et al. (2001a, 2001b) selected New-

ell's first-order delay car-following model to discuss 

the bifurcation phenomenon of the uniform flow so-

lution and analytically obtained the blocking flow 

solution caused by the bifurcation. 

The controlled SAM with feedback gain and 

response time delay is established in Section 2. Linear 

stability analysis and bifurcation analysis are pre-

sented in Sections 3 and 4, respectively. In Section 5, 

the control principle of the feedback delay control 

strategy is given and the control effect under the 

combination of multiple parameters is simulated. The 

parameters of the controlled SAM are calibrated and 

the effectiveness of this control system is verified by 

simulation in Section 6. Finally, in Section 7, the 

design conclusion of the feedback control system is 

obtained. 

 

 

2  The controlled SAM 

 

When faced with unstable situations such as 

traffic congestion, SAM has certain limitations. The 

main objective of this research is to reduce those 

limitations. 
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 (2) 

 

where e and t denote the feedback gains of target 

vehicle velocity; 3

1 12 ( )n nM A h l- -= - , 
1nA -
 and 

1nl -  

represent the rear area and length respectively of the 

following vehicle, and the optimal velocity function 

( ( ))nV tW  can be replaced as follows: 

 

1 2 1 1 2( ( )) tanh( ( ) ( ) ).n n nV t V V C S t t CW W-= + -    (3) 

 

Using, 1 2=6.75, =7.91V V , 1 2=0.13, =1.57C C , 

the parameter calibration and verification are based 

on the empirical data of Helbing and Tilch (1998). To 

facilitate the following calculations, we convert Eq. 

(2) into Eq. (4): 
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3  Linear analysis of the controlled SAM 

 

In this section, the stability of the feedback con-

trol model is preconditioned by our linear analysis. 

For a steady traffic flow, all vehicles in the system 

travel at the optimal speed ( )0V W , and the same 

headway h , while the viewing angle remains un-

changed. Apparently, we can get: 

 

() ( ) ( )0 0

0 0, , ,n nv t V x hn V t h L NW W= = + =
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   (5) 
 

where 2

0 1 1( )n nA h lW - -= -  represents the perspec-

tive of the driver of the target vehicle in a steady flow 

of traffic. Giving a small perturbation ()ny t  can ob-

tain: 

 

0( ) ( ).n nx hn V t y tW= + +                    (6) 

 

Linearizing the equation as follows: 
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where 
00'( ) d ( ) dV V W WW W W == . Expanding ()ny t  

with the form of ( ) eikn zt

ny t += , it follows that: 
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Expanding 2

1 2( ) ( )z z ik z ik= + +, and substi-

tuting it into Eq. (8), we can gain the first-order and 

second-order terms of coefficients in the expression 

of z  as follows: 
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Substituting 1z  into 2z  we can obtain the ex-

pression of the neutral stability curve of the 

time-delay feedback control model as follows: 

 

il m w= + .                     (10) 

 

When =0e , the stable condition is consistent 

with the stable condition of the car-following model 

without considering the viewing angle difference. 

Subsequently, Fig. 2(a) depicts the neutral stability 

curve under different t  of parameter 

1.8, 2, 0.5w H e= = = . H  and w  represent the 

height and width of the vehicle respectively and the 

blue line curve represents the critical value of the 

stable interval of the uncontrolled SAM. When 0t= , 

that is, when the influence of the response delay is not 

considered, the part above the blue curve, that is, the 

stable region is the smallest, indicating that the sys-

tem stability performance is the worst at that time. As 

t increases from 0.1 to 0.9 , the neutral stability 

curve first moves downward and then rises, which 

indicates that the influence of the integral form of 

flow difference effect on the traffic flow stability is 

not linear. Fig. 2(b) is the neutral stability curve gen-

erated by taking 0,0.1,0.3,0.7,0.9e=  respectively 

when 1.8, 2, 0.5w H e= = = . The figure intuitively 

shows that the pattern of the neutral stability curve 

corresponds to the law reflected by the response delay 

t, indicating that there is an optimal value for the 

promotion of the gain value 1k=  and the response 

delay t on the system stability and that, beyond this 

optimal value, the control effect of the control item 

begins to weaken and, therefore, the rational design of 

the control item has a significant promoting effect. 

Fig. 2(c) is the neutral stability curve under the con-

ditions 0.5, 0.5, 2He t= = =  and taking 

1.8,1.9,2.0,2.1,2.2w= . From the change of the neu-

tral stability curve in the figure, we can find that the 

width of the vehicle keeps increasing, the stability 

curve moves down, and the stable area increases 

slowly, indicating that the increase of the vehicle 

width improves the stability of the system from 1.8 

to 2.2 , but, compared with the two-dimensional 

view-following model that does not consider the car 

height, the stereoscopic view model that does con-

sider it obviously helps to improve the stability of the 

system. Fig. 2(d) is the neutral stability curve under 

the conditions of 1.0,1.5,2.0,2.5,3.0H=  when 

0.5, 0.5, 2we t= = =. The results show that as the 

vehicle height increases from 1.0 to 3.0, the stability 

also has a promoting effect. 

 

 

4  The bifurcation analysis of the controlled 

SAM 

 

In this section, a bifurcation analysis is per-

formed on a single-delay feedback-controlled SAM to 

study its bifurcation properties. Suppose vehicles are 

traveling on an adequate long single-lane circular 
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road without overtaking. A small derivation is added 

for uniform flow: 

 
0 0

0 0 0( ) ( ) ( ), ( ) ( ),n n nv t V t x nh V t tW h W x= + = + +   (11) 

 

where ()n th  and ()n tx  are derivations. 

 

 

 

 

 

Fig. 2. The neutral stability curve of  1k= , 7N=  

 

Substituting Eq. (11) into Eq. (4) we can obtain: 
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In order to facilitate the subsequent calculation, 

letting 0'( )( )V Mb a W= - , Md e a= - , where the 

subscript }{1,2,n NÍ  represents the serial number 

of the vehicle in the fleet, which is simplified as: 
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The specific solution process of the controlled 

SAM has been showed in Section S1 of the electronic 

supplementary materials (ESM), when k N= , what 

means 1kc =  and 0ks = , combining the two equa-

tions of Eq. (25) in Section S1 yields the following 

equivalence relationship: 

 

[ ]
2 22 2

2 2 2 2 2

2

( ) e .M mt

m w dm mw dw

m w e-

è ø- - + -ê ú

= +

       (14) 

 

Obviously, fixed 1.8w= , 2H = , for k N= , 

Eq. (14) with m and w as the dependent variable and 

'V  as the independent variable has two roots, one is 

(0,0) and the other is ( ,0)f , where the value of f  

depends upon e, t and d ( i.e. Me a- ). In other 

words, when k N= , as 'V  increases, there are two 

fixed points of eigenvalues, one at (0,0)  and the 

other at ( ,0)f . When 7N=  and k Ņ , the distri-

bution of real and imaginary parts of the eigenvalues 

of Eq. (18) is shown in Fig. 3(a) and (b). Fig. 3(a) 

depicts the distribution of eigenvalues of an uncon-

trolled SAM, namely 0e= , when ' 0V = , for any 

value of k , the eigenvalues have fixed points (0,0) 

and ( 1,0)- . Then, as 'V  increases, the different ei-

genvalues are separated along the trajectory with the 

corresponding hyperbola. For adequately small 

' 0V > , the eigenvalues of each k  lie in the left half 

of the complex plane, indicating that the system is 

asymptotically stable. However, the system loses 

stability suddenly when 'V  is large enough for the 

eigenvalues to cross the imaginary axis. In Fig. 3, we 

observe that the eigenvalues corresponding to 1k=  

and 6k=  cross the imaginary axis first, then 2k=  

and 5k= , and finally 3k=  and 4k= , which re-

quire more time to cross the imaginary axis. Fig. 3(b) 

shows the eigenvalue distribution of the SAM con-

trolled with one delay. In Fig. 3(b), for 1k= , the 

length of the hyperbolic locus in the left half-complex 

plane is longer than that in Fig. 3(a), indicating that 

the controlled SAM can suppress the oscillation, 

which further explains that a reasonable delay design 

can delay or eliminate the impact of Hopf bifurcation. 

As can be seen from Fig. 3(a) and (b), the sta-

bility changes drastically when the eigenvalues in-

tersect the imaginary axis. That is, Hopf bifurcation 

occurs when a pair of pure imaginary roots 
1,2 il w=°  

appears in the system. Therefore, when il w= , the 

Hopf bifurcation critical condition can be obtained: 

 
2

k

k

M s c

M c s

t

t

w ew b b

dw ew b

ë- + + =î
ì
- + =îí

               (15) 

 

Letting 0e=  in Eq. (24) in Section S1, the sta-

bility condition is as follows: 
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(a) uncontrolled SAM 
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(b) controlled SAM 

Fig. 3. The absolute value distribution curve of SAM (a) 

and Controlled SAM (b) ( 1a=  and 7N= ) 

 

 

5  The design of time-delay feedback control 

 

This section focuses on obtaining the optimal set 

of feedback control parameters. Among them, Jin and 

Xu (2016) put forward the following control princi-

ples: 

 
2( ) e

2 ˊ 2 ˊ
(cos sin ).

f M

k k
i

N N

tll l dl e l b

b

-= - + +

- +
         (17) 

 

The Nyquist criterion is generally used to design 

the time-delay control strategy because it can well 

judge the stability in the case of a single time-delay. 

In addition, using the definite integral stabilization 

method and the integral stabilization criterion, the 

product function is computed as a transcendental real 

equation associated with the characteristic equation. 

If 0P= , the controlled system will be stable. Con-

versely, when 0P¸ , there are stop-and-go waves in 

the traffic flow. The problem with the multi-delay 

control design seems to be well resolved. However, 

this approach has the disadvantage that the general 

rule for determining the upper limit of the definite 

integral is not available. Therefore, Jin and Xu (2016) 

improved on the definite integral method, please read 

Section S2 of ESM for specific improvement proce-

dures: 

According to the control method in Section S2, 

the effects of multi-parameter combination for con-

trolled system stability are explored. Some parame-

ters are shown below: 

 
' '2,ȹ ( ) 25, ( ) 1.448na x t h V V h= = = = =

 
10, 1.8, 2.N w H= = =                 (18) 

Note that to demonstrate the feasibility of the 

reaction-delay feedback control strategy, the unstable 

state of the SAM is compared. In Fig. 4., the critical 

value t and the first stable delay interval for the 

controlled SAM can be estimated by plotting ()W t 

for different a, e, and time delay t. The estimate of 

t can be determined by the point at which the jump 

of ()W t occurs. The first stable reaction time inter-

val corresponding to () 0W t=  is easily found from 

Fig. 4. In Fig. 4(a) and (b), the feedback gains are 

chosen as 0.5e=  and 0.5e=- , the results show that 

the first stabilization delay regions of Fig. 4(a) and 

Fig. 4(b) are found to be respectively [ ]0,0.741 and 

[ ]0.508,1.089. In addition, there are second and third 

stable intervals [ ]1.183,1.812  and [ ]1.862,1.931 in 

Fig. 4(a). By comparison, the stabilization delay in-

terval of negative feedback (i.e. 0.5e=- ) is found to 

be significantly smaller than that of positive feedback 

(i.e. 0.5e= ). When 02, ' '( ) 1.448V Va q= = = , the 

performance of positive feedback control is better 

than that of negative feedback control. From Fig. 4(c) 

and (d), the first stabilization delay interval is shown 

as [ ]0.054,0.792and [ ]0.601,0.812for fixed 0.5e=  

and 0.5e=- , respectively. That is, for a fixed 

0.5e= , the controlled SAM is stable, and when the 

system is unstable, traffic congestion can be sup-

pressed by selecting the response delay from the first 

stable delay interval [ ]0.054,0.792. 

To demonstrate the performance of the control, 

several combinations of parameters were chosen for 

the equations during the simulation. In summary, the 

stability condition of the uncontrolled SAM is 

2 'Va> . It is obvious that the uncontrolled SAM is 

instable in this case, which should find an appropriate 

composition of time delay and feedback gain to sta-

bilize the traffic flow. From Fig. 5(a) and (b), the 

values of t are chosen as 0.55 , 0.9 , 1.85 for a 
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fixed 0.5e= , and it is clear that 0.55t=  comes 

from the stabilization delay interval [ ]0,0.741  ac-

cording to Fig. 5(a). But other values 0.9t=  , 

1.85t=  are not included in the three stable delay 

intervals. That is, if ( )( ), 0.5,0.55e t= , the controlled 

SAM is stable. When ( )( ), 0.5,0.9e t=  or 

( )( ), 0.5,1.85e t= , the system is unstable. Fig. 5(a) 

shows the speed time-varying curve of the first vehi-

cle and it can be seen that, for ( )( ), 0.5,0.55e t= , the 

small disturbance in the homogeneous flow tends to 

zero quickly, effectively suppressing traffic conges-

tion. However, when ( )( ), 0.5,0.9e t=  or 

( )( ), 0.5,1.85e t= , small disturbances in the homo-

geneous flow turn into large oscillations with time. 

Similarly, when 0.5e=-  choses t as 0.8 , 0.15, 

1.2 . Only ( )( ), 0.5,0.8e t= -  is selected from the 

stabilization delay interval [ ]0.505,1.089 in Fig. 5(b). 

Similar phenomena can be observed and will not be 

repeated here. 

 

 

 
Fig.4. The unstable root number ()W t of Controlled SAM 
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Fig. 5. The time-varying curve of the velocity of the first vehicle under different t (where 2a= ) 

 

Table 1 Fragment data of the 59th vehicle following 

Vehicle 

_ID 
v_length v_width v_Vel v_Acc 

Lane- 

ID 

Preced-

ing 

Follow-

ing 
Headway v_Width v_Class 

59 15 7 5.9 5.9 1 52 66 46.01 6.7 2 

59 15 7 6.34 6.34 1 52 66 45.97 6.7 2 

59 15 7 7.34 7.34 1 52 66 45.79 6.7 2 

59 15 7 8.75 8.75 1 52 66 45.55 6.7 2 

59 15 7 5.89 5.89 1 52 66 45.25 6.7 2 

59 15 7 4.79 4.79 1 52 66 44.77 6.7 2 

59 15 7 -5.9 -5.9 1 52 66 44.16 6.7 2 

59 15 7 -5.75 -5.75 1 52 66 43.5 6.7 2 

59 15 7 -2.67 -2.67 1 52 66 42.84 6.7 2 

59 15 7 3.24 3.24 1 52 66 42.38 6.7 2 

59 15 7 5.22 5.22 1 52 66 42.09 6.7 2 

59 15 7 5.48 5.48 1 52 66 41.91 6.7 2 

59 15 7 -1.76 -1.76 1 52 66 41.96 6.7 2 

59 15 7 7.39 7.39 1 52 60 53.7 6.7 2 

59 15 7 12.27 12.27 1 52 60 54.19 6.7 2 

59 15 7 10.05 10.05 1 52 60 54.53 6.7 2 

59 15 7 -0.37 -0.37 1 52 60 54.76 6.7 2 

59 15 7 -8.18 -8.18 1 52 60 54.96 6.7 2 

59 15 7 -8.71 -8.71 1 52 60 55.03 6.7 2 

59 15 7 -5.43 -5.43 1 52 60 55.03 6.7 2 

 

 

6  Case studies 

6.1  Parameter calibration 

This section uses the 558 data set of the 59th 

vehicle in the NGSIM database to calibrate the opti-

mal parameters, which include the required data such 

as speed, acceleration, distance, etc. Because the 

modified dataset involves vehicle trajectory data in a 

non-following state and there is changing lane be-

havior, the following is used as the filtering condition 

to satisfy the following behavior condition. 

(1) The data of the selected vehicle must be located in 

the same lane, and this paper chooses data located in 

lane 1. 

(2) Except for the first vehicle, the selected front and 

rear vehicles, that is, Proceeding and Following are 

not 0. 

(3) The distance between the vehicles in front and rear 

cannot be too large so as to ensure that vehicles are 

always following. Thus, this paper selects 160 feet as 

equal to 48.768 meters, which means that the 

Space_Headway in the dataset is no larger than 160. 
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After filtering through the above conditions, 558 

sets of single-lane car-following data can be acquired. 

The following is the segment data of the 59th car. 

After the parameters to be calibrated in this pa-

per and the input variables of the car-following model 

are determined, the least squares method is used to 

optimize the calibration parameters non-linearly. This 

method is a parametric calibration of parameters 

based on the minimum error between model simula-

tion data and similar observation data. In addition, 

parameter combinations optimized by genetic algo-

rithms with an error range of 5% or less were selected 

for analysis in both models. The normalization pro-

cess is then performed for each parameter, and the 

results of the optimization process for each parameter 

are clustered systematically. 

As shown in Table 2, it can be seen that from the 

same data, the time-delay control can be reduced, 

which means that the time-delay control system can 

effectively weaken the harmful influence of the op-

timal speed on unified traffic flow. In addition, the 

smaller h  indicates that the minimum safe distance 

requirement in steady traffic flow is smaller, and the 

larger maxv  means the maximum speed of each vehi-

cle can be achieved as the traffic flow increases, 

which implies that a controlled SAM will maintain a 

smoother operation and be more likely to achieve 

stability. 

Table 2. Calibration parameters 

parameters range SAM controlled SAM 

( )-1sa  [0,2]  0.5164 0.4823 

()mh  [8,40]  31.5834 27.0565 

-1

max(m s )v Ö  [20,40]  29.4532 34.4623 

( )-1se  [-1,1]  0 0.7746 

()st  [0,2]  0 0.7179 

PI
 

 0.6624 0.6237 

6.2  Numerical Simulation 

Setting the time difference step ȹ=0.05st  in the 

numerical simulation, vehicles were increased to 100 

during the simulation to better suit the real traffic flow. 

We assume that the N  initial vehicle travels at the 

same speed and distance on a loop of 2000 meter 

long, and the initial parameters are: 

 

(0) (0), (0) ( ),n n n

L
x nh y v V h h

N
= + = =   (19) 

 

where ()0 0.01ny = . 

Based on Section 4, it is possible to know the 

effective range of parameter control. Choosing 

0.3e=  and 2a=  corresponds to the unstable SAM 

and the feedback control effect diagram is shown in 

Fig. 6. The critical value t and the stabilization delay 

interval for the SAM can be estimated in Fig. 6 by 

plotting ()W t at different time delays t. The esti-

mate of t can be decided by the point at which the 

jump of ()W t occurs. From Fig. 6 it is easy to find 

that the stable reaction time intervals corresponding 

to () 0W t=  are [ ]0,0.673  and [ ]1.182,1.971. In 

addition, to verify their performance, a few combina-

tions of parameters were chosen for the simulations. 

In Fig. 7, for a fixed 0.3e= , the value of t was 

chosen as 0.4, 1, 2 ; it is clear that 0.4t=  is from 

the stabilization delay interval [ ]0,0.673  in Fig. 6. 

However, the other values 1t= , 2t=  are not in-

cluded in the stabilization delay intervals [ ]0,0.673 

and [ ]1.182,1.971. If ( , ) (0.3,0.4)e t= , the controlled 

SAM is stable. When ( , ) (0.3,1)e t=  or 

( , ) (0.3,2)e t= , the system is unstable. Fig. 7. shows 

the speed-vehicle number curve in three cases. For 

( , ) (0.3,0.4)e t= , small disturbances in the homo-

geneous flow tend to zero quickly, effectively sup-

pressing traffic congestion. However, when 

( , ) (0.3,1)e t=  or ( , ) (0.3,2)e t= , large oscillations 

over time arise from small disturbances in the ho-

mogeneous flow. Furthermore, in Fig. 8, the param-

eter set ( , ) (0.3,0.4)e t=  has the smallest hysteresis 

loop compared to ( , ) (0.3,1)e t=  and ( , ) (0.3,2)e t= , 

which means that it is the most stable compared to the 

other two, and this is in line with the findings above. 

To better demonstrate the control impact of the 

parameter set ( , ) (0.3,0.4)e t= , Fig. 9 shows the 

density waveforms of controlled and uncontrolled 

SAM, and Fig. 10 shows its two-dimensional graph. 

Obviously, the irregular walking wave in Fig. 9(b) 
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disappears under the control of parameter settings, 

which is a further proof of the effectiveness of the 

prediction and response delay control. 

 

 
Fig. 6. The unstable root number ()W t of Controlled 

SAM 

 

 
Fig. 7. Variation curve of velocity and number of vehi-

cles under different t 
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Fig. 8. The hysteresis loop of Controlled SAM under different t 

 

 
Fig. 9. Comparison between the uncontrolled SAM (i.e. ) and the controlled SAM (i.e.  and )

 

 
Fig. 10. The snapshots of velocity for all vehicles at   corresponding to Fig. 9.


