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Abstract:   The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of 
Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced 
by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of 
conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia 
may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, 
named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar 
concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in 
sugar utilization compared with the original strain. 
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1  Introduction 
 

Citric acid, as an important microbial fermenta-
tion product, is widely used in various industrial ap-
plications due to its physiological advantages (Mostafa 
and Alamri, 2012; Angumeenal and Venkappayya, 
2013). Several microorganisms (Betiku and Adesina, 
2013) can produce citric acid through fermentation, 
including fungi (Aspergillus niger, Penicillium jan-
thinelum, and A. awamori), yeast (Yarrowia lipolytica, 
Candida oleophila, and Candida tropicalis), and 
bacteria (Bacillus licheniformis, Corynebacterium sp., 
and Arthrobacter paraffinens). However, A. niger, as 
an important microbial cell factory, remains the best 

choice for the production of citric acid due to its high 
yield of citric acid and its ability to ferment various 
cheap raw materials (Grewal and Kalra, 1995; 
Schuster et al., 2002; Pel et al., 2007; Wang et al., 
2015). Different cheap raw materials have been em-
ployed to produce citric acid, including starch mate-
rials such as corn starch (Hu et al., 2014b), Yam bean 
starch (Sarangbin and Watanapokasin, 1999), and 
liquefied corn (Hu et al., 2014a), and cheap agricul-
tural products such as orange peel (Torrado et al., 
2011), apple pomace (Dhillon et al., 2011b), whey, 
and sweet potatoes (Betiku and Adesina, 2013). 

Worldwide citric acid production by an industrial- 
scale process of fermentation is 1.7×106 t/a (Dhillon 
et al., 2011a), and the demand for citric acid is con-
tinuously increasing. China accounts for 60%–70% of 
the citric acid market share and the raw material used 
in China is mainly corn starch. Both the continuous 
growing demand for citric acid and the economics of 
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fermentation encourage the exploration of different 
technical approaches to obtain improved varieties of 
A. niger using cheap raw materials for citric acid 
production (Parekh et al., 2000; Haq et al., 2003). 
Although physical or chemical mutagenesis agents 
are not novel and seem to be uneconomic, some re-
markable microbial mutants have been obtained 
through mutagenesis and high-throughput screening 
(Heerd et al., 2014). Traditional irradiation technol-
ogies, such as ultraviolet irradiation, γ-rays, and 
chemical mutagenesis have been widely and fre-
quently applied to improve the citric acid yield of A. 
niger (Lotfy et al., 2007; Javed et al., 2010). Also, 
some new and powerful mutagenesis methods have 
been applied to the breeding of high-yielding indus-
trial strains. These new methods have technological 
advantages (higher mutation rates and more abundant 
phenotypic mutations) (Hu et al., 2013; Zhang et al., 
2015), and include atmospheric and room tempera-
ture plasma mutagenesis technology in Beijing (Li  
et al., 2008; Wang et al., 2010; Lu et al., 2011; Zhang 
et al., 2014), and medium or high-energy heavy ion 
irradiation technology in Lanzhou, China. Specifically, 
heavy-ion beams, such as 12C6+, He2+, Ar3+, Zn2+, C4+, 

and C5+ (Yang et al., 2013), as a type of high linear 
energy transfer (LET) irradiation, have a higher rela-
tive biological effect (RBE) compared with X- and 
γ-rays (Yang et al., 2007; Li S.W. et al., 2011; Ota  
et al., 2013; Zhou et al., 2013), and are expected to 
increase mutation frequency and have a wide muta-
tion spectrum. They have been used effectively as a 
breeding method in plants and microbes (Zhou et al., 
2006; Wang et al., 2009; Kazama et al., 2011; Liu 
Q.F. et al., 2013).  

In China, the Heavy Ion Research Facility in 
Lanzhou (HIRFL) has been founded as a national 
laboratory and was opened for world-wide use in 
1992. It now is an important institute contributing to 
global microbe breeding. Great progress has been 
made in radiation breeding of microbes of Desmo-
desmus sp. (Hu et al., 2013), Nannochloropsis (Ma  
et al., 2013), A. terreus (Li S.W. et al., 2011), Dietzia 
strains (Zhou et al., 2013), and oleaginous yeast 
(Wang et al., 2009) via 12C6+ ion beam irradiation at 
the Department of Biophysics, Institute of Modern 
Physics, Chinese Academy of Sciences (IMP, CAS), 
China. In 2014, a promising A. niger mutant, named 
H4002 (Hu et al., 2014a), was obtained after 12C6+ ion 
beam irradiation by IMP, CAS. Based on this mutant, 

citric acid accumulation can reach up to (187.5±0.7) g/L 
with extremely high productivity of 3.13 g/(L·h). The 
mutant has been used widely in industrial scale citric 
acid production. Citric acid biotechnology of A. niger 
has been significantly advanced by 12C6+ ion beam 
irradiation, but there have been few studies of the 
relationship between changes induced in physiologi-
cal properties of A. niger via 12C6+ ion beam irradia-
tion and citric acid accumulation. 

The purpose of this study was to obtain different 
phenotypic A. niger mutants via 12C6+ ion beam irra-
diation. To our knowledge, it was the first time to 
study the relationships between alterations in the 
physiological properties of A. niger induced by 12C6+ 
ion beams and its secondary metabolite accumulation. 
This study indicated that the physiological charac-
teristics of conidia in A. niger were closely related to 
citric acid accumulation, which can provide a new 
alternative way for screening high-yield citric acid A. 
niger mutants in the future. 

 
 

2  Materials and methods 

2.1  Strains 

The original strain, named H4002 (Hu et al., 
2014a; 2014b), is preserved in IMP, CAS. Mutants 
HW2 and H4 were obtained after 12C6+ ion beam 
irradiation.  

2.2  Conidial diameter 

Conidia of mutants and the original strain culti-
vated on potato dextrose agar (PDA)-containing 
slopes for 6 d were harvested in sterile distilled water, 
and then filtered through sterile filter paper with an 
aperture size of 20–25 μm. The filtered liquids were 
injected into a flow cytometer (MACSQuant™, Ger-
many or FlowSight, USA) for measurement of co-
nidial diameters. 

2.3  Conidial viability 

Conidia of mutants and the original strain culti-
vated on PDA-containing slopes for 6 d were harvested 
in sterile PDA-containing lipid medium (without 
agar). The conidial concentrations of the mutants  
and the original strain were all 4.65×106 conidia/ml. 
A volume of 400 μl of conidial suspensions of mu-
tants and original strain were added to wells in 
24-well plates, and were cultivated for 2 h in a  
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shake flask at a speed of 200 r/min. Then, 100 μl 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) liquid (5 mg/ml) was added to each 
well for 2 h at 50 °C. After standing, 500 μl hydro-
chloric acid (1 mol/L) was added to each well in the 
shake flask which was then shaken at a speed of  
200 r/min for 10 min, followed by centrifugation 
(12 000 r/min, 5 min) and supernatant removal. A 
volume of 400 μl of isopropanol was added to the 
Eppendorf (EP) tubes for 10 min. After standing, the 
extraction supernatants of the mutants and original 
strain were collected followed by centrifugation 
(12 000 r/min, 5 min). Finally, 200 μl of each extrac-
tion supernatant was added to each well in a 96-well 
plate, and analyzed using an Infinite M200 PRO 
(Switzerland) microplate reader. The absorbance of 
each extraction supernatant was read at 560 nm. 

2.4  Scanning electron microscopy 

Conidia of the mutants and the original strain 
cultivated on PDA-containing slopes for 6 d were 
harvested using a sterile bamboo stick, and were 
shifted to Eppendorf tubes with 200 μl sterile water, 
followed by centrifugation (12 000 r/min, 5 min). The 
supernatants were removed after two washing steps 
with absolute ethyl alcohol, and then viewed using a 
JSM-5600LV scanning electron microscope (Japan). 

2.5  Colony growth rates 

Conidia of the mutants and the original strain 
cultivated on PDA-containing slopes for 6 d were 
harvested in sterile distilled water. The conidial con-
centrations were all 3.7×105 conidia/ml. Details of 
procedures were reported by Liu et al. (2014). The 
solid plate medium had the following composition: 
4.5 g/L glucose or 4.5 g/L maltose or 10 g/L starch as 
different carbon sources, 3 g/L sodium nitrate, 1 g/L 
dipotassium phosphate, 0.5 g/L magnesium sulfate,  
0.5 g/L potassium chloride, 0.01 g/L ferric sulfate,  
20 g/L agar, and 0.2 g/L bromocresol green. The 
cultivation conditions were 37 °C for 76 h. 

2.6  Citric acid accumulation 

The fermentation medium contained 120 g/L 
corn starch and 10.6 g/L nitrogen source material, 
which were hydrolyzed by α-amylase at 95–98 °C for 
30 min in a 10-L bioreactor. Then, the whole medium 
was autoclaved at 115–118 °C for 30 min. Finally, 
equiponderant bran seeds of mutant HW2 and the 

original strain were injected into the 10-L bioreactor. 
The fermentation temperature was 37 °C, and the 
rotation speed (450±30) r/min. 

2.7  Analytical methods 

The concentrations of citric acid, total sugar, and 
biomass accumulation were measured using Fehling 
reagent (Hu et al., 2014a). The growth rates of the 
mutants and original strain were measure by colony 
diameters. The ratio of acid spot diameter to lawn 
diameter is defined to RALD. Each experiment was 
carried out three times. 
 
 
3  Results 

3.1  Conidial diameters and viability of mutants 
and the original strain 

Mesquita et al. (2013) reported that flow cy-
tometry can be an effective tool to assess the size and 
complexity of A. niger conidia after γ radiation, and 
that forward-scattered light (FSC) can provide in-
formation on spore size. Stentelaire et al. (2001) re-
ported that MTT assay can be used to measure fungal 
conidial viability. In this study, we used flow cytom-
etry and MTT assay to assess the average diameters 
and viabilities of conidia of the mutants and the 
original strain. The HW2 and H4 mutants had slightly 
larger conidia than the original strain (Table 1).  

Using MTT assay, we found that conidial vitality 
of the H4 strain was higher than that of the original 
strain. This implies that the metabolic activity of the 
H4 strain was higher than that of the original strain. 
The conidial vitality of the HW2 strain was not signifi-
cantly different from that of the original strain (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Comparison of the vitality of conidia among the 
original strain, HW2, and H4 
Error bars indicate the standard deviation of the mean (n=3)
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3.2  Differences in conidial morphologies and 
colony growth rates between mutants and the 
original strain 

Scanning electron microscopy showed that the 
proportion of conidia with a wrinkled surface in the 
HW2 strain was higher than that of the original strain. 
The proportion in the H4 strain was not significantly 
different from that of the original strain (Fig. 2).  

Growth rate experiments showed that when 
glucose, starch, or maltose was the carbon source, the 
lawn diameter of HW2 became smaller than that of 
the original strain, whereas the lawn diameter of the 
H4 strain was larger when starch or maltose was 
supplied as the carbon source (Figs. 3 and 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
The diameters of transparent halos are often used 

to screen mutants with a high yield of organic acids 
(Bai et al., 2004; Li S.C. et al., 2011). We analyzed 
differences in RALD between mutants and the orig-
inal strain. When glucose, starch, or maltose was 
supplied as the carbon source, the RALD of HW2 was 
significantly larger than that of the original strain, 
whereas the RALD of the H4 strain was not signifi-
cantly different from that of the original strain (Fig. 5). 
We conclude that mutant HW2 may exhibit enhanced 
citric acid accumulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Comparison of conidial diameters among the 
original strain, mutant HW2, and mutant H4 

Strain FSC 

Original strain 95.16±2.79 
H4 103.76±8.22 

HW2 96.72±10.90 

FSC: forward-scattered light  

Fig. 5  Effects of different carbon sources on the RALD
of the original strain, HW2, and H4 
Error bars indicate the standard deviation of the mean
(n=3). * P<0.05, compared with the original strain 
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Fig. 3  Effect of carbon source on the lawn diameters of 
the original strain, HW2, and H4 
Error bars indicate the standard deviation of the mean
(n=3). * P<0.05, ** P<0.01, compared with the original strain
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Fig. 2  Conidial surface morphologies of the original strain, HW2, and H4 
All photos were taken at the same magnification (×5000) 

Fig. 4  Variation in lawn diameter among the original
strain, HW2 strain, and H4 strain in response to dif-
ferent carbon sources 
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3.3  Differences in citric acid accumulation be-
tween mutant HW2 and the original strain in the 
shake flask and bioreactor 

Using corn starch as a carbon source, HW2 ac-
cumulated citric acid and subdued biomass accumu-
lation under different fermentation time in the shake 
flask (Fig. 6). The genetic stability of the mutant 
HW2 was also investigated. Through four consecu-
tive generations of citric acid production in the shake 
flask (48 h), mutant HW2 produced 37–38 g/L citric 
acid (Fig. 7). This suggests that mutant HW2 had a 
stable ability to produce citric acid. 

Similar results were obtained using a 10-L bio-
reactor (Fig. 8). Under optimized culture conditions 
in the 10-L bioreactor, when the initial total sugar 
concentration was 120 g/L and fermentation time was  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

53 h, mutant HW2 could produce 118.9 g/L citric acid 
and the residual total sugar was only 14.4 g/L, 
whereas, the original strain produced 100.8 g/L citric 
acid and residual total sugar of 16.2 g/L. Mutant HW2 
showed an 18.0% increase in citric acid accumulation 
and a 12.5% decrease in sugar utilization compared 
with the original strain. In other words, mutant HW2 
own higher sugar-acid conversion rate than the orig-
inal strain. Hence, the HW2 strain is a more promis-
ing strain than the original strain for industrial pro-
duction of citric acid. Furthermore, during the whole 
metabolism process, HW2 showed more round and 
compact pellets than the original strain (Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Discussion 
 
Conidia are the main physiological structures in 

Aspergillus (van Leeuwen et al., 2013), and have 
important physiological functions. The physiological 

Fig. 9  Pellet morphologies of the original strain and HW2 
after different fermentation periods in a 10-L bioreactor 
All photos were taken at the same magnification (×10) 
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Fig. 6  Citric acid accumulation of the original strain and
HW2 with starch as raw material under different fer-
mentation time in a shaking flask 
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Fig. 7  Genetic stability of the mutant HW2 (48 h) 
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properties of conidia have drawn the attention of 
biologists and breeding experts. Butler and Day (1998) 
reported that conidia in A. niger showed strong tol-
erance to UV-rays due to the presence of melanin in 
conidia. Similar results were found by Liu et al. 
(2014). de Nicolas-Santiago et al. (2006) reported 
that differential mannanase production in original A. 
niger and mutants was associated with different  
conidial morphologies and diameters. These results 
proved that the physiological properties of fungal 
spores were related to their physiological metabolic 
functions. Changing in the physiological characteris-
tics of microbes via mutagenesis indicated differential 
secondary metabolite accumulation (Zhang et al., 2014).  

Compared with traditional irradiation methods, 
LET heavy charged particles show denser ionization 
along their trajectories and higher RBE (Kiefer, 1992; 
Goodhead, 1999), and result in complex DNA dam-
age in the body, such as large deletions, rearrange-
ments, or translocations, which can generate abundant 
mutants (Hu et al., 2013). The establishment of different 
high-throughput screening methods has also enabled 
some promising mutants to be obtained quickly. 
These mutants can be useful in functional gene re-
search (Shikazono et al., 2005; Murai et al., 2013). As 
a novel and efficient method for generating mutations, 
12C6+ ion beam irradiation has been widely applied in 
the breeding of industrial microorganisms in China 
due to its characteristics of high LET, high RBE, and 
high mutation rate.  

In this study, we firstly showed that carbon ion 
irradiation may induce alterations in the physiological 
characteristics of conidia in A. niger. Our results 
suggested that changes in the physiological properties 
of A. niger, such as lower growth rate and viability of 
conidia, may provide a new strategy for screening 
high-yielding citric acid producing strains. To achieve 
economic production of citric acid in an industrial- 
scale process, a supply of cheap raw materials, such 
as starch materials, and high-yielding strains are 
highly desirable (Suzuki et al., 1996; Haq et al., 2003). 
Presently, China produces more than 60% of global 
citric acid (Hu et al., 2014a), and the raw material for 
citric acid production in China is mainly corn starch. 
Therefore, using corn starch as raw material, differ-
ences in citric acid accumulation between mutant 
HW2 and the original strain in shake flask and in a 
10-L bioreactor were investigated. HW2 exhibited 

enhanced citric acid production and sugar-acid con-
version rates compared with the original strain. Hu  
et al. (2014b) reported that, when using corn starch as 
a carbon source, the original strain used in this study 
could accumulate 187 g/L citric acid within 68 h. 
Therefore, we conclude that a more promising citric 
acid-producing strain was obtained via carbon ion 
irradiation. Morphological differences in pellets be-
tween mutant HW2 and the original strain during the 
fermentation process were also observed. It has been 
suggested that the morphology of filamentous fungi is 
strongly related to their productivity (Paul et al., 1999; 
Grimm et al., 2005). In this study, it was observed 
that, compared with the original strain, smaller pellets 
in fermentation broth in A. niger mutants may en-
hance citric acid accumulation (Fig. 8). Thus, heavy 
ion irradiation can be an effective tool for inducing 
significant alterations in physiological characteristics 
in microbes, including conidial growth rate, conidial 
vitality, and pellet morphology, which are related to 
secondary metabolite accumulation.  

Studies of the relationship between morphology 
and citric acid production in A. niger have been re-
ported (Papagianni et al., 1999; Ikram-Ul-Haq et al., 
2003). Paul et al. (1999) discussed how morphology 
in A. niger affected citric acid accumulation and 
several other variables, such as oxygen uptake, glu-
cose uptake, and carbon dioxide production. Chitin 
synthase genes are important in determining the hy-
phal morphology and conidial development of A. 
nidulans (Borgia et al., 1996; Fukuda et al., 2009). 
Liu et al. (2013b) reported that the chitin synthase 
gene can influence the morphology of P. chryso-
genum, and morphological changes induced by class 
III chitin synthase gene silencing were related to 
penicillin production by P. chrysogenum (Liu et al., 
2013a). In our study, the mutants HW2 and H4 had 
different colony and pellet morphologies from those 
of the original strain. Citric acid accumulation by A. 
niger may be associated with mutation in chitin syn-
thase genes induced by carbon ion irradiation. We 
also found preliminary evidence that the expression 
levels of key genes involved in the pathway of starch 
bio-degradation, such as the glucoamylase gene and 
starch degradation regulation gene, showed obvious 
differences between the mutant and original strains. 
These findings suggest possible mechanisms to ex-
plain why the mutant strains HW2 and H4 showed 
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differential citric acid accumulation compared with 
the original strain. This may be worthy of further 
study in the future. 
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中文概要 
 
题 目：碳离子束诱导黑曲霉生理特性的改变与其柠檬酸

积累关系的研究 
目 的：探讨黑曲霉生理特性的改变对其柠檬酸积累的影

响。 
创新点：首次报道了碳离子束对黑曲霉生理特性的影响，

提出黑曲霉生理特性的改变对其柠檬酸的积累

有影响。 
方 法：（1）孢子直径和孢子活力的测定：利用流式细

胞仪对两株黑曲霉突变菌株以及原始菌株进行

了孢子直径测定。通过该实验说明碳离子束可以

诱导黑曲霉孢子直径发生改变（表 1）。利用

MTT 法，测定了突变菌株和原始菌株孢子活力。

同时，通过该实验表明碳离子束可以诱导黑曲霉

孢子活力发生改变（图 1）。（2）生长速率的

测定：利用不同糖分的平板生长法测定了突变体

和原始菌株生长速度的差异。通过该实验说明碳

离子束可以诱导黑曲霉生长速率发生改变（图 3
和图 4）。（3）柠檬酸积累实验：利用摇瓶发

酵实验和 10 L 发酵罐扩培实验测定了突变体和

原始菌株柠檬酸积累的差异。通过该实验说明生

理特性改变的突变体与原始菌株在柠檬酸积累

上存在显著差异（图 6~8）。 
结 论：通过两株黑曲霉突变体与原始菌株之间生理特性

的差异研究，我们发现黑曲霉生理特性的改变对

其柠檬酸积累有一定的影响，低的黑曲霉孢子活

力以及生长速率对柠檬酸的积累是有益的。最

终，获得了一株高产菌株 HW2，其 10 L 发酵罐

柠檬酸的积累能力比原始菌株提高了 18%。  
关键词：碳离子束辐照；生理特性；突变；柠檬酸积累 


