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Abstract:    Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. 
However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because 
of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we 
integrate the data of HJ-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS), 
and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological param-
eters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 
2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the 
intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI 
profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the 
two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series 
had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also 
demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. 
While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are 
the bottleneck but where complementary data are occasionally available. 
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1  Introduction 

 
Dynamic variation of regional crop phenology is 

an important component of agriculture monitoring 
(Eerens et al., 2014), and is of increasing relevance 
for environmental monitoring, e.g. changes in the 

phenological period and length of the growing season 
may be caused by climate variability (Brown and de 
Beurs, 2008; Pan et al., 2015). China has about one 
fifth of the world’s paddy rice land, and it is of critical 
importance to extract the phenology information of 
rice on a large spatial scale to serve related research in 
agricultural modeling, yield estimation, and climate 
change (FAOSTAT, 2012; Li S.H. et al., 2014). 

Remote sensing techniques offer a feasible tool 
for delineating spatiotemporal patterns of crop status 
on a per-pixel basis. Various kinds of optical remote 
sensing data and techniques have been applied in 
agricultural monitoring, e.g. the Advanced Very High 
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Resolution Radiometer (AVHRR), the Moderate 
Resolution Imaging Spectroradiometer (MODIS), 
and the Systeme Probatoire d'Observation de la Terre 
(SPOT) VEGETATION (Wu et al., 2010; Peng et al., 
2011; Cong et al., 2012; Lanorte et al., 2014). How-
ever, the spectral characteristics of the data may be 
seriously affected by a mixed-pixel problem due to 
the relative coarse resolutions (≥250 m) (Sakamoto  
et al., 2005). The Landsat remote sensing data have 
relatively high spatial resolution but, hampered by its 
low-temporal resolution, are not suitable for pheno-
logical information extraction purposes in agriculture 
(Anderson et al., 2011). When considering the in-
fluence of climate, the situation may be more serious. 
Most of the paddy fields located in the subtropical 
regions of China are influenced by the monsoon cli-
mate; as a consequence, the qualifying cloud-free 
remote sensing data during this monsoon period are 
relatively few (Pyongsop et al., 2010; Cai et al., 2012). 
To accurately extract the phenological information of 
rice in this region, a high spatial and temporal reso-
lution remote sensing dataset is required, especially 
during the biologically sensitive growing period (Wu 
et al., 2010).  

The small sun-synchronous satellites for envi-
ronment and disaster monitoring and forecasting 
(HJ-1A and HJ-1B) from China were launched in 
2008. The HJ-1A/B satellites have swath width of  
700 km, four spectral bands with a spatial resolution 
of 30 m in the visible bands, and a revisit cycle of four 
days (the revisit cycle of the constellation is two days) 
as shown in Table 1 (She et al., 2015). The sensor 
characteristics of HJ-1 CCD and Landsat-8 opera-
tional land imagers (OLIs), including the visible 
bands composition and spatial resolution, are very 
comparable. The Landsat-8 was launched on February 
2013, and our intent is to combine HJ-1 CCD and 
Landsat-8 OLI data and verify its capability for ex-
tracting the phenological information of the single- 
cropped rice in southern China. 

The time-series vegetation indices (VIs), such as 
the normalized difference vegetation index (NDVI) 
(Rouse et al., 1974) and the 2-band enhanced vege-
tation index (EVI2) (Jiang et al., 2007), are widely 
used in the studies of crop land classification, plant 
productivity, phenology, and crop growth monitoring 
(Panda et al., 2010; Gao et al., 2013; Shi et al., 2013; 
Zhang et al., 2013). It has been shown that VIs are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

relatively insensitive to the differences in angular 
viewing factors and atmospheric disturbances and 
thereby can be used as a benchmark for direct com-
parison between sensors (Steven et al., 2003). 

Regression analysis has been common practice 
for the intercalibration of different remote sensing 
data. The ordinary least-squares (OLS) model is a 
primary tool for comparing two datasets and pre-
dicting one dataset from another (Ji et al., 2008). 
Anderson et al. (2011) compared the ResourceSat-1 
NDVI values and Landsat-5 NDVI values by building 
an intercalibration equation. Li P. et al. (2014) used 
OLS in cross-comparison of VIs derived from  
Landsat-8 OLI and Landsat-7 Enhanced Thematic 
Mapper Plus (ETM+) sensors, and showed that OLI 
and ETM+ data are complementary. Agreement as-
sessment is another important research topic in image 
intercalibration. The non-dimensional and symmet-
rical features of some agreement measures are more 
suitable for intercalibrating the VIs acquired from 
different sensors (Mielke and Berry, 2001; Ji and 
Gallo, 2006). In agreement analysis, the two datasets 
are treated equally and symmetrically, and the sys-
tematic and unsystematic differences between two 
datasets can be quantified. The geometric mean (GM) 
regression, orthogonal regression, and OLS bisector 
regression are widely used symmetrical regression 
models (Sprent and Dolby, 1980; Isobe et al., 1990; 
Rawlings et al., 1990; Valsami and Macheras, 1995). 
Ji et al. (2008) used agreement analysis using sym-
metrical regression models and compared the 

Table 1  Sensor characteristics of HJ-1 CCD and 
Landsat-8 OLI  

Characteristic HJ-1 CCD Landsat-8 OLI

Altitude (km) 649 705 
Repetition cycle (d) 31 16 
Revisit interval (d) 4 (2 for constellation) 16 
Scanning technique Push-broom Push-broom 
Swath width (km) 360 (700 for two) 185 
FOV (°) 0–35 15 
Band (n) 4 9 
Resolution (m) 30 15 (Pan), 30 
Spectral interval (µm) 

B1-Blue 0.43–0.52 0.45–0.51 
B2-Green 0.52–0.60 0.53–0.59 
B3-Red 0.63–0.69 0.64–0.67 
B4-NIR 0.76–0.90 0.85–0.88 

FOV: field of view; NIR: near infrared; Pan: panchromatic band 
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AVHRR and MODIS 16-d composite NDVI products. 
GM regression-based agreement analysis was also 
used in a cross-sensor comparison study between 
Landsat-5 TM and IRS-P6 AWiFS (Chen et al., 2013).  

The goal of this study was to generate a new VI 
time-series data with a higher temporal resolution by 
integrating HJ-1 CCD and Landsat-8 OLI images, in 
order to extract the phenological information of the 
single-cropped rice more accurately, and verify that 
VIs derived from HJ CCD and OLI images can be 
used as complementary data after proper intercali-
bration. We used the OLS method to integrate the two 
remote sensing datasets with the aid of a field cam-
paign, and compared the efficiencies of NDVI and 
EVI2 using the agreement analysis technique. We also 
evaluated the integrated time-series VIs in rice phe-
nological parameter extraction using field survey data. 

 
 

2  Data and methods 

2.1  Study area 

Deqing County located in North Zhejiang 
Province was selected as the study area. It has a mean 
annual temperature ranging from 13 to 16 °C and 
annual precipitation of 1379 mm (Fig. 1). This region 
is dominated by the tropical monsoon climate and 
more than 91% of the crop area is single-cropped rice, 
according to local statistical data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to a field survey conducted during 
2013–2014, the land cover types were classified as 
rice, trees, water bodies, artificial surfaces, and others. 
Four typical testing sites were selected with different 
land cover structures to intercalibrate the VIs derived 
from the two sensors. All testing sites were larger than 
4 km×4 km. Furthermore, total 2281 independent 
randomly selected sample points were used for 
comparison based on the field survey and the Second 
National Soil Survey Vector Map, in which there were 
484 for rice, 434 for trees, 709 for water bodies, 448 
for artificial surfaces, and 206 for other areas. Sixteen 
site-based observations of rice phenology in 2013 
provided by the Deqing agro-meteorological station 
were used as validation.  

2.2  Satellite data 

The HJ-1 CCD sensors have similar character-
istics to the Landsat-8 OLI, including a nominal de-
scending orbit at 10:30 a.m. local crossing time, the 
same spatial resolution of 30 m, and overlapped bands 
in the visible spectrum (Fig. 1; Table 1). The promi-
nent short revisit interval of HJ-1 CCD makes it an 
ideal candidate for crop status monitoring. 

We followed three basic principles in selecting 
remote sensing images of HJ-1 CCD and OLI in the 
study area to meet the requirement of calibration and 
time-series VI construction. They were that (1) the 
acquisition time difference of HJ-1 CCD and OLI  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1  Map of the study area 

Two overlaid images are HJ-1B CCD1 (path 451 row 80) and Landsat-8 OLI (path 119 row 39), respectively. Dashed line refers to
the HJ-1 CCD scene and the solid line refers to the Landsat-8 OLI scene (the swath width of each constellation)	
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should be within one day; (2) the time span of the 
remote sensing dataset should cover the whole 
growing season of the single-cropped rice; and (3) all 
the four testing sites should be cloud-free in the image 
pairs for calibration. 

Six pairs of archived HJ-1 CCD and Landsat-8 
OLI data less than one day apart covering the study 
area in 2013 and 2014 were collected for intercalibration 
purposes (Table 2). To extract the rice phenological 
information, all the 32 relatively cloud-free HJ-1 
CCD and OLI images which covered the rice growing 
period (from late May to early December) in 2013 were 
also collected to construct the time-series VIs (Table 3). 

The Level 2 HJ-1 CCD images were down-
loaded from the China Centre for Resources Satellite 
Data and Application (CRESDA). The Landsat-8 OLI 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

standard level-one terrain-corrected (L1T) products 
were collected from the US Geological Survey 
(USGS). The OLI L1T products were geometrically 
corrected and orthorectified products by the data pro-
vider using standard systematic correction methods.  

2.3  Pro-processing and VI calculation 

The images used were all processed by the ra-
diometric calibration first. The formula and coeffi-
cients were collected from the raw data package. The 
atmospheric correction was performed using the 
Moderate Resolution Transmission (MODTRAN) 4 
model integrated in FLAASH module in the ENVI 
package. The images were geometrically corrected 
using geographic information system (GIS) data to an 
accuracy less than 0.5 pixel (15 m). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Image pairs of HJ-1 CCD and Landsat-8 OLI used for calibration 

Pair  Sensor 
Acquisition date 
(year/month/day) 

Scene center scan time 
(GMT) 

Path/row 
Sun elevation  

(°) 
Sun azimuth 

(°) 
1 HJ-1B CCD1 2013/04/14 02:06:46 448/80 58.01 302.94 
 Landsat-8 OLI 2013/04/14 02:33:23 119/39 61.02 131.11 

2 HJ-1B CCD2 2013/07/18 01:46:37 448/80 59.57 279.88 
 Landsat-8 OLI 2013/07/19 02:33:33 119/39 67.17 108.62 

3 HJ-1A CCD1 2013/08/05 02:07:42 451/80 60.86 289.65 
 Landsat-8 OLI 2013/08/04 02:33:35 119/39 65.27 116.26 

4 HJ-1A CCD1 2013/11/09 01:56:45 450/80 34.85 323.72 
 Landsat-8 OLI 2013/11/08 02:33:19 119/39 40.30 157.66 

5 HJ-1A CCD1 2013/12/10 01:56:09 451/80 29.44 326.70 
 Landsat-8 OLI 2013/12/10 02:33:10 119/39 33.61 157.88 

6 HJ-1B CCD2 2014/01/27 01:39:26 451/80 30.06 319.56 
 Landsat-8 OLI 2014/01/27 02:32:41 119/39 35.73 150.42 

GMT: Greenwich mean time. Sun azimuth of HJ ranges from 0° to 360°, while for Landsat-8 the range is from −180° to 180°	

Table 3  Images of HJ-1 CCD and Landsat-8 OLI used for phenology extraction 

No. Sensor 
Acquisition date 
(year/month/day) 

No. Sensor 
Acquisition date 
(year/month/day) 

1 HJ-1B CCD2 2013/05/14 17 HJ-1A CCD2 2013/08/16 
2 HJ-1A CCD2 2013/05/20 18 HJ-1B CCD2 2013/08/18 
3 HJ-1A CCD1 2013/05/28 19 Landsat-8 OLI 2013/08/20 
4 HJ-1B CCD2 2013/06/06 20 HJ-1A CCD1 2013/09/01 
5 Landsat-8 OLI 2013/06/17 21 HJ-1A CCD2 2013/09/04 
6 Landsat-8 OLI 2013/07/03 22 HJ-1B CCD1 2013/09/26 
7 HJ-1A CCD1 2013/07/05 23 HJ-1A CCD1 2013/10/11 
8 HJ-1A CCD1 2013/07/09 24 HJ-1A CCD2 2013/10/20 
9 HJ-1B CCD1 2013/07/11 25 Landsat-8 OLI 2013/10/23 
10 HJ-1B CCD2 2013/07/18 26 HJ-1A CCD2 2013/10/28 
11 Landsat-8 OLI 2013/07/19 27 Landsat-8 OLI 2013/11/08 
12 HJ-1A CCD2 2013/07/24 28 HJ-1A CCD1 2013/11/09 
13 HJ-1B CCD1 2013/07/30 29 HJ-1A CCD2 2013/11/16 
14 Landsat-8 OLI 2013/08/04 30 HJ-1A CCD2 2013/11/20 
15 HJ-1A CCD1 2013/08/05 31 HJ-1A CCD2 2013/11/28 
16 HJ-1A CCD2 2013/08/12 32 HJ-1A CCD1 2013/12/02 
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Two widely used VIs, i.e. NDVI and EVI2, were 
selected as the candidates to construct the time-series 
VI for extracting the phenological information of the 
single-cropped rice. The NDVI has been proved to be 
one of the best indicators for vegetation status moni-
toring (Xie et al., 2008). While for EVI2, compared 
with EVI, it is more stable across sensors because 
only 2 bands are used (Jiang et al., 2007; 2008; Kim  
et al., 2010; Wang et al., 2015). The corresponding 
formulas are given as follows: 
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where ρred and ρnir refer to the surface reflectance values 
of Bands 3 and 4 in HJ-1 CCD sensors, and Bands 4 
and 5 in Landsat-8 OLI sensors, respectively (Table 1).  

2.4  Regression and agreement analysis 

For intercalibration, we built the OLS regression 
functions and transformed Landsat-8 OLI-VIs to HJ-1 
CCD-VIs based on the data of the four typical testing 
sites. The GM regression results were used in the 
following agreement analysis. 

The agreement metric, i.e. the agreement coef-
ficient (AC), proposed by Ji and Gallo (2006) was 
adopted to evaluate the agreement of the two datasets. 
The AC has the properties to distinguish between 
systematic and unsystematic differences. The AC is 
defined as: 
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where X  and Y  are the mean values of datasets X 
and Y, respectively. Xi and Yi are the VI values of each 
pixel (i=1, 2, 3, …, n). The agreement between X and 
Y increases as AC approaches 1, and vice versa. 

The mean square difference (MSD), a metric 
used to measure the systematic and unsystematic 
differences between two dataset, is defined as: 
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The MSD can be further divided into the un-

systematic mean product-difference (MPDu) and 
systematic mean product-difference (MPDs). The 
MPDu is as follows: 
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where ˆ
iX  and îY  are the predicted X and Y values, 

estimated by the GM and inverse GM regressions, 
respectively. The MPDs is then defined as follows: 
 

s uMPD MSD MPD .                    (6) 

 
To compare the difference properties, i.e. the 

systematic and unsystematic differences, between the 
two datasets, we also calculated MPDs/MSD and 
MPDu/MSD, expressed as percentages.  

2.5  Rice phenological parameters extracted by 
time-series VIs 

To evaluate the performance of time-series VIs 
produced by HJ-1 CCD and OLI sensors in rice 
phenological parameter extraction, we constructed 
two VI time-series for NDVI and EVI2, respectively. 
The 1st time-series VI was produced using HJ-1 CCD 
alone; and the 2nd one was generated by integrating 
HJ-1 CCD and OLI data. The Savitzky-Golay (S-G) 
filters were applied to smooth the VI time-series data 
to reduce the undesirable noise caused by unfavorable 
fluctuations (Jönsson and Eklundh, 2004; Hird and 
McDermid, 2009; Pan et al., 2015). Readers inter-
ested in the S-G filters are referred to these studies 
(Jönsson and Eklundh, 2004; Hird and McDermid, 
2009) for more details. The S-G filters were applied to 
the image-based VI time-series data composed by the 
HJ-1CCD and Landsat-8 OLI data from late May to 
early December in 2013 as listed in Table 3. 

Before phenological parameters extraction, the 
planting area of single-cropped rice was estimated 
using a stepwise classification strategy proposed by 
Wang et al. (2015). The total acreage of the single- 
cropped rice was about 94.0 km2 in 2013, mainly 
distributed in the eastern part of the study area. 
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Individual phenological stages of crops are 
identified by considering the VI increment or decre-
ment between consecutive images over a certain pe-
riod of time (Xin et al., 2002; Boschetti et al., 2009) 
(Fig. 2). Divided by the heading date, the growth 
phases of single-cropped rice can be classified into 
vegetative growth and reproductive growth. Because 
the maximum VI usually appears around the heading 
date, it is convenient to define the heading date as the 
date of the maximum VI on the VI profile. In general, 
the rice fields are flooded before transplanting and the 
VI of rice fields decreases during this period and then 
increases after rice planting. Therefore, it is reasona-
ble to define the transplanting date of rice as the 
minimal point along the VI profile. Due to the etiola-
tion and senescence of the rice leaves, the VI de-
creases after the heading, and the maturation date of 
rice is identified by the maximum slope method (Yu 
et al., 2003; You et al., 2013). The results were vali-
dated with the field survey data collected by the local 
agro-meteorological station in 2013. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3  Results 

3.1  Intercalibration of VIs 

We first compared the VI values of different land 
cover types of the sample points derived from HJ-1 
CCD and Landsat-8 OLI images. It showed that EVI2 
was more stable and comparable between the two 
sensors compared with NDVI (Fig. 3). This was fur-
ther illustrated by the relatively small standard devi-
ation of EVI2. The fluctuations of mean values of 
EVI2 were less than 0.04 while those of NDVI were 
around 0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

The linear regression relationships between 
Landsat-8 OLI-VIs and HJ-1 CCD-VIs for all sam-
ples (pixels) in the testing sites are shown in Fig. 4. 
The two datasets are highly correlated for both NDVI 
and EVI2. The coefficients of determination of NDVI 
and EVI2 were 0.871 and 0.891, respectively. 

The agreement analysis showed that NDVI and 
EVI2 both had relatively high AC values (0.87 for 
NDVI and 0.89 for EVI2; Table 4). It’s notable that 
the MPDu values were much higher than the MPDs 
values for both VIs, indicating that the unsystematic 
difference was greater than the systematic difference. 
Additionally, the MPDu/MSD values were much 
higher than MPDs/MSD values for both VIs, an in-
dication that the unsystematic difference was the 
primary difference between the two datasets. The 
MPDs and MPDu values of EVI2 were lower than 
those of NDVI, and it appeared that HJ-1 CCD and 
Landsat OLI may have more consistency in using 
EVI2. 
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Fig. 2  VI profile of the single-cropped rice 
Smooth curve was generated using S-G filters	

Fig. 3  Mean values and standard deviations of the dif-
ferenced vegetation indices 
dNDVI: differenced NDVI; dEVI2: differenced EVI2.
dNDVI (a) and dEVI2 (b) are derived from Landsat-8 OLI
and HJ-1 CCD images (image pair No. represents the six
images pairs listed in Table 2)  
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The systematic difference between HJ-1 CCD- 

VIs and Landsat-8 OLI-VIs can be minimized using 
OLS. By taking Landsat-8 OLI-VIs as the dependent 
variables and HJ-1 CCD-VIs as the response, two 
linear regression functions for NDVI and EVI2 de-
rived from the four testing sites within six image pairs 
could be used to rebuild the time-series data in the 
following phenological parameter extraction. 

3.2  Extraction of phenological parameters using 
integrated HJ-1 and Landsat-8 VI time-series 
images 

We compared the smoothed NDVI and EVI2 
time-series data at pixel level using S-G filters (Fig. 5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The phenology stages could be clearly identified from 
the VI profiles. Most of the noise was successfully 
eliminated from the VI time-series. The single- 
cropped rice usually is transplanted during late May 
to early July, and reaches the heading stage from late 
August to early September according to the weather 
and agricultural scheduling. By adding the Landsat-8 
OLI data, the updated VI curves for both NDVI and 
EVI2 moved to the right. 

The transplanting, heading, and maturation dates 
of the single-cropped rice extracted by HJ-1 VI time- 
series and the integrated HJ-1 and Landsat-8 VI 
time-series images in Deqing County are presented in 
Figs. 6–8 separately. For transplanting date, the dates 

Table 4  Agreement analysis for HJ-1 CCD-VIs (variable Y) and Landsat-8 OLI-VIs (variable X) 

VI AC MSD (×10−3) MPDs (×10−3) MPDu (×10−3) MPDs/MSD (%) MPDu/MSD (%)
NDVI 0.87 7.11 0.77 6.34 10.82 89.18 
EVI2 0.89 4.77 0.45 4.32   9.43 90.57 

 

Fig. 4  Regression analysis of HJ-1 CCD-VIs versus Landsat-8 OLI-VIs using data of the four testing sites
within six image pairs  
Black solid lines are the 45° lines and red solid lines are the linear regression trendlines (Note: for interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article) 

Fig. 5  VI time-series generated by Savitzky-Golay filters
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extracted by NDVI time-series concentrated in late 
May to middle June; after integrating Landsat-8 OLI 
data, with more pixels moved into the 160–169 group. 
Similarly, the transplanting dates extracted by the 
EVI2 time-series data of HJ-1 concentrated in late 
May to early June, and the dates also delayed after 
integrating Landsat-8 OLI data. Since there were 
different rice varieties planted in Deqing, the heading 
dates were more dispersive from early August to early 
September, but the dates extracted by the NDVI time- 
series showed an advancing trend compared with the 
EVI2 time-series. For maturation dates, both of NDVI 
and EVI2 showed less difference between the original 
dataset and the integrated dataset compared with 
other phenological stages.  

The accuracy of the phenological dates extracted 
as above was evaluated using field-based phenology 
observations (Table 5; Fig. 9). The estimated dates for 
each phenological stage were generally within ±6 d 
compared with the observations. The differences 
between the two dates decreased after using the inte-
grated VI time-series as source data for both NDVI 
and EVI2. Table 5 showed that the root mean square 
error (RMSE) of the estimated phenological dates 
using HJ-1 CCD images alone was larger than that of 
the integrated NDVI and EVI2 images. The RMSE of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
EVI2-derived phenology dates was smaller than that 
of NDVI in transplanting and heading dates. It showed 
that after integrating HJ-1 CCD and Landsat-8 OLI 
data, the VI time-series provided a more accurate 
estimation of rice transplanting, heading, and matu-
ration dates than using single data sources. 

 
 

4  Discussion 
 

Where remote sensing is used as a tool to fa-
cilitate the extraction of crop phenology information, 
“more data” is always the better policy. The crucial 
point in this practice is to combine the readily avail-
able remote sensing data, if possible, and generate a 
more dense time-series of data. In this study, we took 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Root mean square error (RMSE) of the estimated
phenological dates compared with the field observed data

VI Data source
Transplanting 

date (d) 
Heading 
date (d) 

Maturation
date (d)

NDVI HJ-1 CCD 9.5 11.5 5.3 
HJ-1 CCD+ 
Landsat-8 OLI

5.7 10.4 4.5 

EVI2
 
 

HJ-1 CCD 8.4 7.4 6.4 
HJ-1 CCD+ 
Landsat-8 OLI

3.1 4.3 4.2 

Fig. 6  Transplanting date of rice extracted from NDVI and EVI time-series data in 2013 
(a) HJ-CCD derived NDVI time-series; (b) Integrated NDVI time-series; (c) HJ-CCD derived EVI2 time-series; (d) Integrated 
EVI2 time-series	
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Fig. 8  Maturation date of rice extracted from NDVI and EVI2 time-series data in 2013 
(a) HJ-CCD derived NDVI time-series; (b) Integrated NDVI time-series; (c) HJ-CCD derived EVI2 time-series; (d) Integrated 
EVI2 time-series	

Fig. 7  Heading date of rice extracted from NDVI and EVI2 time-series data in 2013 
(a) HJ-CCD derived NDVI time-series; (b) Integrated NDVI time-series; (c) HJ-CCD derived EVI2 time-series; (d) Integrated
EVI2 time-series	
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full advantage of HJ-1 CCD, characterized by its high 
temporal resolution, and combined this with Landsat-8 
OLI data to generate integrated time-series VIs and 
extract the key phenology information of the single- 
cropped rice.  

We selected NDVI and EVI2 in this study  
and compared their efficiencies in extracting the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

phenological information of rice. The comparison of 
VIs between HJ-1 CCD and Landsat-8 OLI showed 
slight differences due to the spectral band differences 
(Teillet and Ren, 2008; Anderson et al., 2011; Li P.  
et al., 2014). As we had pointed out, the inconsistency 
between the two sensors could be attributed to sys-
tematic and unsystematic differences quantitatively 

Fig. 9  Key phenology stages (transplanting, heading, and maturation) of rice extracted from time-series data
(original and integrated data) compared with the field observed data 
(a) Transplanting date extracted by NDVI time-series; (b) Transplanting date extracted by EVI2 time-series; (c) Heading 
date extracted by NDVI time-series; (d) Heading date extracted by EVI2 time-series; (e) Maturation date extracted by
NDVI time-series; (f) Maturation date extracted by EVI2 time-series. DOY: day of year	

Error≤±6 d Error≤±6 d 

Error≤±6 d Error≤±6 d 

Error≤±6 d Error≤±6 d 
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described by agreement analysis. The systematic 
difference between the two sensors could be mini-
mized by OLS, while the unsystematic difference 
could be effectively attenuated using VI, which could 
minimize the influence of the environmental factors. 

We built the empirical relationships between 
HJ-1 CCD-VIs and Landsat-8 OLI-VIs datasets at 
pixel level using OLS. By using the linear regression 
models, HJ-1 CCD-VIs and Landsat-8 OLI-VIs could 
be transformed interchangeably. Scatter plots of HJ-1 
CCD-VIs versus Landsat-8 OLI-VIs for four testing 
sites within six image pairs demonstrated that the VIs 
obtained from HJ-1 CCD and Landsat-8 OLI were 
highly correlated, and EVI2 had a relatively high R2 
compared with NDVI (Fig. 4). Not surprisingly, the 
agreement analysis also showed that EVI2 between 
the two sensors had significant lower systematic and 
unsystematic differences compared with NDVI.  

To extract the phenological parameters of rice, 
the S-G filters were applied to smooth the VI time- 
series data, and we defined criteria to judge the dates 
of transplanting, heading, and maturation of the  
single-cropped rice by considering the VI increment 
or decrement between consecutive images over a 
certain period of time according to the field campaign 
work. Compared with the observed data, EVI2 
showed a significantly lower RMSE than NDVI in the 
estimation of transplanting and heading dates, and 
this was testified by the relative higher agreement 
coefficient of EVI2 (Table 4). We noticed that NDVI 
showed the largest RMSE at heading date, and the 
heading dates estimated by NDVI advanced com-
pared with the observations (Table 5; Fig. 9). Because 
NDVI is easily saturated in well-vegetated areas 
(Huete et al., 2002), it can be seen that NDVI be-
comes insensitive at high values of leaf area index 
(LAI) (Gu et al., 2013). Considering that the single- 
cropped rice usually reaches the peak of LAI between 
the ear differentiation and early heading stages, the 
advanced heading date estimated by using NDVI is 
not unexpected. Compared with NDVI, EVI2 is more 
robust in capturing the difference in well-vegetated 
areas and thus has more potential in phenology  
extraction.  

We combined extremum and maximum slope 
methods in rice phenology estimation. Due to the 
different methodologies applied in estimating rice 
phenology in field and remote sensing, an error be-
tween the two kinds of estimation is unavoidable. 

However, EVI2, especially the integrated EVI2, 
showed a significant consistency and agreement in 
phenology dates estimation.  

However, it should be noted that the empirical 
equation built between HJ-1 CCD-VI and Landsat-8 
OLI-VI datasets was partially determined by the 
sample plots and dates of the image pairs. So, there 
are inevitable uncertainties in the estimation. If ex-
trapolating this kind of integrating methodology and 
results to other regions or years and considering the 
variations of environmental factors and vegetation 
status, necessary re-calibration steps must be taken.  

 
 

5  Conclusions 
 

Accurate extraction of the phenology infor-
mation of rice in large spatial scale is crucial to ag-
ricultural management and related ecological studies. 
High quality time-series remote sensing data are of 
critical importance in identifying the key phenology 
dates as close as possible to the “true” dates. Most of 
the paddy fields in southern China are influenced by 
the monsoon climate, and qualified remote sensing 
data are scarce resources in these regions.  

In this study, we showed that by integrating HJ-1 
CCD and Landsat-8 OLI data using OLS, the phe-
nological parameters of the single-cropped rice can be 
estimated more accurately. Two widely used VIs, 
namely NDVI and EVI2, were adopted, and not sur-
prisingly, the two indices obtained from HJ-1 and 
Landsat-8 showed high correlation and agreement 
(R2>0.87, AC>0.86). However, compared with NDVI, 
EVI2 was more stable and comparable between the 
two sensors. Compared with the observed data, the 
integrated VI time-series had a relatively low RMSE, 
in which EVI2 was superior to NDVI. We also 
demonstrated the application of phenology extraction 
of the single-cropped rice in spatial scale in the study 
area. This work is of general value and can be ex-
trapolated to other regions where qualified remote 
sensing data are the bottleneck and where comple-
mentary data are occasionally available.   
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中文概要 
 
题 目：基于环境减灾卫星及 Landsat-8 卫星的植被指数

时间序列的水稻物候期提取研究  

目 的：鉴于中国南方地区单季稻种植区在关键生育期较

难获得清晰影像的情况，利用相互校准方法并结

合 HJ-1 CCD 和 Landsat-8 OLI 传感器，生成时间

分辨率更高的植被指数时间序列数据，并比较不

同植被指数在提取水稻物候期中的差异。 

创新点：本文通过传感器相互校准获得了具有更高时间分

辨率的植被指数时间序列数据，同时研究了不同

植被指数在提取水稻物候期中的有效性，从而提

高了水稻物候期提取的精度。 

方 法：利用最小二乘法对 HJ-1 CCD 和 Landsat-8 OLI 传

感器提取的植被指数（EVI2 和 NDVI）进行相互

校准，验证了不同传感器可互补使用；利用一致

性分析方法，对比不同植被指数在提取单季稻物

候期中的有效性；通过极值法和最大斜率法提取

研究区单季稻的移栽期、抽穗期和成熟期；将利

用两传感器相结合形成的新植被指数时间序列

数据得到的水稻物候期提取结果，与用单一传感

器得到结果进行对比，分析水稻物候期提取精度。 

结 论：基于环境减灾卫星及 Landsat-8 卫星融合后得到

的植被指数时间序列数据可以有效地提高南方

单季稻物候期提取的精度，EVI2 的提取效果优于

NDVI，极值法和最大斜率法结合提取的单季稻

物候期结果与野外调查及农气站统计结果较为

吻合，可以很好地应用于实际业务中。 

关键词：物候提取；相互校准；植被指数；HJ-1 CCD；

Landsat-8 OLI 


