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Abstract:    The behavior of schools of zebrafish (Danio rerio) was studied in acute toxicity environments. Behavioral 
features were extracted and a method for water quality assessment using support vector machine (SVM) was de-
veloped. The behavioral parameters of fish were recorded and analyzed during one hour in an environment of a 24-h 
half-lethal concentration (LC50) of a pollutant. The data were used to develop a method to evaluate water quality, so as 
to give an early indication of toxicity. Four kinds of metal ions (Cu2+, Hg2+, Cr6+, and Cd2+) were used for toxicity testing. 
To enhance the efficiency and accuracy of assessment, a method combining SVM and a genetic algorithm (GA) was 
used. The results showed that the average prediction accuracy of the method was over 80% and the time cost was 
acceptable. The method gave satisfactory results for a variety of metal pollutants, demonstrating that this is an effec-
tive approach to the classification of water quality. 
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1  Introduction 
 
Water security is a hot topic of concern in the 

development of human society. To ensure water se-
curity, methods for assessing water pollution have 
become a focus of study. Currently, there are two 
main methods for monitoring and evaluating water 
quality: first, physical and chemical analysis, and 
second, biological monitoring methods. Physical and 
chemical analysis is used to evaluate water quality by 
determining the existence and content of hazardous 
substances within the water directly using a variety of 
instruments. These methods are accurate and sensi-
tive, but they are time-consuming and cannot be used 
continuously in situ. The principle of biological 

monitoring is to reveal changes in water quality and 
the presence of environmental pollution by identify-
ing changes in the health status, physiological char-
acteristics, and behavioral responses of individuals or 
populations of aquatic organisms, providing a basis 
for environmental quality monitoring and evaluation 
from a biological point of view. Biological measures 
of water quality may detect materials that analytical 
chemistry techniques cannot, because of inadequate 
detection limits or methodological limitations (van 
der Schalie et al., 2001). Biological methods have 
some advantages: (1) once a system is established, it 
can provide automatic alarms and can be used for 
long-time online monitoring of water quality; (2) the 
response of aquatic organisms to water quality is 
more sensitive and reliable; (3) biological methods 
are also useful for detecting mixed pollution; (4) they 
have a low cost and can easily be incorporated into a 
digital system. 

In previous studies, many researchers proposed 
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early warning methods using biological monitoring 
(Nogita et al., 1988; Thomas et al., 1996; Kane et al., 
2004). However, the feedback information was too 
limited for accurate evaluation. Some studies used 
neural network models to analyze water quality pa-
rameters and to evaluate the water quality directly 
(Palani et al., 2008; Singh et al., 2009). These 
methods cannot reveal water quality in time because 
they do not take advantage of indicator organisms in 
water quality monitoring. 

Conventional assessment methods such as the 
gray-clustering method and the fuzzy math method do 
not solve the complex nonlinear relationships be-
tween assessment factors and water quality, and the 
assessment result is greatly affected by subjective 
factors of the assessing person. Support vector ma-
chine (SVM) is a small sample machine learning 
method based on statistical learning theory (SLT). It 
uses the structural risk minimization principle with 
good generalization ability. It can solve the problem 
that conventional methods face in assessing water 
quality and can overcome the defects of slow training 
speed, poor network generalization, and low learning 
accuracy in artificial neural networks (ANNs). As an 
important pattern recognition method, SVM is ap-
propriate for water assessment, which is a typical 
pattern recognition issue. In this paper, a biological 
monitoring method was used to identify and classify 
water quality. The method involves analyzing the 
behavioral parameters of fish during an acute toxicity 
test that simulates the course of water pollution, fol-
lowed by the use of SVM to assess the water quality.  

 
 

2  Acute toxicity test  

2.1  Materials and methods 

The zebrafish (Danio rerio) is an important 
model organism in life science research and is the 
standard species used in water quality monitoring. Its 
genome is very similar to the human genome, so it is 
suitable for use as an early warning indicator. In our 
study, zebrafish were purchased from Ningbo Sanhe 
aquafarm, and were 2‒3 cm in length, 0.2‒0.3 g in 
weight, with good activity and bright body color. 
Newly selected fish first had to be domesticated to 
adapt to the living environment and laboratory con-
ditions. We then chose the healthy fish for experi-

ments. In the laboratory, the fish were acclimated for 
two weeks prior to the experiments. The water used 
for acclimation and experiments was dechlorinated 
tap water aerated for 48 h. During acclimation, the pH 
of the water was kept at 7.2±0.2 and the water tem-
perature was maintained in the range of 22‒24 °C. 
Fish were held under a photoperiod of 12 h of light 
and 12 h of darkness. There was a natural mortality 
rate of <1% and any anamorphic fish were not used.  

Analytical reagents copper sulfate (CuSO4·5H2O), 
cadmium chloride (CdCl2·2.5H2O), potassium di-
chromate (K2Cr2O7), and mercuric chloride (HgCl2) 
were used to prepare test solutions.  

2.2  Experimental system 

The experimental equipment consisted of a tank, 
a charge-coupled device (CCD) camera (Microvision 
MV-VE120SC), a four-processor computer (Intel 
Core i5-740), an infusion bottle, a water pump, heat-
ing rods, thermometers, and a pH meter. The  
experimental tank (72 cm×12 cm×38 cm) (Fig. 1), 
was made of acrylic (the back and bottom were 
non-transparent). The tank was divided into three 
chambers by two fish baffles. There were many holes 
of uneven size in the baffles to allow water to flow 
through while preventing the movement of fish be-
tween chambers. Fish could swim freely in the middle 
chamber which was the main part of the experiment. 
There was a suction inlet and an overflow outlet in the 
right hand section of the tank forming a side filter to 
filter out fish waste and other residues. The water 
flowed from the left side to the right side and was 
pumped to the left side by an 8-W pump, to simulate 
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Fig. 1  Experimental system schematic diagram 
1. Infusion bottle; 2, 3. Fish baffles; 4. Camera; 5. Computer; 
6. Overflow outlet which determines the surface level of wa-
ter; 7. Heating rod; 8. Water pipe from pump to left chamber of 
the tank; 9. Water pump 
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real water circulation. Simulating the real condition, 
the fish survive in the flowing water and the toxicant 
is infused into the whole tank through the flowing 
water. A thermometer, heating rods, and a pH meter 
were placed in the right hand chamber to prevent any 
influence on fish behavior. 

2.3  Experimental preparation 

Preliminary experiments were carried out to de-
termine the 24-h half-lethal concentrations (LC50) of 
four kinds of metal ions for zebrafish. The 24-h LC50 
values of Cu2+, Hg2+, Cr6+, and Cd2+ were 1.472, 0.292, 
54.777, and 18.567 mg/L respectively, in our envi-
ronment. The time required for a water cycle was 6 min, 
and was dependent on the power of the pump and the 
size of the tank. A volume of pollutant solution was 
made up according to the capacity of experimental 
tank. The velocity of the water flow from the infusion 
bottle was controlled to ensure the injection of the 
required dose of pollutant during each water cycle. 

2.4  Quantification of school parameters using a 
vision system 

The coordinate system (X, Y, Z) is shown in Fig. 1, 
where the origin is located at the lower left hand 
corner of the front side. The features that were used as 
behavioral indices were the coordinates of the center 
of gravity of the fish school on the X axis (CX) and 
the Z axis (CZ), and the spatial standard deviations in 
the X direction (SDX) and in the Z direction (SDZ) 
(Israeli-Weinstein and Kimmel, 1998). CX and CZ 
show the mean location of the school in the projection 
plane. SDX and SDZ are spatial standard deviations 
which measure the density of the fish school in two 
directions. The average swimming velocity (ASV) of 
the fish school is measured in multiples of body 
length per second (BL/s) (Xu et al., 2006a), reflecting 
the activity level of the school. When fish encounter 
toxicant, due to hypoxia or swimming weakness, 
most will rise to the water surface or sink to the bot-
tom. So quantifying the numbers of fish on the surface 
and at the bottom can reflect the water quality to some 
degree. In addition, the body color of zebrafish will 
change gradually in some conditions such as metal 
pollution, so quantitative changes in body color can 
be used as another indirect index for water quality 
(Gerlai, 2003; Xu et al., 2006b). The quantification 
method of Xu et al. (2006b) was used.  

2.5  Experimental procedure 
 
Ten fish were used in each experiment. The fish 

were not fed during the day prior to the experiment. 
During the experiments, the water temperature was 
maintained at (23.5±0.5) °C, and pH varied between 
6.9 and 7.2. The air bubbling system was removed 
from the tank. A reference monitoring phase of about 
20 min was recorded before each experiment. During 
the toxicity testing phase of each experiment, the 
behavioral responses of fish were analyzed about one 
hour after the toxic solution was injected into the 
water. The behavioral responses were an acute stress 
reaction after injection of the solution. The computer 
captured the real-time video sequences from the 
camera and quantified the behavioral parameters 
described in Section 2.4. The data derived from the 
quantification were used to carry out real-time 
analysis, processing, and recording, and for devel-
oping the classification and early warning system.  

 
 

3  Support vector machine (SVM) 

3.1  Basic principle 

SVM (Vapnik, 1995) is an emerging machine 
learning technology that is extensively used as a 
classification tool in a variety of areas. The theory  
is based on SLT. It maps input x into a high-  
dimensional feature space ф(x) (Fig. 2) by nonlinear 
transformation and constructs an optimal hyperplane 
to separate the two kinds of data points from two 
classes (Duan et al., 2003). It maximizes the distance 
of the separated points to find the optimal separating 
hyperplane. The nearest vectors from the hyperplane 
are called support vectors (Fig. 3). 
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Three main issues need to be considered when 

using SVM: feature selection, kernel function selec-
tion, and the penalty and inner parameters of kernel 
function selection. 

3.2  Feature selection 

The features that were used in SVM were CX, 
CZ, SDX, SDZ, ASV, number on top (NumTop), 
number low (NumLow), and intensity. NumTop and 
NumLow are the numbers of fish on the surface and at 
the bottom of the water, respectively. The color model 
HSI, common in computer vision applications, was 
used to analyze hue, saturation, and intensity. The 
intensity is the total amount of light passing through a 
particular area. In this study, intensity stands for the 
average body darkness of the fish school. 

3.3  Kernel function selection 

The kernel function K(x, xi) performs the 
nonlinear mapping between the input space and the 
feature space. The radial basis function (RBF) is most 
widely used among several kinds of kernel function 
and performs very well in most cases. It was used in 
this study because of its better ability to deal with the 
nonlinear relationship between the label set and the 
attribute set and because it has fewer parameters. The 
function formula is K(x, xi)=exp(−γ||x−xi||²), γ>0, 
where ||x−xi|| is the Euclidean distance between input 
vector xi and center x, and γ is a parameter specified 
by the user in advance. 

3.4  Genetic algorithm (GA) 

The penalty parameter C in SVM determines the 

trade-off between the fitting error minimization and 
the model complexity. The parameter γ determines 
the bandwidth of the RBF kernel (Wu et al., 2007). 
For optimizing the two SVM parameters (C and γ) 
simultaneously, a heuristic algorithm, GA, was used. 
GA is a new global adaptive optimization algorithm 
which simulates biological evolution processes in 
computer systems (Davis, 1991). According to the 
Darwinian principle (Darwin, 1869) of “survival of 
the fittest,” starting with a set of candidate solutions 
called a population, GA obtains a group of individuals 
better adapted to the environment after a series of 
iterative computations and makes the population 
evolve into better areas in the search space. So, after 
iteration, it finally converges to a group of individuals 
that are best adapted to the environment. It is the 
optimal solution. Because of its powerful abilities in 
space search and parallel processing, GA can effi-
ciently handle a large search space, and thus is less 
likely to obtain a local optimal solution than other 
algorithms (Huang and Wang, 2006). 

The main operations of GA which simulate 
biological evolution are selection, crossover, and 
mutation. Selection, based on the value of individual 
fitness, is proposed to select good individuals as 
parents. If the individuals selected as parents are 
high-quality species, the probability of propagating 
successful future generations will be higher. Cross-
over is a random mechanism for exchanging genes 
between two parents. The new individual combines 
the characteristics of its parents. Mutation, based on a 
certain probability, randomly changes the values of 
certain genes of each individual to provide opportu-
nities for generating new individuals. 

Selection, crossover, and mutation provide a 
good search path for a space search which enables the 
new generating individuals to develop in the direction 
of the optimal solution. In this paper, we compare GA 
with another commonly used optimization algorithm, 
particle swarm optimization (PSO). 

3.5  Data preprocessing and classification 

To prevent attributes with a wide range of values 
from dominating and to overcome difficulties with 
calculation, a training set and a test set were first 
normalized to the range of [0, 1]. The results showed 
that normalized data are easier to process. As it ex-
pedites the convergence of the training network and 

Fig. 3  Optimal separation plane that maximizes the dis-
tance from the members of each class to the plane 
x and Δ are two kinds of data points in the original data space.
Ф(x) and Ф(Δ) are two kinds of data points in feature space 
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the training speed, accuracy is greatly improved. 
Principal component analysis (PCA) was ap-

plied to reduce the dimensions of the dataset, giving 
information regarding the potential capability for 
separation of objects and providing principal com-
ponent scores for SVM (Andre, 2003; Xie et al., 
2008). This method can effectively identify the most 
dominating component and structure in the data and 
eliminate redundancy, revealing the simple structure 
behind complicated data. After determining the ker-
nel function and SVM parameters, the preprocessed 
data were used in training and testing. The overall 
flow chart is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Results and discussion 

4.1  Result analysis 

When the toxic substances empty into the water 
and the water quality changes, the fish will show a 
sensitive reaction such as gathering into a group and 
mad swimming. This stress reaction is an attempt to 
evade the toxicant and coincides with a rapid increase 
in swimming speed. When the toxicant takes effect, 
the fish swim erratically in all directions. The 
school’s position coordinates fluctuate widely and the 
variance increases. 

Fig. 5 shows the degree of activity of the fish 
during 900 s under normal conditions and during the 
subsequent 1 000 s under toxic Cu2+ conditions. The 
data were acquired and saved to a database once per 
second. To eliminate noise and abnormal data points, 
 

the data used for analysis and display were the results 
of taking the average of every five points. In Fig. 5, 
the value of activity rises from around 2.0 BL/s to 
more than 2.5 BL/s when the water quality changes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 shows the coordinates and densities of two 

directions. It can be seen that SDX increases over 
time while CX, CZ, SDX, and SDZ have a greater 
fluctuation after adding copper sulfate solution, 
which demonstrates that a direct toxic effect leads to 
erratic swimming and jerky movement of the fish. 
Fifty points of each phase were taken randomly as the 
samples and the statistical analysis was performed 
using Minitab 15. The differences between the two 
groups were evaluated using the Mann-Whitney test. 
The significance test results are given in Table 1. The 
ASV in the abnormal condition was significantly 
higher (P<0.01, Mann-Whitney) than that in the 
normal condition, and there were also significant 
differences in CZ, SDX, and SDZ between normal 
and abnormal conditions. 
 

Raw data 

Feature selection 

Training set Testing set 

Normalization Normalization 

PCA 

GA for optimization 

Training model Predicting 

PCA 

Fig. 4  Flow chart of training and predicting 
Fig. 5  Activity of the fish school in normal (a) and 
abnormal (b) conditions 
ASV: average swimming velocity, measured in multiples 
of body length per second (BL/s)  



Liao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)  2012 13(4):327-334 
 

332 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Accuracy 

The accuracies of training and testing are shown 
in Table 2. The total sample size was 4 484 points, 
including 970 normal data points and 3 514 abnormal 
data points. These data are from the acute Cu2+ tox-
icity experiment. The training set and testing set were 
each allocated 2 242 points at random. The model was 
trained using the training set and was then used to 
predict the testing set. Because the training set and 
testing set data were selected randomly, this process 
was repeated ten times to check the consistency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The testing accuracy was near 90%, so the model is 
suitable for use in an early warning system. However, 
the 10% false alarm rate is a problem. One acceptable 
solution is to delay the output of the current prediction 
result to allow the system to compare the current 
result with all outputs over a 5-s period. An alarm 
judgment is then made only when the five outputs 
have the same result. 

4.3  Time cost 

In this study, we use a computer with Intel Core 
i3 2.93 GHz central processing unit (CPU), 2 GB 
DDR3 1333 memory, and Windows XP operating 
system (OS). 

Parameter optimization takes most of the time. 
The use of the PSO method for parameter optimiza-
tion can achieve a recognition rate close to that of GA. 
However, it took (1 489.97±81.64) s for PSO to finish 
parameter optimization in this experiment, compared 
with only (770.71±99.82) s using the GA method. So, 
the GA method is the better choice.  

4.4  Some other experiments 

Using the method described above, the results of 
experiments with other kinds of metal ions are shown 
in Table 3. The accuracies of training and testing with 
the Cu2+ experiment data were higher because the 

Table 2  Accuracies of training and testing 

No. Training accuracy (%) Testing accuracy (%)

1 92.462 89.295 

2 97.636 88.626 

3 93.265 89.117 

4 92.462 89.608 

5 92.462 89.295 

6 97.636 88.626 

7 93.265 89.117 

8 92.462 89.608 

9 93.443 88.893 

10 92.953 89.608 

Table 1  Statistical characteristics of samples in the Cu2+ experiment 

Group ASV (BL/s) CX (pixel) CZ (pixel) SDX (pixel) SDZ (pixel) 

Normal 1.98±0.27 707.90±144.70 606.50±71.80 221.56±50.26 198.92±47.50 

Abnormal 2.50±0.33** 655.70±197.40 679.50±90.20** 252.20±83.20* 164.50±73.70* 
Data are expressed as mean±standard deviation (SD). ASV: average swimming velocity; CX: coordinate of the center of gravity on the X axis; 
CZ: coordinate of the center of gravity on the Z axis; SDX: spatial standard deviation in the X direction; SDZ: spatial standard deviation in the 
Z direction. Statistically significant difference from the normal group: * P<0.05, **  P<0.01 (Mann-Whitney) 

 

Fig. 6  Location parameters of the fish school in normal (a) 
and abnormal (b) conditions 
CX: coordinate of the center of gravity on the X axis; 
CZ: coordinate of the center of gravity on the Z axis; 
SDX: spatial standard deviation in the X direction; 
SDZ: spatial standard deviation in the Z direction  



Liao et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)  2012 13(4):327-334 333

toxic effects of Cu2+ on zebrafish are stronger. The 
toxic effects of Hg2+ on zebrafish are weaker, leading 
to an inconspicuous change between the normal and 
abnormal conditions and a lower accuracy of classi-
fication. The toxic effects of Cr6+ and Cd2+ are in-
termediate between Cu2+ and Hg2+. The results shown 
in Table 3 are consistent with the results of visual 
observations during the experiments. Best C and Best 
γ are the penalty and kernel parameters respectively, 
which give the highest accuracy. 

 
 
 
 
 
 
 
 
The data shown above are results of single metal 

ion experiments. A model that can give an early  
warning for many kinds of metal pollutants would be 
more useful, so the collection of samples of each 
metal in large quantities is needed. In our research, 
samples of four kinds of metal ions including normal 
and abnormal conditions were combined. Samples 
selected at random from the combined sample set 
were used to train the model. The model was then 
used to predict the effects of samples of single metal 
ion, to examine the generalization ability of the model. 
The results are shown in Table 4. Our model can 
achieve very good results as long as the fish school is 
sensitive to some kinds of metal pollution. The effect 
of Hg2+ on the fish school was relatively slow, and 
was therefore more difficult to detect in a short time. 
However, in most cases, most heavy metal ions will 
have some effects on fish behavior and the model 
trained by our method can achieve satisfactory accu-
racy. So, the proposed method is a reasonable and 
feasible assessment method which can be used effec-
tively for the classification of water quality. 

 
 
 
 
 
 
 
 

5  Conclusions 
 
In this study, acute toxicity experiments using 

four kinds of metal ions were performed on zebrafish. 
The response of zebrafish to Cu2+ was strong, re-
flecting a rapid deterioration in water quality. With 
this method, changes in water quality can be detected 
with high sensitivity and reliability, suggesting that it 
is a good method for evaluating water quality. 

The use of SVM combined with GA achieved 
satisfactory results and reduced the time needed to 
train the model. The model has a good generalization 
ability and a high classification accuracy, which is of 
great value.  

Because the behaviors of fish vary at different 
temperatures and in response to the combined effects 
of different toxins, further studies are needed to con-
sider the influences of composite pollution and water 
temperature on the behavior of fish. 
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