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Abstract:    Association analysis provides an opportunity to find genetic variants underlying complex traits. A principal com-
ponents regression (PCR)-based approach was shown to outperform some competing approaches. However, a limitation of this 
method is that the principal components (PCs) selected from single nucleotide polymorphisms (SNPs) may be unrelated to the 
phenotype. In this article, we investigate the theoretical properties of such a method in more detail. We first derive the exact power 
function of the test based on PCR, and hence clarify the relationship between the test power and the degrees of freedom (DF). Next, 
we extend the PCR test to a general weighted PCs test, which provides a unified framework for understanding the properties of 
some related statistics. We then compare the performance of these tests. We also introduce several data-driven adaptive alterna-
tives to overcome difficulties in the PCR approach. Finally, we illustrate our results using simulations based on real genotype data. 
Simulation study shows the risk of using the unsupervised rule to determine the number of PCs, and demonstrates that there is no 
single uniformly powerful method for detecting genetic variants. 
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INTRODUCTION 
 

Genetic association studies have been used for 
identifying genetic variants responsible for complex 
human diseases or traits (Risch and Merikangas, 
1996). The recent availability of huge numbers of 
single nucleotide polymorphisms (SNPs) makes it 
possible to use this exciting approach in a systematic 
way. However, the detection of genetic variants of 
complex traits still faces difficult challenges. One of 
these challenges is to develop powerful statistical 
approaches that can make full use of all the infor-
mation from the SNP data. 

In the present study, we focus on assessing 

whether multiple correlated SNPs in a candidate gene 
or region influence the trait of interest. Many statis-
tical methods have been developed to analyze SNP 
data in recent years. Single-locus analysis is the most 
direct approach: it performs a separate test at each 
genotyped SNP and takes the maximum of the re-
sulting single-locus statistics to make statistical in-
ference. However, this simple approach may be in-
efficient because a single locus may not have much 
information for predicting a causative variant. Schaid 
et al.(2002) showed that several loci within a single 
gene can produce a large interaction effect on the 
trait of interest. Therefore, it is reasonable to believe 
that the combined information across many SNPs 
may intuitively improve the test power. 

 Multi-locus association analysis is directly 
dependent on either haplotypes or genotypes. Cur-
rently only genotypes are observed; therefore the first 
step of haplotype-based methods is to estimate the 

 

Journal of Zhejiang University SCIENCE B 
ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) 
www.zju.edu.cn/jzus; www.springerlink.com 
E-mail: jzus@zju.edu.cn 

 
 
‡ Corresponding author 
* Project supported by the National Basic Research Program (973) of 
China (No. 2004CB117306) and the Hi-Tech Research and Devel-
opment Program (863) of China (No. 2006AA10A102) 



Shen et al. / J Zhejiang Univ Sci B   2009 10(10):721-730 722 

haplotypes for each individual by using some statis-
tical procedures such as the expectation-maximization 
(EM) algorithm (Excoffier and Slatkin, 1995). Then, 
an association test between the inferred haplotypes 
and the trait of interest can be considered. Although 
haplotype-based methods directly exploit patterns of 
linkage disequilibrium (LD) in a region, these 
methods have some intrinsic drawbacks. For exam-
ple, a large number of model parameters are often 
involved in the test statistic. In fact, the dimension of 
the statistical model increases exponentially with the 
increasing number of markers. To reduce the degrees 
of freedom (DF), strategies such as tagSNP-based 
haplotype have been proposed (Tzeng et al., 2006). 

Genotype-based methods make use of genotype 
data directly to avoid estimating the haplotypes, and 
therefore do not entail a very large number of DF. 
Genotype-based tests can outperform haplotype- 
based approaches (Clayton et al., 2004; Chapman et 
al., 2003). One genotype-based method uses Hotel-
ling’s T2 test (Xiong et al., 2002), where the number 
of DF is the same as the number of SNPs. However, 
multiple markers within a region are in LD and hence 
are often highly correlated, so some of the DF of 
Hotelling’s T2 test are wasted, resulting in a loss of 
power. To reduce the DF and the impact of collin-
earity, some new statistical methods have been de-
veloped in recent years. One such approach is to 
select a subset of tagSNPs as regressors to test asso-
ciation (Chapman et al., 2003). Wang and Elston 
(2007) provided a weighted Fourier transformation 
test to reduce the DF and improve the power. More 
recently, several studies applied principal compo-
nents regression (PCR) to test for association of the 
set of SNPs with the phenotype (Gauderman et al., 
2007; Wang and Abbott, 2008). This approach uses 
the first few principal components (PCs) directly to 
assess genetic association. 

In general, both haplotype-based and genotype- 
based approaches can be divided into two basic stages. 
In the first stage, we want to extract important infor-
mation from multiple markers and hence reduce the 
dimensions of the model parameters. Different pro-
cedures have been proposed for this purpose such as 
estimating haplotypes, Fourier transformation and 
principal components analysis. Several methods, e.g., 
Hotelling’s T2 test, that use the genotype data directly, 
may bypass this step. Up to now, the most popular 

strategies used in this stage can be regarded as unsu-
pervised learning procedures since we use only the 
information from markers. The second stage is to 
construct the test statistic based on the important 
components selected from the first stage. Tests based 
on regression models are popular for assessing the 
relationship between the phenotype and these impor-
tant components (Schaid et al., 2002; Kwee et al., 
2008). In contrast to the first stage, the second stage 
can be regarded as a supervised learning procedure 
because information from the phenotype and the 
markers is used simultaneously. It is worth empha-
sizing that components identified as important in the 
first stage may not necessarily be of importance for 
testing the association between multiple markers and 
the phenotype of interest. Therefore, it is very impor-
tant to optimize these two-stage statistical approaches. 

In the present paper, we focus our attention on 
the test procedure based on PCR. Although principal 
components (PCs) analysis is a popular and efficient 
statistical method for reducing high dimensionality, 
one of the crucial problems is to determine the 
number of PCs to retain for constructing the test 
statistic. Some authors (Wang and Abbott, 2008; 
Gauderman et al., 2007) have suggested choosing the 
first few PCs that account for 80%~90% of the total 
variation in the original SNPs. However, these first 
few PCs may be unrelated to the outcome. Our goal 
is to explore the theoretical performance of this ap-
proach in more detail. The results clarify the rela-
tionship between the test power and the DF, and 
hence indicate the risk of using the unsupervised rule 
to select the number of PCs. Next, we introduce a 
weighted PCs test, which is a general form of many 
popular test statistics, and compare the test per-
formance of these test statistics. We also provide 
several alternatives for bypassing the issue of PC 
number determination. Finally, we demonstrate our 
results using simulations based on real LD structure. 

 
 

METHODS 
 
Notation 

Assume that there are n unrelated observations 
with p markers. Let xi=(x1i, x2i, ..., xni)T be an n×1 
vector of all observations at locus i, where xji is coded 
as 0, 1, or 2 for the number of copies of the minor 
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allele. Let X=(x1, x2, …, xp) be an n×p design matrix 
and y=(y1, y2, …, yn)T be an n×1 vector of the quan-
titative trait. Finally, we assume that both the col-
umns of X and y are centered. 

 
Principal components regression 

The singular value decomposition (SVD) of 
matrix X has the form X=UDVT, where U and V are 
n×p and p×p orthogonal matrices, respectively, and 
D is a p×p diagonal matrix with diagonal elements 
d1≥d2≥…≥dp≥0. The sample covariance matrix is 
given as S=XTX/(n−1), and from the SVD of centered 
matrix X we have 

 
S=VD2VT/(n−1).                      (1) 

 
Let vi be the ith column of V, for i=1, 2, …, p, so from 
Eq.(1) vi satisfies Svi=di

2vi/(n−1). Now the ith PC can 
be defined as zi=Xvi. There are some important 
properties of PCs. First, the sample variance of zi 
equals λi=di

2/(n−1), and hence the PCs are ordered by 
the decreasing order of explained variances λ1≥λ2 
≥…≥λp. Thus, the first few PCs capture more infor-
mation than the others in contributing to the variation 
in X. Second, the sample covariance of zi and zj is 
zero, for i≠j. This means that the transformed vari-
ables (PCs) are orthogonal and uncorrelated. More 
details about PCs analysis can be found in books 
about multivariate statistics (Mardia et al., 1979; 
Jolliffe, 2002). 

We assume that phenotype values depend on 
genotype data through the following linear model: 

 
y=Xβ+ε,                              (2) 

 
where β is a p×1 vector of regression coefficients and 
ε is an n×1 vector of normal distribution with mean 
vector 0 and covariance matrix σ2In with In the n×n 
identity matrix. Note that the intercept is not included 
in the model Eq.(2) because the data are centered. 

The basic idea of PCR is that we use the first 
few PCs to replace the original genotypic variables in 
model Eq.(2), i.e.,  

 

1
,

m

i i
i

α
=

= +∑y z e                        (3) 

 
for some m≤p. Here αi is the regression coefficient of 

zi, and e is a vector of normal distribution. Note that if 
m=p, we would have simply the original model Eq.(2) 
as a full model. For m<p, we have a reduced regres-
sion model. Clearly, the mean of zi is zero, so model 
Eq.(3) does not have an intercept term. 

In genetic association analysis, our interest fo-
cuses primarily on testing whether these SNPs have 
association with the phenotype. It is equivalent to 
testing the hypothesis H0: β=0; all regression coeffi-
cients are zero. If the null hypothesis is true, we can 
expect that the regression coefficients of model Eq.(3) 
should all be zero. To construct the test statistic of 
PCR, we first present some useful properties of PCR 
in lemma 1: 
Lemma 1    Under the assumption of model Eq.(2), 
let SSRi be the regression sum of squares of zi for 
model Eq.(3) and RSS be the residual sum of squares 
for the full model Eq.(2). Then we have 

(1) SSRi/σ2=yTuiui
Ty/σ2 follows a χ2 distribution 

with one DF and non-centrality parameter 
δi=di

2βTvivi
Tβ/σ2, where ui and vi are the columns of 

U and V (i=1, 2, …, p), respectively. 
(2) RSS/σ2 follows a center χ2 distribution with 

n−1−rk DF, where rk is the rank of X. 
(3) SSR1, SSR2, ..., SSRp, RSS are mutually in-

dependent. 
The proof of lemma 1 is straightforward. For 

simplicity, δi will be called the non-centrality pa-
rameter corresponding to the ith PC. These 
non-centrality parameters that measure the associa-
tion strength between the PCs and the trait of interest 
will play an important role in the following sections. 

Now we propose the test statistic of PCR as 
followings: 

 
1 2

PCR,
( , , , ) / ,

/( 1 )
m

m
SSR m

F
RSS n rk

=
− −
…z z z              (4) 

 
where SSR(z1, z2, ..., zm) denotes the regression sum 
of squares for model Eq.(3). Since the zi is orthogonal, 

we have 1 2 1
( , , , ) .m

m ii
SSR SSR

=
= ∑…z z z  From lemma 

1, it can be shown that if H0 is true, FPCR,m follows a 
Fm,n−1−rk distribution. Note that our test statistic based 
on PCR is different from the test proposed by Wang 
and Abbott (2008). Here we use the residual sum of 
squares corresponding to a full model Eq.(2) to con-
struct the test statistic rather than that corresponding 
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to a reduced model Eq.(3). Since RSS follows the 
same χ2 distribution under both the null and alternative 
hypotheses, it is convenient to derive the power func-
tion of FPCR,m, as discussed in the next subsection. 

 
Power function of principal components regres-
sion test 

In practice, it is of great importance to deter-
mine the number of PCs in the PCR model. This is 
equivalent to choosing the DF of model Eq.(3). In 
this subsection, we will gain insight into the rela-
tionship between the test power and the number of 
PCs, which also clarifies the relationship between the 
power and the DF. 

The power of a statistical test is the probability 
of rejecting a false null hypothesis. Using the results 
of lemma 1, it is easy to show that under the alterna-
tive hypothesis, FPCR,m follows a non-central F dis-
tribution with DF m and N=n−1−rk and non-  

centrality parameter 
1

.m
ii
δ

=∑  Therefore, the power 

function of FPCR,m is as follows: 
 

1
( , )

1

( , , , )

( ( , , ) (1 )),
m

i m N
i

Power m N

P F m N F

α

δ α−

=

=

≥ −∑

Δ
            (5) 

 
where α is significance level and Δ=(δ1, δ2, …, δp). 
Next we will examine some important features of the 
power function Eq.(5). 

First, we consider the situation when m and n 
are fixed. In this case, the DF of FPCR,m are fixed, and 
then the power is directly dependent on the 
non-centrality parameter of the F distribution 

1
.m

ii
δ

=∑  It is well known that for a1≥a2≥0 and x≥0, 

we have P(F(m,N,a1)≥x)≥P(F(m,N,a2)≥x). To gain 
greater power of FPCR,m, we naturally expect that the 
first few non-centrality parameters δi are larger than 
others. However, the values of non-centrality pa-
rameters δi are dependent not only on λi but also on 
vi

Tβ. Although the PCs are arranged by the magni-
tude of the corresponding variances λ1≥λ2≥…≥λp, the 
non-centrality parameters δi may not follow the same 
order. Therefore the test statistic FPCR,m using the first 
m PCs may not be the most powerful. In other words, 
although the first few PCs can explain most of the 
variation in the original variables, these PCs may not 

contribute to the variation in the phenotype. In this 
situation the test statistic based on these PCs has a 
poor power. In addition, when m is fixed, clearly the 
power of FPCR,m is optimal when the m PCs corre-
sponding to the largest m non-centrality parameters δi 
are chosen to construct the test statistic. 

Second, the power function is a function of the 
number of PCs m. Roughly speaking, when the 
number of PCs varies from m to m+1, the power may 
increase or decrease according to the association 
strength of the (m+1)th PC with the phenotype. 

Mathematically, if m and 
1

m
ii
δ

=∑  are fixed, we can 

calculate a critical value θ that satisfies 
 

1
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1

1
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This equation implies that if the non-centrality pa-
rameter δm+1 is larger than θ, the test FPCR,m+1 will 
have greater power than FPCR,m. However, the power 
of FPCR,m+1 will be smaller than FPCR,m when δm+1 is 
smaller than θ. Fig.1 shows the numerical solutions 
for this equation under different scenarios of m and 

1

m
ii
δ

=∑  with N=100. We can see that a larger 

1

m
ii
δ

=∑  results in a relatively larger critical value θ, 

and for the same value of 
1

,m
ii
δ

=∑  the critical value 

is much smaller for a larger m because the difference 
between 1

( , ) (1 )m NF α− −  and 1
( 1, ) (1 )m NF α−

+ −  becomes 

smaller as m increases. Thus, the power in some 
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Fig.1  Numerical solutions for Eq.(6) under different 
scenarios of m and ∑ 1
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sense may be sensitive to the number of PCs. This 
phenomenon will be demonstrated using the simula-
tion data in section SIMULATIONS. 

The last features of the power function concern 
the sample size n and the variance of random error σ2. 
The power of FPCR,m is also related to these two pa-
rameters. With regard to sample size, one question 
may be how many samples are required to reach a 
certain level of power. The problem of sample size 
determination is relatively complicated and is be-
yond the scope of this article. Here we simply note 
that if one of the first m PCs does associate with the 
phenotype, the power of FPCR,m will be arbitrarily 
close to 1 as the sample size n becomes infinite. With 
regard to the variance σ2, we note that when it de-
creases, the positive non-centrality parameters δi will 
increase, and hence the power increases. 
 

A general weighted principal components test  
In this subsection, we will provide a simple 

modification of the test statistic of PCR Eq.(4), 
which includes some existing test statistics as special 
cases. Let w=(w1, w2, …, wp) be a non-negative 
vector. We consider a weighted PCs test statistic as 
follows:  
 

1
w .

( 1 )

p

i i
i

w SSR
F

RSS n rk
==

− −

∑
 

 

As a result of lemma 1, under H0 the distribution of 
2

1

p
i ii

w SSR σ
=∑  follows a mixture 2

1χ  distribution, 

which is called a chi-bar squared distribution 
(Robertson et al., 1988). According to the results of 
Zhang and Lin (2003), this mixture distribution can 

be approximated by sχf
2 with 2

1 1

p p
i ii i

s w w
= =

= ∑ ∑  

and ( )2
2

1 1
.p p

i ii i
f w w

= =
= ∑ ∑  Thus, under H0, Fw/sf 

can be approximated by an Ff,n−1−rk distribution. Note 
that if all wi=1, the test Fw/sf is equivalent to the 
traditional F test in a linear regression model. If 
w1=w2=…= wm=1 and wm+1=wm+2=…= wp=0, Fw/sf 
simply becomes the PCR test FPCR,m. In addition, we 
could consider the weights wi=di

4/(di
2+κ)2, where κ is 

a non-negative constant. In this case the test statistic 
Fw/sf is the test based on the ridge regression (RR) 
model. To clarify this point, we note firstly that the 

ridge coefficients of the full model are T
r (= +
�
β X X  

1 T) .κ −I X y  Using SVD we can write the ridge fitting 

vector as 2 T 2
r 1

( ),p
i i i ii

d d κ
=

= +∑�y u u y  then the re-

gression sum of squares of RR is 
4 T T 2 2

1
( ) .p

i i i ii
d d κ

=
+∑ y u u y  So, the F-ratio test of 

RR can be regarded as a special case of Fw with 
wi=di

4/(di
2+κ)2. 

All these tests are the linear weighted combina-
tions of the statistic SSRi(n−1−rk)/RSS, which tests 
whether the ith PC is associated with the phenotype. 
While the PCR test FPCR,m puts the same weights on 
the first m PCs, the weights of the RR test are pro-
portional to the variances of PCs. We would expect 
the more powerful methods to be those in which 
heavier weights are put on the PCs with the most 
association strength. Consequently, the PCR test and 
the RR test often have higher power than the F test 
when large variance PCs account for more of the 
variation in the trait than the small variance PCs. 
 
Alternative methods 

Clearly, using the 80%~90% rule to choose the 
number of PCs is often not optimal. To avoid se-
lecting a specific m, in this subsection we introduce 
several alternative tests based on the PCs. The first 
strategy is to combine p-values from multiple tests by 

min 1
min ,p ii p

T p
≤ ≤

=  where pi is the p-value obtained from 

the test FPCR,i. A small value of Tmin p suggests a re-
jection of H0. Indeed, we simply select a test such 
that the corresponding p-value reaches the minimum 
among all p tests {FPCR,i, i=1, 2, ..., p}. Naturally, 
Tmin p is not the correct p-value for such an approach. 
In this case we can use a standard permutation pro-
cedure to find the p-value by permuting the pheno-
type value y across all individuals. There is another 
well known method for combining strength across 
multiple tests. Fisher (1932) proposed the following 

test statistic Fisher 1
2 log( ).p

ii
T p

=
= − ∑  Because the 

asymptotical distribution of TFisher is unknown, one 
can use a permutation procedure to obtain the 
p-value. 

The second alternative strategy is to combine 
information across all PCs rather than all PCR tests. 
Let ˆ ( 1 )RSS n rkσ = − −  be an estimator of σ and 



Shen et al. / J Zhejiang Univ Sci B   2009 10(10):721-730 726 

T ˆi iT σ= u y  be an estimator of the normalized re-
gression coefficient of αi in model Eq.(3), i=1, 2, …, p. 
Following Xu et al.(2003), we could construct a test 

statistic 
1

( ) max(| |, ) | |,p
i ii

W c T c T
=

= ⋅∑  where c is a 

non-negative constant. Next let us see how this test 
statistic works. Under the assumption of lemma 1, 
statistic Ti follows a non-central t distribution with 
DF n−1−rk and non-centrality parameter divi

Tβ/σ. 
When n is relatively large, Ti could be approximated 
by a normal distribution with mean divi

Tβ/σ and 
variance 1. Thus, when c=0, the test statistic W(c) 
equals the sum of Ti

2, so W(c) is simply equivalent to 
a classical F test in multiple linear regression. When 
c=2, under the null hypothesis, the distribution of Ti 
is close to the standard normal distribution, and 
therefore W(c) is approximately a linear combination 
of |Ti|. However, under the alternative hypothesis, 
W(c) could give a larger weight to |Ti| if the absolute 
value of the non-centrality parameter divi

Tβ/σ of Ti is 
relatively large. Since there is no single c to make the 
test optimal, Xu et al.(2003) suggested a computa-
tion-intensive procedure for testing H0 against H1, 
which chooses c from an interval [0,4]. First, let w(c) 
be the observed value of W(c), then its p-value 
p(c)=P(W(c)≥w(c)) can be calculated using Monte 
Carlo methods. Second, we can define test statistic 

0 4
min ( ).

c
W p c

≤ ≤
=  As for test Tmin p, we use a Monte 

Carlo method to compute the correct p-value of such 
a test statistic. 

Our simulation studies show that the last few 
PCs may be less likely to associate with the pheno-
type. To save the DF and improve test power, we 
could drop the last few PCs. In practice, we could 
choose the first q PCs such that they account for 
95%~99% of the variation in X and then apply our 
alternative methods based on these q PCs. We denote 
these test statistics by d

min  ,pT  d
FisherT  and Wd. 

 
 

SIMULATIONS 
 
We used simulations to test the arguments that 

have been raised in the previous section. We based 
our simulations on the Center d′Etude du Polymor-
phisme Humain (CEU) genotypes from build 35 of 
the International HapMap Project. We downloaded 

the genotype data of gene CHI3L2 from http:// 
www.hapmap.org. There are 49 SNPs within 
CHI3L2 in the CEU sample that contains 90 indi-
viduals. Markers having minor allele frequencies of 
<0.05 were removed from our simulation study as in 
other studies (Roeder et al., 2005; Tzeng et al., 2006; 
Wang and Elston, 2007). The majority of the SNPs 
are in strong LD (see, for example, Kwee et al.(2008) 
for the LD plot of SNPs within CHI3L2). We ob-
served that the genotype data of the remaining 30 
SNPs contained some missing values. To compute 
the PCs of the genotype data, we imputed missing 
genotypes using a simple procedure used by Wang 
and Abbott (2008). After basic computation, we found 
that the first three PCs had captured 89% of the varia-
tion in the original markers (95% for the first five). 

 
Type I error rates 

We then examined whether the PCR test and a 
general weighted PCs test (the RR test) have appro-
priate size. To achieve these objectives, we consid-
ered simulations under the null hypothesis that no 
SNPs within the region have association with the 
outcome. For simplicity, we first defined the DF of 
these two tests. Here the DF of PCR test can be de-
fined as m and the DF of the RR test can be defined as 

2 2
1

( ) ( ).p
i ii

df d dκ κ
=

= +∑  After calculating di
2 from 

SVD of X, we can select a specific κ such that the DF 
varies from 1 to p. We generated the phenotype from 
a standard normal distribution for 90 individuals and 
repeated 5000 times. The empirical type I error rates 
for two tests with DF from one to eight are reported 
in Fig.2. We can see that both tests had appropriate 
size regardless of the choice of the DF. This result is 
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important especially for the RR test, since we applied 
a scaled F distribution to approximate the compli-
cated mixture distribution of the RR test statistic in 
our simulation study. Therefore, the approximated 
critical values at level α=0.05 for the RR test statistic 
can be used in the power analysis. 
 
Power comparisons  

To assess the power performance of test statis-
tics, we considered the true models where one locus 
within the region is selected to serve as the disease 
susceptibility locus (DSL). Let s denote the disease 
locus, now the phenotypic value for individual i 
could be generated with the following model: 

Yi=Gi,s+εi. Here 
,

, ,

,

,  0
,    1,
,    2

i s

i s i s

i s

a x
G d x

a x

⎧− =
⎪= =⎨
⎪ =⎩

 where a and d 

are called additive effect and dominance effect in 
genetics, respectively. We generate εi under a stan-
dard Gaussian distribution. For the analysis to be 
described, we assumed an additive genetic model 
(d=0) and chose parameter a in each scenario such 
that the DSL explained 5% of the trait variation. For 
each simulation design, we ran 5000 simulations. 

Four different choices for the DSL were con-
sidered (SNP 4, SNP 10, SNP 18 and SNP 22, in 
Table 1). We also present the non-centrality pa-
rameters of PCs under four different disease models 
(Fig.3). For each setting, mostly positive 
non-centrality parameters were concentrated on the 
first few PCs. Thus, SNPs, which are not correlated 
with the others, will not contribute much to the first 
few PCs. These non-centrality parameters do not 
often follow a descending order. When the DSL was 
at SNP 10, for instance, the non-centrality parameters 
corresponding to the first three PCs were much 
smaller than that corresponding to the fourth one. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
We next evaluated the effects of the DF on the 

power of the PCR test and the RR test. The results for 
the four different disease location scenarios are 
summarized in Fig.4. The power of the PCR test was 
more sensitive to the DF when the DSL was at SNP 4 
or SNP 10. Although the first three PCs explained 
89% variation of X, these three PCs contributed little 
to the variation of the trait in the case of the DSL at 
SNP 10. So we would be taking a large risk to use the 
80%~90% rule to select the number of PCs. It is not 
surprising that the RR test is more powerful than the 
PCR test when large variance PCs account for more 
of the variation in y than do small variance PCs (for 
example, when the DSL was at SNP 22). However, 
the power pattern is different when those PCs with 
large variances do not explain more of the variation 
in y. In the scenario of SNP 18, for example, only the 
first three PCs contributed to the variation in the 
phenotype, and of those the second was the most 
important. We can see that when the DF is 1, the RR 
test is more powerful than the PCR test because the 
RR test gives some weight to the second PC while the 
PCR test uses only the first. If the DF is 2 or 3, the 
PCR test has a higher power than the RR test since 
the PCR test gives more weight to the second PC. 
The power of the PCR test is not greater than that of 
the RR test when the DF increases from 4 to 8, be-
cause the RR test gives relatively small weight to 
‘noise’ PCs that arrange behind the first three PCs. In 
general, the RR test is more robust than the PCR test 
against the DF since the RR shrinks smoothly 
whereas the PCR test makes use of PCs in discrete 
steps. 

We now compare three alternative methods 
( d

min  ,pT  d
FisherT and Wd) with the traditional single-SNP 

Table 1  Details for the four SNPs with CHI3L2 used as 
the disease susceptibility locus 

DSL Position MAF Max R2 Geno (%)
SNP 4 111485642 0.12 1.00 100 
SNP 10 111490367 0.08 1.00 100 
SNP 18 111493928 0.25 0.92 97.8 
SNP 22 111496180 0.32 1.00 100 

DSL: disease susceptibility locus; MAF: minor allele frequency;
Max R2: maximum pairwise R2 with other SNPs; Geno (%): geno-
type proportion across all samples 

 

5 10 15 20 25 30

0

1

2

3

4

5

N
on

-c
en

tra
lit

y 
pa

ra
m

et
er

 

i 

SNP 4
SNP 10
SNP 18
SNP 22

Fig.3  Non-centrality parameters of all PCs under four 
different choices of the disease susceptibility locus 



Shen et al. / J Zhejiang Univ Sci B   2009 10(10):721-730 728 

test and the PCR test (TW) proposed by Wang and 
Abbott (2008). Here the single-SNP test is Fmax= 
max{F1, F2, ..., Fp}, where Fi is the F-statistic cor-
responding to test association of each marker with the 
trait. We apply the first five PCs to construct three test 
statistics ( d

min  ,pT  d
FisherT and Wd). We investigated the 

performance of each test method when the DSL was 
typed and when it was not typed. For each setting and 
testing method, we used 1000 permutations of the 
data to evaluate significance, and the power was es-
timated as the proportion of the p-values less than 
α=0.05. In this simulation, all the type I error rates 
tended to be closer to the nominal level (data not 
shown). Fig.5 shows power results for simulation  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

under four different disease models. Since the four 
functional loci were in strong LD, we see that the 
power of each method was quite similar, regardless 
of whether the DSL was typed. It is not surprising 
that the performances of d

min  pT  and d
FisherT  were simi-

lar under each disease model since the two tests were 
based on the same PCR tests. However, Wd and Fmax 
also had similar power performance and were rela-
tively robust against the four different choices of the 
disease locus. Although our simulations were gen-
erated as single-locus models, we observe that the 
single-SNP test did not consistently outperform the 
other three tests. Thus, there is no single consistently 
optimal method for detecting genetic variants. 
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DISCUSSION 
 

Recently, the development of large-scale geno-
typing techniques has paved the way for using asso-
ciation studies to detect genetic variants of complex 
traits. However, the high density of biomarkers (i.e., 
SNPs) not only causes collinearity among regressors 
but also introduces many DF to statistical models. 
Consequently, the power for detecting association 
may be reduced in some cases. Methods are needed, 
which can use the information from multiple corre-
lated markers but with smaller DF. The PCR ap-
proach is just one approach that satisfies this need. 
When the candidate gene has a relatively high level 
of LD, the first few PCs can be used to efficiently 
summarize the major variances of those markers. The 
smallest variance PCs could represent various groups, 
such as SNPs that are not correlated with others or 
rare SNPs (Gauderman et al., 2007). Moreover, this 
approach does not lead to any spurious results be-
cause the computation of PCs uses only the infor-
mation from the original markers. 

In this article we have explored the theoretical 
properties of the test statistics based on the PCs of X. 
A key result of this work is that we have derived the 
power function of the PCR test. Doing this allows us 
to clarify the relationship between the power of each 
test and the DF. We also point out that applying the 
common rule to select the number of PCs may be 
risky because the PCs use only the information of X. 
In addition, we have extended the PCR test to a gen-
eral weighted PCs test which could provide a unified 
framework to understand the performance of some 
related test statistics. Lastly, we introduced several 
alternative strategies to handle the difficulty of 
choosing the number of PCs. These methods essen-
tially are data-driven adaptive procedures. In sum-
mary, our results could be seen as meaningful and 
important supplements for the PCR test. 

We have discussed one of the main issues in 
principal component analysis that is determining the 
number of PCs. Another issue is how to specify their 
biological interpretation because the PCs are a linear 
transformation of the original variables. However, 
we are interested mainly in testing the association 
between the markers and the outcome. So in the 
context of global association tests (Goeman et al., 
2004), the biological meaning of PCs is less impor-

tant. After identifying a significantly global associa-
tion, other standard approaches, such as single-locus 
methods, could be applied to further analyze par-
ticular markers. 

In this article we have derived the exact distri-
bution of the PCR test under the assumption that the 
trait data follow normality. If this normality as-
sumption is violated, the PCR test will not follow an 
F distribution. Nevertheless, some nonparametric 
methods, such as permutation and bootstrap, could be 
used to approximate the distribution of the test sta-
tistic, and then the significance of the test could be 
assessed. In addition to quantitative traits, there are 
cases in practice where the data are discrete or 
categorical. Although logistic principal component 
regression has been proposed to analyze association 
(Gauderman et al., 2007), further research work is 
still needed to examine the theoretical performance 
of PCR within the generalized linear model frame-
work (McCullagh and Nelder, 1983). 

We have compared the relative performance of 
the tests described in a simulation study based on real 
LD patterns within 90 CEU individuals. However, 
these individuals were related. Therefore, we have 
re-analyzed our simulation based on the genotype 
data from the 90 CHB+JPT individuals (results not 
shown). The performance of each test coincided with 
that described in section SIMULATIONS. Although 
no method can uniformly outperform the others, our 
work provides a comprehensive examination of the 
PCR test for the benefit of other researchers. 
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