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Abstract:    Osteoarthritis (OA) is a common chronic degenerative joint disease, with complicated pathogenic factors 
and undefined pathogenesis. Various signaling pathways play important roles in OA pathogenesis, including genetic 
expression, matrix synthesis and degradation, cell proliferation, differentiation, apoptosis, and so on. MicroRNA 
(miRNA) is a class of non-coding RNA in Eukaryon, regulating genetic expression on the post-transcriptional level. A 
great number of miRNAs are involved in the development of OA, and are closely associated with different signaling 
pathways. This article reviews the roles of miRNAs and signaling pathways in OA, looking toward having a better 
understanding of its pathogenesis mechanisms and providing new therapeutic targets for its treatment. 
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1  Introduction 
 

Osteoarthritis (OA) is a common chronic de-
generative joint disease, which is characterized by 
degeneration of the articular cartilage, synovial in-
flammation, and changes in the periarticular sub-
chondral bone (Pelletier et al., 1983; 1992; Gu et al., 
2014). Although there are a lot of predispositions 
contributing to OA, including joint injury, heredity, 
obesity, aging, mechanics, and inflammation 
(Goldring and Goldring, 2007; Miyaki and Asahara, 
2012), its pathogenesis is complicated and not fully 
understood. The current clinical treatment for OA is 
unsatisfactory. Drugs such as non-steroidal anti-
inflammatory drugs (NSAIDs), selective cyclooxy-
genase 2 (COX-2) inhibitors, steroids, hyaluronic 
acid have limited effectiveness in alleviating its 

symptoms, and fail to reverse the loss of articular 
cartilage (Shamoon and Hochberg, 2000). Total joint 
arthroplasty (TJA) is an effective treatment for end 
stage OA. However, we have to accept its associated 
risks such as infection, peri-prosthetic fracture, deep 
vein thrombosis (DVT), and joint dislocation. So it is 
important to continue in-depth studies on OA patho-
genesis, which may help to find new therapeutic tar-
gets and methods for treating this disease. 

In the developing stages of OA, various signal-
ing pathways play important roles, including nuclear 
factor-κB (NF-κB) pathways, bone morphogenetic 
protein (BMP) pathways, transforming growth factor 
β (TGF-β) pathways, SRY-related protein 9 (SOX9) 
pathways, insulin-like growth factor (IGF) pathways, 
and so on. These signaling pathways are involved in 
chondrocyte metabolisms, cell proliferation, differ-
entiation, apoptosis, synthesis and degradation of the 
extracellular matrix (ECM), pro-inflammation, and 
anti-inflammation. If these signaling pathways were 
able to be interrupted, then the advancement of OA 
may be either hindered or even inverted.  
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MicroRNAs (miRNAs) are a class of naturally 
occurring, small non-coding RNA molecules about 
20–22 nucleotides long, in Eukaryon, regulating the 
genetic expression on the level of post-transcription 
by interacting with the 3' untranslated regions (UTRs) 
(Cheng and Jin, 2012; Lu et al., 2014). As more and 
more miRNAs were discovered, their functions in 
biological processes are being given greater attention. 
A large number of current studies have reported that 
various miRNAs play different roles in OA patho-
genesis. It is therefore necessary to have a systematic 
understanding of miRNA in OA, which will help to 
provide new therapeutic targets. 

With the purpose of developing a foundation for 
providing a better understanding of OA pathogenesis 
and new therapeutic targets, we reviewed the miRNAs 
and signaling pathways which are involved in OA 
pathogenesis, clarifying their functional mechanisms 
and showing how they interact with each other.  

 
 

2  miRNA 
 
Currently, the biochemical progress and mech-

anisms of miRNA have been identified (Wang and 
Luo, 2015; Yuan et al., 2014): miRNA genes are 
transcribed to form primary (pri)-miRNAs, which are 
subjected to cleavage by a miRNA processor (a pro-
tein complex composed of Drosh associated with 
DGCR8) to form a shorter precursor miRNA called a 
pre-miRNA (Lee et al., 2003). A pre-miRNA is 
transported from the nucleus to the cytoplasm by 
exportin-5 (Lund et al., 2004), and then is sliced by 
another RNase III, called a Dicer, to form a mature 
miRNA (Bernstein et al., 2001). miRNA is then 
combined together with Agonature proteins (Agos), the 
core unit of the RNA-induced silencing complex 
(RISC) (Bartel, 2004; Farh et al., 2005; Calin and 
Croce, 2006). The miRNA-RISC complex binds the 
targeted mRNA and mediates the translational re-
pression or degradation of the mRNA (Bartel, 2004). 

Although the information about miRNA ex-
pression and function in the musculoskeletal system 
is not fully understood, its importance in cartilage and 
chondrocyte studies has been established. Loss of a 
Dicer in the chondrocytes results in a reduction in the 
number of proliferation chondrocytes by decreased 
proliferation or accelerated differentiation into post- 
mitotic hypertrophic chondrocytes (Cobb et al., 2005; 

Kanellopoulou et al., 2005). Limb or cartilage spe-
cific Dicer deficiency may lead to a severe phenotype 
with reduced limb size but normal patterning (Harfe 
et al., 2005; Kobayashi et al., 2008). As a Dicer plays 
a key role in miRNA synthesis, the importance of 
miRNA in biological processes of the musculoskele-
tal system is self-evident. 

Iliopoulos et al. (2008) tested the expressions of 
365 miRNAs in articular cartilage obtained from 
patients with OA and total knee arthroplasty (TKA), 
and from normal individuals without a history of joint 
disease, finding that 16 miRNAs were differentially 
expressed in osteoarthritic versus normal cartilage. 
Hundreds of miRNAs take part in gene expression, 
cell cycle regulation, ECM metabolism, inflammation 
process, and so on (Table 1). In the meantime, various 
inflammation cytokines play important roles in OA 
by regulating the different miRNAs. For example, 
interleukin (IL)-1β can increase the expression of miR- 
491-3p and decrease the expressions of 42 miRNAs, 
including miR-23-3p, miR-610, and miR-27b (Yasuda, 
2011). The degradation of ECM is a feature of articular 
cartilage degeneration, while collagen II and proteo-
glycan are important compositions of ECM (Goldring 
and Goldring, 2010). Matrix metalloproteinases (MMPs) 
and a disintegrin and metalloproteinase with throm-
bospondin motifs (ADAMTS) are vital ECM-degrading 
enzymes, participating in the degradation of collagen 
II and proteoglycan (Tortorella et al., 2009; Li and 
Wu, 2010). MMP13 can degrade a large number of 
ECM components, including collagen. Because of its 
powerful degradation ability, MMP13 is a key factor 
in the biology studies of articular cartilage and OA 
pathogenesis (Fosang et al., 1996; Knauper et al., 
1996; Billinghurst et al., 1997). ADAMTS4 and 
ADAMTS5 are major enzymes in the degradation of 
proteoglycan, and are important targets for treatment 
of OA (Wittwer et al., 2007; Gilbert et al., 2008). A 
great number of miRNAs are involved in the regulation 
of MMPs, ADAMTSs, and other related factors by 
using different pathways to control the progress of OA. 

 
 

3  miRNAs and signaling pathways  

3.1  NF-κB signaling pathway 

NF-κB proteins constitute a family of ubiqui-
tously expressed transcription factors involved in  
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immunity, stress responses, inflammatory diseases, 
cell proliferation, and cell death (Oeckinghaus and 
Ghosh, 2009). NF-κB can be stimulated by pro-  
inflammatory cytokines, chemokines, stress-related 
factors, and ECM degradation products (Yasuda, 
2011; Rigoglou and Papavassiliou, 2013). The activa-
tion of an NF-κB signaling pathway can trigger the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

expressions for various amounts of immunomodulatory 
proteins, cytokines, chemokines, proteases, angio-
genic factors, and proliferation- or apoptosis-related 
molecules (Niederberger and Geisslinger, 2008). 
There are two distinct pathways for activating the 
NF-κB signaling cascades. The first one, called ca-
nonical or classical pathway, is mediated by a tumor 

Table 1  miRNAs and their targets 

miRNA Target Species Effect Function Reference 

140 MMP13 Homo sapiens ↓ Matrix-degrading enzyme Liang et al., 2012 

 ADAMTs H. sapiens ↓ Matrix-degrading enzyme Miyaki et al., 2009 

 ADAMTs Mus musculus ↓ Matrix-degrading enzyme Miyaki et al., 2010 

 ACAN H. sapines ↑ ECM component Miyaki et al., 2009 

 CXCL12 M. musculus ↓ Signaling Jones et al., 2009 

 SMAD3 M. musculus ↓ Signaling Bazzoni et al., 2009  

 DNPEP M. musculus ↓ Signaling Ohgawara et al., 2009 

 HDAC4 M. musculus ↓ Transcription Tuddenham et al., 2006 

 PDGFRA Danio rerio ↓ Skeletogenesis Eberhart et al., 2008 

 IGFBP5 H. sapiens ↓ Signaling Tardif et al., 2009 

 SP1 H. sapiens ↓ Cell cycle regulation Martinez-Sanchez et al., 2012

 RALA H. sapiens ↓ Regulate SOX9 Karlsen et al., 2014 

146 IRAK1/TRFA6 H. sapiens ↓ Signaling Taganov et al., 2006 

 TNFα (IL-1-induced) H. sapiens ↓ Inflammation mediators Jones et al., 2009 

9 TNFα H. sapiens ↓ Inflammation mediators Bazzoni et al., 2009 

 TIR H. sapiens ↓ Signaling Bazzoni et al., 2009 

 MMP13 (secretion) H. sapiens ↓ Matrix-degrading enzyme Jones et al., 2009 

18A CCN2 H. sapiens ↓ Signaling Ohgawara et al., 2009 

21 MMP-1/2/3/9 H. sapiens ↓ Matrix-degrading enzyme Zhang et al., 2014 

 GDF5 H. sapiens ↓ Signaling Zhang et al., 2014 

22 BMP-7 H. sapiens ↓ Signaling Iliopoulos et al., 2008 

 PPRA H. sapiens ↓ Signaling Iliopoulos et al., 2008 

27 IGFBP5 H. sapiens ↓ Signaling Tardif et al., 2009 

 MMP13 H. sapiens ↓ Matrix-degrading enzyme Akhtar et al., 2010 

34 COL2A1 H. sapiens ↓ ECM component Abouheif et al., 2010 

 iNOS2 H. sapiens ↓ Signaling Abouheif et al., 2010 

98 TNFα H. sapiens ↓ Inflammation mediators Tardif et al., 2009 

125B ADAMTS4 H. sapiens ↓ Matrix-degrading enzyme Matsukawa et al., 2013 

127-5P MMP13 H. sapiens ↓ Matrix-degrading enzyme Park et al., 2013a 

145 SOX9 H. sapiens ↓ Transcription Martinez-Sanchez et al., 2012 

 SOX9 M. musculus ↓ Transcription Yang et al., 2011 

365 HDAC4 Gallus gallus ↓ Transcription Guan et al., 2011 

455-3P ACVR2B H. sapines ↓ Signaling Swingler et al., 2012 

 SMAD2 

 CHRD1 

558 COX2 
(IL-1β-induced) 

H. sapines ↓ Inflammation mediators Park et al., 2013b 

675 COLA1 H. sapines ↑ ECM component Dudek et al., 2010 
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necrosis factor, Toll-like or T-cell receptor (TNF-R, 
TL-R, and TC-R, respectively), and induces the  
activation of the inhibitor of nuclear factor κB ki-
nase α (IKKα)/IKKβ/IKKγ-NEMO (NF-κB essential 
modulator) complex, which results in degradation of 
the Iκ proteins. The other one, called non-canonical or 
alternative pathway, involves stimulation of the 
B-cell activating factor, CD40 or lymphotoxin β re-
ceptors (BAFF-R, CD40-R, LTβ-R), and relies on 
NF-κB-inducing kinase (NIK) that activates the IKKα 
kinase (Rigoglou and Papavassiliou, 2013).  

A great number of miRNAs were found to be 
involved in the NF-κB signaling pathway. Akhtar  
et al. (2010) reported that the NF-κB signaling path-
way could suppress miR-27b, which regulated the 
expression of MMP13. miR-146a/b has the function  
of decreasing the expressions of TNF receptor- 
associated factor 6 (TRAF6) and IL-1 receptor- 
associated kinase 1 (IRK1) at a post-transcriptional 
level (Taganov et al., 2006). TRAF6 and IRK1 play 
important roles in triggering the activation of Iκ ki-
nase and JNK, and then the downstream NF-κB and 
AP-1 transcription factors which result in the up- 
regulation of the immune-responsive gene (Taganov 
et al., 2006). In IL-1β-stimulated C28/I2 cells, ex-
pressions of miRNA-140 and MMP13 were elevated. 
However, their expressions decreased when the 
IL-1β-stimulated C28/I2 cells were treated with 
DHMEQ, an NF-κB inhibitor. So the expressions of 
miRNA-140 and MMP13 were shown to be NF-κB- 
dependent. miRNA-140 down-regulates the expres-
sion of MMP13, which will be up-regulated when 
transfecting C28/I2 with anti-miR-140 (Liang et al., 
2012).  

In rheumatoid arthritis synovial fibroblasts 
(RASFs), TNFα induced the expression of miR-17-92 
in an NF-κB-dependent manner. miR-17-92-derived 
miR-18a contributes to cartilage destruction and 
chronic inflammation in the joints through a positive 
feedback loop in the NF-κB signaling (Trenkmann  
et al., 2013). Gantier et al. (2012) found that miR-19b 
controlled NF-κB signaling by suppressing its regu-
lon of negative regulators (including A20/Tnfainp3, 
Rnf11, Fbx11/Kdm2a, and Zbtb16). What’s more, 
miR-203 up-regulated the expressions of MMP13 and 
IL-6 through the NF-κB signaling pathway (Stanczyk 
et al., 2011). As miRNA is relatively conservative, 
the roles that these miRNAs play in rheumatoid ar-
thritis (RA) may also be played in OA (Fig. 1). 

 
 
 
 
 
 
 
 
 

3.2  BMP signaling pathway and TGF-β signaling 
pathway 

BMP/TGF-β-mediated signaling pathways in-
volve the development of OA and are potent regula-
tory systems in chondrocytic cell types (Ballock et al., 
1993; Serra et al., 1999; Grimsrud et al., 2001). In the 
growth plate, BMP signaling promotes chondrocyte 
terminal differentiation through SMAD1/5/8; con-
versely, TGF-β signaling blocks this process through 
SMAD2/3 (van der Kraan et al., 2012).  

By comparing the profiles of RNA associated 
with Argonature 2 (Ago2) between the wild-type and 
miR-140−/− chondrocytes, it was found that aspartyl 
aminopeptidase (DNPEP) was identified as a miR-140 
target gene. In miR-140−/− chondrocytes, the in-
creased expression of DNPEP showed a mild antag-
onistic effect on BMP signaling at a position down-
stream of the SMAD activation and the lower- 
than-normal basal BMP signaling in miR-140−/− 
chondrocytes was reversed by applying a DNPEP 
knockdown. miR-140 was essential for normal en-
dochondral bone development and the reduced BMP 
signaling caused by DNPEP up-regulation played a 
causal role in skeletal defects of miR-140−/− mice 
(Nakamura et al., 2011). The knockdown of miR-140 
in limb bud micromass cultures resulted in the arrest 
of chondrogenic proliferation by regulating SP1, 
acting downstream from the BMP signaling (Yang  
et al., 2011). miR-140 has plenty of targets conserved 
between human and chicken and validated BMP2 as a 
direct target gene (Nicolas et al., 2011). miR-140 
targets the CXC group of chemokine ligand 12 
(CXCL12) and SMAD3 (Nicolas et al., 2008; Pais  
et al., 2010), both of which are involved in chondro-
cyte differentiation. Through repressing SMAD3, 
miR-140 suppresses the TGF-β pathway (Tuddenham 
et al., 2006, Araldi and Schipani, 2010). In conclusion, 
miR-140 promotes chondrocyte terminal differentia-
tion by enhancing the BMP pathway and suppressing 
the TGF-β pathway. 

Fig. 1  miRNAs and NF-κB signaling pathway 
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During BMP2-induced chondrogenesis, miR- 
199a expression is decreased, indicating that it may 
function as a suppressor during the early stages in the 
chondrogenic program (Lin et al., 2009). Enforced 
miR-199a expression in Murine C3H10T1/2 stem 
cells or in the prechondrogenic cell line ATDC5 
suppresses multiple markers of early chondrogenesis, 
including the type II collagen and cartilage oligo-
meric matrix protein (COMP), while anti-miR-199a 
has an opposite, stimulatory effect (Lin et al., 2009). 
SMAD1, a positive downstream mediator of BMP2 
signaling, was shown to be a direct target of miR-199a 
(Lin et al., 2009). So the post-transcriptional repression 
of SMAD1 mediated by miR-199a will be prevented 
by BMP2-mediated repression of miR-199a. 

Functional experiments on selected miR-gene 
pairs verified the presence of miR-22-regulated BMP7 
and peroxisome proliferator-activated receptor α 
(PPARA) at the RNA and protein levels, respectively 
(Iliopoulos et al., 2008). The up-regulation of miR-22 
or the down-regulation of BMP7 and PPARA can 
result in increases in the IL-1β and MMP13 protein 
levels (Iliopoulos et al., 2008). miR-455-3p appears 
to regulate TGF-β signaling by suppressing the 
SMAD2/3 pathway (Swingler et al., 2012). In  
other words, various miRNAs play important roles in 
chondrocyte differentiation, the regulation of in-
flammatory factors and ECM-degrading enzymes 
through the BMP/TGF-β signaling pathway (Figs. 2 
and 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3  SOX9-related signaling pathway 

SOX9 is an essential transcription factor regu-
lating the expression of many ECM genes, such as 
ACAN (Bi et al., 1999) and COL2A1 (Bell et al., 1997), 
and is essential for converting medenchymal stem 
cells (MSCs) into chondrocytes (Kronenberg, 2003). 
The CAMP-PKA-CREB pathway synergized with 
SOX9 at the nuclear and cytoplasmic levels to promote 
BMP2-induced osteochondrogenic differentiation 
(Zhao et al., 2009). TGF-β is shown to stimulate the 
expression of SOX9 mRNA (Roman-Blas et al., 2007; 
Kim et al., 2014). In addition, SMAD3 acts in coop-
eration with p300 and SOX9 to control gene expres-
sion during chondrogenesis (Furumatsu et al., 2009).  

It was confirmed that miR-140 was directly in-
duced by SOX9 and that the suppression of miR-140 
is partially due to the inhibition of SOX9 by 
Wnt/catenin signaling in the micro mass cultures and 
the ATDC5 cell line (Yang et al., 2011). It was re-
ported that RALA, a small GTPase not previously 
known to be involved in chondrogenesis, acted as a 
new direct target of miR-140-5p and showed that a 
knockdown of RALA during early chondrogenesis 
led to a significant up-regulation of SOX9 protein 
expression (Kartsen et al., 2014). SOX9 itself is di-
rectly targeted by miR-145 during the early stages of 
chondrogenic differentiation (Yang et al., 2011; 
Martinez-Sanchez et al., 2012). Through regulating 
SOX9, increasing miR-145 leads to down-regulation 
of the critical cartilage ECM genes (COL2A1 and  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  miRNAs and TGF-β signaling pathway 
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ACAN) and tissue-specific miRNAs (miR-675 and 
miR-140), and up-regulation of RUNX2 and MMP13 
(Martinez-Sanchez et al., 2012). OA cartilage re-
vealed several miRNA-gene target pairs potentially 
involved in cartilage homeostasis and structure, in-
cluding miR-509-SOX9 (Iliopoulos et al., 2008).  

Multiple signaling pathways and miRNAs result 
in various bio-effects in articular cartilage through 
SOX9, which is a key factor in the progress of OA. So 
controlling the expression of SOX9 may help us to 
intervene these signaling pathways and miRNAs, 
providing new treatments for OA (Fig. 4). 

 
 
 
 
 
 
 
 

 

3.4  IGF signaling pathway  

IGF-1, a main anabolic mediator in articular 
cartilage, enhances cell proliferation and the synthesis 
of ECM proteins, and inhibits apoptosis through PI3K 
and ERK (Ashraf et al., 2015). Insulin-like growth 
factor binding proteins (IGFBPs), whose expression 
is very low in human OA chondrocytes (Tardif et al., 
2009), are known to play an important role for IGF1 
in joint treatment (Jones et al., 1993). Increasing the 
IGFBP5 concentration results in the increase of 
IGF-1, which is associated with a reduction of carti-
lage destruction in a dog OA model (Clemmons et al., 
2002).  

Transfection with pre-miR-140 significantly 
decreased IGFBP5 expression, while transfection 
with anti-miR-140 had the opposite effect, suggesting 
that IGFBP5 is a direct target of miR-140 (Ashraf  
et al., 2015). When human OA chondrocytes were 
treated with TGF-β, the expression of IGFBP5 was 
increased and the expression of miR-140 was de-
creased, indicating that both of them are regulated by 
TGF-β (Ashraf et al., 2015). It was found that 
miR-27a down-regulated the levels of MMP13 and 
IGFBP5 indirectly, and both of them were up- 
regulated when transfected with anti-miR-27a (Tardif 
et al., 2009) (Fig. 3). 

4  Conclusions 
 
In summary, through different signaling path-

ways, various miRNAs and their targets play im-
portant roles in the OA process, including genetic 
expression, matrix synthesis and degradation, cell 
proliferation, differentiation, apoptosis, and so on. 
Although a larger amount of work has already been 
done, OA pathogenesis requires future studies to have 
a better understanding of how it works and the im-
plications for ongoing treatment. The knowledge 
about the functions of signaling pathways and 
miRNAs in OA will provide the potential means for 
diagnosis and treatment of OA.  
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中文概要 
 

题 目：MicroRNA 与信号通路在骨关节炎发病机制中的

作用 
概 要：通过综述 microRNA 及信号通路在骨关节炎发病

机制中参与基因表达、基质代谢及细胞周期等生

理过程的作用，以及整理两者之间的关系，为更

好地理解其发病机制，提供了新的治疗靶点及途

径。 
关键词：MicroRNA；信号通路；骨关节炎；发病机制 


