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Abstract: Over the past decade, there has been increasing attention on the interaction between microbiota and bile 
acid metabolism. Bile acids are not only involved in the metabolism of nutrients, but are also important in signal 
transduction for the regulation of host physiological activities. Microbial-regulated bile acid metabolism has been 
proven to affect many diseases, but there have not been many studies of disease regulation by microbial receptor 
signaling pathways. This review considers findings of recent research on the core roles of farnesoid X receptor (FXR), 
G protein-coupled bile acid receptor (TGR5), and vitamin D receptor (VDR) signaling pathways in microbial–host 
interactions in health and disease. Studying the relationship between these pathways can help us understand the 
pathogenesis of human diseases, and lead to new solutions for their treatments. 
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1  Introduction 
 

There are many kinds of microorganisms in the 
human gastrointestinal tract, but because of the dif-
ficulty of cultivating many of them, it has not been 
possible to provide complete information on gut mi-
crobiota. However, with developments in science and 
technology, advances in sequencing technology and 
bioinformatics have revealed the complexity of the 
human microbiome and have identified Bacteroides, 

Firmicute, and Lactobacilli as the most prevalent 
components of the gut microbiota. 

Interaction between gut microbiota and the host 
results in the formation of multiple metabolites, such 
as secondary bile acids (BAs) and choline, which can 
affect gut health (Sung et al., 2017). Therefore, the 
microbial community is related to the nutrition, me-
tabolism, and immunity of the host. Most of these 
functions are interconnected and tightly intertwined 
with human physiology. Loss of an appropriate bal-
ance between different gut microflora can produce 
different metabolites with different inflammatory 
properties, which can cause disease. Gut microflora 
can promote endothelial cell proliferation, stimulate 
intestinal cell differentiation, and prevent Clostridium 
difficile colonization by regulating BA metabolism 
(Tremaroli and Bäckhed, 2012; Thaiss et al., 2016). 
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Therefore, the interaction between gut microbiota, the 
immune system, and the intestinal barrier can inhibit 
the growth of pathogenic bacteria (Giorgetti et al., 
2015). Many studies have shown that gut microbiota 
also play an important role in related diseases (Neish, 
2009). In the adult gut, imbalance of the gut micro-
biome can lead to metabolic, digestive, and cardio-
vascular diseases, and even cancer. It is for this reason 
that there has been increasing research attention on 
intestinal microflora. 

At present, short-chain fatty acid (SCFA) me-
tabolites are the most widely studied metabolites in 
host–microbiota interactions. SCFAs are synthesized 
by colonic bacteria through fermentation of ingested 
fibers. They can modulate cytokine production and 
the expansion of regulatory T cells (Lee and Hase, 
2014), and augment immunity via immunoglobulin A 
(IgA) production by plasma cells (Pabst, 2012). T cell 
differentiation may affect the gut microbiome. Tryp-
tophan (Trp) metabolites are the second-most widely 
studied metabolites in host–microbiota interactions. 
Intestinal microorganisms can directly transform Trp 
into several molecules, such as indoleacetic acid (IAA) 
and indolepropionic acid (IPA) (Alexeev et al., 2018), 
which are known to affect intestinal permeability and 
host immunity. BA metabolites are the third-most 
widely studied metabolites in host–microbiota inter-
actions, and are the main focus of this review. 

The composition of BAs is regulated by intes-
tinal bacterial metabolism and is intrinsically linked 
to host physiology (Nie et al., 2015). Cell and meta-
bolic activities are regulated by the interaction of 
signal molecules in the host with BA receptors (Li 
and Chiang, 2014; Vítek and Haluzík, 2016). These 
receptors include ligand-activated nuclear receptors, 
such as farnesoid X receptor (FXR), vitamin D re-
ceptor (VDR), and G protein-coupled BA receptor 
(TGR5), located on the cell surface (Li and Chiang, 
2014). However, most previous studies have focused 
on the interaction between microorganisms and BAs, 
and few have specifically focused on microbial and BA 
receptor signaling pathways. BA receptor signaling 
pathways involve a number of signaling factors which 
provide new insights into the impact of disease and its 
treatment. 

Therefore, in this paper we review the effects of 
microbes on BA synthesis and metabolism, based on 
recent studies. The focus is on microbiota and how the 
FXR, TGR5, and VDR signaling pathways affect the 

occurrence and development of inflammatory dis-
eases by regulating different metabolic pathways. 
This will lay a foundation for understanding the reg-
ulation and treatment of various diseases. 
 
 
2  Gut microbiota–BA metabolic interactions 

2.1  Influence of BAs on gut microbiota 

BA synthesis occurs exclusively in hepatocytes 
and is the only quantitatively significant cholesterol 
catabolic mechanism. Cholesterol 7α-hydroxylase 
(CYP7A1) can catalyze the conversion of cholesterol 
to 7α-hydroxycholesterol, which is the first step in the 
synthesis of BAs (Li and Chiang, 2014). Then, 
through continuous dehydrogenation and dehydrox-
ylation, 7α-hydroxy-4-cholesterol-3-one (C4) is ob-
tained, which is the common precursor of cholic acid 
(CA) and chenodeoxycholic acid (CDCA). Sterol 
12α-hydroxylase (CYP8B1) catalyzes the hydroxyla-
tion of C4 at the C12 position, followed by cleavage 
of the sterol side chains of sterol 27-hydroxylase 
(CYP27A1) to generate CA (Fig. 1). If CYP8B1 is 
not metabolized, C4 will eventually be converted into 
CDCA (Bustos et al., 2018). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Bile acid synthesis, circulation, and biological 
signaling activity 
Primary and secondary bile acids are synthesized in the liver 
and intestine, respectively. CYP7A1, CYP8B1, and CYP27A1 
are enzymes involved in the synthesis of primary bile acids. 
CYP7A1, cholesterol 7α-hydroxylase; CYP8B1, sterol 12α-
hydroxylase; CYP27A1, sterol 27-hydroxylase; CA, cholic 
acid; CDCA, chenodeoxycholic acid; G/T-: glycine-/taurine-; 
DCA, deoxycholic acid; LCA, lithocholic acid; BACS, bile 
acid coenzyme A synthetase; BAAT, bile acid amino acid 
transferase 
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The primary BAs, CA and CDCA, are subse-
quently conjugated with the amino acids taurine or 
glycine in the liver, which increase their solubility 
and decrease cell membrane damage (Russell, 2003). 
Ninety-five percent of BAs are reabsorbed throughout 
the intestine and returned to the liver through the 
intestinal–hepatic cycle, whereas the remaining 5% 
are excreted via feces (Alnouti, 2009). Primary BAs 
that flow into the intestinal cavity can help the diges-
tion and absorption of lipids (Begley et al., 2005). 
Unabsorbed primary BAs in the intestine are con-
verted into secondary BAs by bacterial enzymes 
(Ridlon et al., 2006). 

Secondary BAs can cause disease by regulating 
gut microbiota. Kakiyama et al. (2013) used 16S 
ribosomal gene quantification to reveal bacterial 
dysbiosis (such as significantly decreased Blautia and 
Ruminococcaceae) in cirrhotic patients compared 
with non-cirrhotic patients. The main reason for this 
was a decrease in the content of intestinal BAs. In 
drinking alcoholic cirrhotic patients, increased sec-
ondary BAs in feces were associated with significantly 
increased Veillonellaceae and significantly decreased 
Bacteroidaceae and Porphyromonadaceae in the gut 
microbiome (Kakiyama et al., 2014). 

Liu et al. (2017) showed that the main secondary 
Bas, deoxycholic acid (DCA) and lithocholic acid 
(LCA), increased significantly after injection of or-
ganochlorine pesticides into mice, which led to an 
increased relative abundance of Lactobacillus and 
Bifidobacterium at the genus level, and may lead to 
human-related diseases. In the colon, almost all BAs 
were converted to secondary BAs (DCA and LCA) by 
7α-dehydrogenation and reabsorbed via portal circu-
lation or excreted in feces (Hofmann, 1999; Ridlon  
et al., 2006). Islam et al. (2011) used 16S ribosomal 
RNA gene cloning library sequencing and fluores-
cence in situ hybridization technology to characterize 
the composition of cecal microbiota in different die-
tary groups. They demonstrated that rats fed 1.25 or 
5.00 mmol/kg CA developed changes in gut micro-
biota, especially an increased relative abundance of 
Firmicute and Bacteroidetes. In a mice model, FXRα 
could be activated by the agonist GW4064 to block 
the growth of aerobic and anaerobic bacteria in the 
ileum and cecum. This was due to the indirect in-
volvement of BAs in the antibacterial action mediated 
by FXRα, which can up-regulate the mucosal defense 

genes in the mouse ileum (Inagaki et al., 2006). The 
antibacterial action of BAs is mainly via destruction 
of the bacterial cell membrane, and free BAs have 
greater destructive power. 

2.2  Influence of gut microbiota on BAs 

The structure of gut microbiota is influenced by 
BA metabolism, and gut microbiota can regulate BA 
synthesis. Gut microbiota can promote the secretion 
of small intestinal enzymes, thus affecting the syn-
thesis of BAs (Mullish et al., 2018). Although there 
are many bacteria in the gut, bile salt hydrolase (BSH) 
is present mainly in Clostridium and Lactobacillus 
(Begley et al., 2005). Lactobacillus has the highest 
cholesterol removal ability and good BSH activity 
(Shehata et al., 2016). Therefore, colonization by 
intestinal bacteria is facilitated mainly by the detoxi-
fication of BAs (Ridlon et al., 2006). 

However, a lack of bacterial BSH and 7- 
dehydroxylation activity also affects BA metabolism, 
due mainly to deficiencies in deconjugation of con-
jugated BAs and in secondary BA formation (Vrieze 
et al., 2014). In the intestine, glycine- or taurine- 
bound CA (G/T-CA) and CDCA (G/T-CDCA) are 
broken down by gut microbiota and 7α-dehydroxylated 
by anaerobic microbiota to the secondary BAs DCA 
and LCA (Masubuchi et al., 2016). Yamada et al. 
(2018) showed that mice fed a high-fat diet had higher 
levels of secondary BAs. This could be due to in-
creased numbers of Bacteroides and Clostridium, and 
decreased Streptococcus and Bifidobacterium in the 
gut. Bacteroides can promote the deconjugation of 
BAs to form free BAs, while Clostridium promotes 
7α-dehydroxylation of free BAs in the intestinal tract 
of mice. 

The deconjugation of BAs is accomplished by 
many anaerobic bacteria in the intestine, while 
7α-dehydroxylation of BAs is accomplished by a 
limited number of anaerobic bacteria. Therefore, 
Bacteroides and Clostridium can metabolize primary 
BAs and convert them into secondary BAs. However, 
the deconjugation and 7α-dehydroxylation of BAs 
can increase their hydrophobicity, leading to BA 
toxicity and metabolic side effects. Swann et al. (2011) 
analyzed the primary and second BA profiles of 
germ-free (GF) animals and showed that, of the  
primary BAs, taurocholic acid (TCA) was the most 
prevalent. Increased TCA levels can cause colitis  
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in mice that lack the interleukin-10 (IL-10) gene 
(Devkota et al., 2012). The possible reason for this is 
decreased BSH activity, which decreases the degra-
dation of TCA before its conversion into secondary 
BAs. This indicates that the expansion of the BA pool 
is associated with TCA under sterile conditions. For 
example, compared to GF mice, traditional feeding 
(CONV-R) mice had lower levels of tauro-α- 
muricholic acid (T-α-MCA) and tauro-β-muricholic 
acid (T-β-MCA) in the distal small intestine, in which 
T-β-MCA decreased TCA-induced expression of 
fibroblast growth factor 15 (FGF15) outside the ileum 
and in vivo (Enright et al., 2017). This indicated that 
the intestinal microbiota could decrease T-MCA  
levels and promote FGF15 expression to inhibit 
CYP7A1 and the synthesis of BAs (Li-Hawkins et al., 
2002; Sayin et al., 2013). However, high concentra-
tions of TCA may directly affect the heart develop-
ment of GF animals (Swann et al., 2011). Therefore, 
the imbalance of gut microbiota not only can change 
intestinal BAs, but also can be associated with many 
other diseases. 

Gut microbiota play a role not only in the small 
intestine, but also in other parts of the intestine (Sayin 
et al., 2013). Gut microbiota have a profound impact 
on BA metabolism through the deconjugation, dehy-
drogenation, and dehydration of primary BAs in the 
small intestine and colon. For example, gut microbi-
ota affect mainly FXR target genes in the ileum. 
FXR-dependent activation of FGF19 in the ileum 
regulates BA synthesis in the liver, but the binding of 
FGF19 with fibroblast growth factor receptor 4 
(FGFR4) can inhibit BA synthesis (Inagaki et al., 2005; 
Zimmer et al., 2012). However, the synthesis of BAs 
is also regulated by peroxisome proliferator-activated 
receptor α (PPARα) ligands. PPARα ligands can 
regulate BA distribution by increasing CA and de-
creasing CDCA (Hunt et al., 2000). Dehydroxylation 
of CDCA results in CA, which is toxic to hepatocytes 
and has been associated with the development of 
colon cancer (Hofmann, 2004). In addition, CA and 
CDCA derived from primary BAs can be converted 
into the secondary BAs DCA and LCA, respectively, 
by Acetatifactor and Bacteroides 7α- and 7β- 
dehydroxylases (Pathak et al., 2018). Therefore, gut 
microbiota are the main factors regulating BA me-
tabolism (Joyce et al., 2014). 

3  BA-related molecules, microbiota, and 
diseases 
 

BAs are the product of lipid metabolism in the 
liver and intestine. They are potent ligands for nuclear 
receptors including FXR, pregnane X receptor (PXR), 
and VDR, and are endogenous agonists for the TGR5. 
These receptors play an important role in the synthe-
sis, regulation, and metabolism of BAs (Degirolamo 
et al., 2011; Kundu et al., 2015). In recent years, the 
role of gut microbiota in causing or alleviating dis-
eases had attracted much attention. Therefore, clari-
fying the interaction between BAs and gut microbiota 
will enable a better understanding of the causes of 
these diseases and could lead to new treatment op-
tions. This part of the review summarizes the roles of 
the FXR, TGR5, and VDR signaling pathways in 
different diseases. 

3.1  Relevance of FXR for diseases 

The most important step in the regulation of BA 
metabolism by FXR is the inhibition of bile acidosis 
by inhibition of CYP7A1, including via two feedback 
regulation pathways. In one pathway, FXR promotes 
the synthesis of BAs through the action of the bile salt 
export pump (BSEP) in the liver, thus inducing the 
expression of small heterodimer partner (SHP). Then, 
the SHP protein inactivates liver receptor homolog-1 
(LRH-1), a signaling molecule required for expres-
sion of CYP7A1 (Lu et al., 2000), thus inhibiting 
expression of CYP7A1. In the other pathway, BA- 
dependent FXR activation induces FGF15/19 binding 
to FGFR4, thereby inhibiting CYP7A1 (Fig. 2) 
(Cariello et al., 2017). 

3.1.1  Metabolic syndrome 

The FXR is significant in the regulation of gut 
microbiota. It regulates BA homeostasis and BA en-
terohepatic circulation, and affects a variety of met-
abolic diseases (Matsubara et al., 2013; Peng et al., 
2016; Jin et al., 2019). BAs and the FXR axis have 
been shown to regulate fat and glucose metabolism. 
FXR activation improves insulin sensitivity, steatosis, 
and obesity induced by a high-fat diet (Cariou et al., 
2006; Zhang et al., 2006; Ma et al., 2013). The insulin 
sensitivity of metabolic syndrome patients is im-
proved by transplanting fecal microbes from glucose- 
sensitive humans (Vrieze et al., 2012), possibly  
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because changes to gut microbiota affect the physio-
logical response of the host by regulating the FXR 
signal pathway. The main mechanism is CDCA in-
hibition of hepatocyte nuclear receptor expression 
through the FXR pathway, thereby decreasing tran-
scription of phosphoenolpyruvate carboxykinase 
(PEPCK) and glucose-6-phosphate dehydrogenase de-
ficiency (G6PD) (Yamagata et al., 2004). Therefore, 
FXR knockout mice have accelerated glycolysis and 
lipogenic gene transcription, while intestinal absorp-
tion of glucose is delayed (Duran-Sandoval et al., 
2005). 

In addition, gut microbiota can induce the up- 
regulation of BA synthase CYP7A1. Mice treated 
with antibiotics can have decreased gut flora diversity 
and abundance, which is related to the synthesis of 
BAs (Reijnders et al., 2016). A decrease in Lactoba-
cillus leads to a decrease in BSH, thereby increasing 
T-β-MCA levels (Jiang et al., 2015). However, in-
creasing T-β-MCA inhibits intestinal FXR signaling 
and decreases FGF15 levels, thereby increasing 
CYP7A1 transcription and BA synthesis in the liver 
(Xie et al., 2017). Endogenous BA T-β-MCA inhibits 
the FXR signaling pathway, leading to decreases in 
high-fat diet-induced obesity, insulin resistance, and 
nonalcoholic fatty liver disease, which suggests that 
FXR may be a potential drug target for metabolic 
syndrome (Gonzalez et al., 2016). 

3.1.2  Liver diseases 

Gastrointestinal bleeding and the lack of BAs 
and stomach acid in patients with cirrhosis can lead  
to increased aerobic bacteria in the intestine and 
movement of colonic bacteria into the jejunum and 
duodenum, causing excessive growth of intestinal 
bacteria. For example, an increase in bacteria such as 
Enterobacteriaceae produces more lipopolysaccha-
ride (LPS), which increases the incidence of inflam-
mation. However, high concentrations of bile salts 
can decrease the growth of intestinal bacteria, mainly 
because bile salts can activate FXR and induce the 
expression of antimicrobial peptides (Begley et al., 
2005; Inagaki et al., 2006; Ridlon et al., 2006). An-
anthanarayanan et al. (2001) reported that the BSEP 
promoter contains an FXR response element, and 
FXR can be directly bound to the BSEP promoter. 
LCA is an inducer of liver damage, and the expression 
of BSEP is decreased by FXR antagonism, thereby 
leading to a decrease in BA secretion, increasing liver 
BA concentration, and causing liver damage. 

On the other hand, deconjugation of BSHs in gut 
bacteria can generate primary BAs. These are con-
verted into secondary BAs by 7α-dehydroxylase 
bacteria. As these bacteria change in cirrhotic patients, 
the bioconversion of primary BAs into secondary 
BAs is decreased. BAs produced in the gut lumen can 
bind to FXR to produce FGF19 and enter the portal 
vein circulation to bind to FGFR4 (Woodhouse et al., 
2018). The result is inhibition of CYP7A1 enzyme 
activity. This affects the synthesis of primary BAs 
and, in turn, destroys the structure of microbiota. 

In addition, FGF19 is a hormone-like factor se-
creted by the ileum. It can inhibit the secretion of BAs, 
so when FGF19 is deficient it causes idiopathic BA 
malabsorption (BAM). This is a result mainly of 
impaired processing, release or breakdown of FGF19, 
or improper response of the FGF19 receptor FGFR4 
in hepatocytes (Vijayvargiya et al., 2017). Therefore, 
decreased conjugated BA secretion leads to a de-
creased BA concentration in the gut lumen, which 
weakens the inhibition of bacterial growth. This vi-
cious cycle causes cirrhosis of the liver. Out et al. 
(2015) reported that Bifidobacterium and Lactoba-
cillus could decrease the BA content of intestinal 
epithelial cells by inhibiting the absorption of BA 
molecules, and ultimately down-regulate the FXR/ 
FGF15 pathway, enhance CYP7A1 activity and 

Fig. 2  Interaction between BAs and the FXR signaling 
pathway 
FXR regulates BA metabolism through three feedback 
pathways, two of which inhibit bile acidosis by inhibiting 
CYP7A1. FXR can also regulate intestinal mucosal immune 
responses by the gut microbiome. BAs, bile acids; FXR, 
farnesoid X receptor; CYP7A1, cholesterol 7α-hydroxylase; 
SHP, small heterodimeric partner; FGFR4, fibroblast 
growth factor receptor 4; FGF15/19, fibroblast growth 
factor 15/19; ASBT, apical sodium-dependent bile acid 
transporter 
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promote BA synthesis in the liver. Degirolamo et al. 
(2014) reported that administration of the probiotic 
cocktail formulation VSL#3 could change the abun-
dance of microbial flora in mice feces, leading to 
increased counts of Firmicutes and Actinobacteria, 
while decreasing Bacteroidetes and Proteobacteria. 
Alterations in intestinal microbiota cause down- 
regulation of ileal FGF15, leading to increased ex-
pression of Cyp7a1 and Cyp8b1 genes (Degirolamo  
et al., 2014). Therefore, these studies show that gut 
microbiota disorders can affect liver function through 
changes in BA metabolism. 

3.1.3  Inflammatory diseases 

FXR can also regulate intestinal mucosal im-
mune responses by gut microbiota. The FXR, nuclear 
factor κB (NF-κB), and Wnt/β-catenin signaling path-
ways are closely related. In recent years, many studies 
have reported the relationship between FXR and in-
flammatory response. Gadaleta et al. (2011) reported 
the direct involvement of NF-κB in the repression of 
FXR activity by overexpression of NF-κB subunits 
p50 and p65. The decreased FXR activity resulted in 
less inhibition of intestinal inflammation, leading to 
the development of chronic intestinal inflammation. 
However, LPSs produced by gut microbiota can 
stimulate NF-κB to aggregate inflammatory cells and 
increase the level of inflammatory factors (Carr and 
Reid, 2015). FXR can also inhibit NF-κB and thus 
decrease liver inflammation (Carr and Reid, 2015). 
Studies have reported that Clostridium affects BA 
metabolism in the intestine and inhibits FXR activa-
tion (Theriot et al., 2016). FXR deficiency leads to the 
early death of mice, and promotes Wnt signaling 
through the production of neutrophils, macrophages, 
and tumor necrosis factor-α (TNF-α), thereby causing 
gut inflammatory diseases (Modica et al., 2008). 
Wolfe et al. (2011) reported that increased hepatic 
BAs play a critical role in hepatic tumorigenesis in 
FXR knockout mice. The increased BAs may stimu-
late temporal activation of the Wnt/β-catenin pathway 
independently of FXR and promote the development 
of hepatocellular carcinoma (HCC) in FXR knockout 
mice. Activation of FXR by agonist ligands can also 
inhibit the expression of inflammatory mediators in 
NF-κB activation in both HepG2 cells and primary 
hepatocytes cultured in vitro (Wang et al., 2008). 
However, the exact mechanisms by which BAs in-

duce β-catenin and NF-κB are currently unclear. 
Further exploration of the role of the gut microbiota- 
mediated FXR signaling pathway in related inflam-
matory diseases could assist in the development of 
new therapeutic strategies. 

3.2  Relevance of TGR5 for diseases 

Gut flora activate TGR5 expression by affect-
ing intestinal endocrine cells, thereby affecting the  
metabolism of glucose and energy, and have anti- 
inflammatory and immunomodulatory effects (Katsuma 
et al., 2005; Watanabe et al., 2006). TGR5 has at  
least three important functions: (1) BAs can induce  
glucagon-like peptide-1 (GLP-1) production in the 
enteroendocrine cell line STC-1 via TGR5 activation, 
leading to increased insulin secretion and decreased 
glucose, thereby affecting glucose metabolism;  
(2) binding of BAs to TGR5 increases intracellular 
cyclic adenosine monophosphate (cAMP) and results 
in the transcription of the type 2 iodothyronine de-
iodinase (Dio2) gene encoding type 2 deiodinase (D2) 
which converts thyroid hormone (T4) into the more 
active triiodothyronine (T3), thereby increasing basic 
metabolism and energy consumption; (3) BAs can 
increase the concentration of cAMP and inhibit the 
production of pro-inflammatory factors such as 
TNF-α, IL-1, and IL-6 induced by LPS through TGR5. 
BAs can also decrease the transcriptional activity of 
NF-κB, thereby inhibiting the expression of pro- 
inflammatory cytokines (Fig. 3). Recent studies have 
found that TGR5 cellular signaling can regulate the 
occurrence of metabolic syndrome and inflammatory 
diseases. Here, we review research progress relating 
to the role of TGR5 in metabolic syndrome and re-
lated inflammatory diseases. 

3.2.1  Metabolic syndrome 

Changes to the gut microbiome can improve 
insulin resistance, control blood sugar, and treat 
metabolic syndrome through BA secretion, regulation 
of GLP-1, and decreasing chronic inflammatory re-
action (Sinclair et al., 2018). The gut microbiome 
regulates TGR5 signal transduction by producing 
agonists, which can promote the secretion of GLP-1, 
leading to the release of glucose-dependent insulin. 
GLP-1 plays a vital role in post-meal insulin secretion 
and appetite suppression (Baggio and Drucker, 2007). 
The main reason is that Acetatifactor and Bacteroides  
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in intestinal bacteria have high BSH, 7α-dehydroxylase, 
and 7β-dehydroxylase activity and can produce LCA 
from CDCA and UDCA. LCA can activate TGR5 
signaling and stimulate GLP-1 secretion by L cells, 
thus promoting fat browning and improving insulin 
signaling and glucose metabolism (Pathak et al., 
2018). Laverdure et al. (2018) showed that a high-fat 
diet significantly increased GLP-1 secretion and fecal 
methanogen content, and that the use of antibiotics to 
destroy methanogens could decrease insulin secretion. 
This suggests that changes in methanogen concentra-
tion may play an important role in the secretion of 
GLP-1 in obese patients. Methane increases intracel-
lular cAMP content by stimulating GLP-1 secretion. 

Further studies have found that the TGR5 can 
also increase the level of cAMP, which can induce the 
production of GLP-1 in intestinal endocrine cells, 
promote the dephosphorylation of glycogen synthase 
in hepatocytes, and promote glycogen synthesis. Thus, 
it has a significant effect on decreasing blood sugar 
(Lee et al., 2007). Vrieze et al. (2014) reported that oral 
vancomycin could significantly decrease the diversity 
of gut microbiota and the content of secondary BAs in 
feces, and decrease peripheral insulin sensitivity. 
Watanabe et al. (2006) found that BAs bind to TGR5 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in brown adipose tissue and skeletal muscle, and 
increase intracellular cAMP. This can increase D2 
enzyme activity, which converts T4 to T3 and in-
creases energy expenditure as heat, thus significantly 
decreasing the weight of mice fed high-fat diets. 
Therefore, the BA-TGR5-cAMP-D2 signaling path-
way plays an important role in regulating energy 
homeostasis. However, the effect of gut microbiota on 
this energy metabolism-signaling pathway has not been 
reported. 

3.2.2  Inflammatory diseases 

Cholesterol is fermented by microorganisms  
in vivo to produce BAs, which are metabolized by 
microorganisms in the distal small intestine and colon 
to produce secondary BAs (Sonnenburg and Bäckhed, 
2016). Taurine- and glycine-bound BAs can promote 
inflammation and anti-inflammation, respectively, by 
activating membrane receptor TGR5 on cell surfaces, 
while an excessive BSH-containing gut microbiome 
can change TGR5-mediated inflammatory and anti- 
inflammatory activity by dissociating the bound BAs. 
TGR5 is expressed mainly in monocytes and mac-
rophages. Mononuclear phagocytes can secrete a 
variety of inflammatory mediators and play an  

Fig. 3  Interaction between BAs and the TGR5 signaling pathway 
These are three major metabolic pathways in the TGR5 signaling pathway. BAs can affect glucose and energy metabolism by
activating TGR5, and are involved in anti-inflammatory immune regulation. BAs, bile acids; TGR5, G protein-coupled BA
receptor; cAMP, cyclic adenosine monophosphate; GLP-1, glucagon-like peptide-1; D2, type 2 deiodinase; T4, thyroid hor-
mone; T3, triiodothyronine; PKA, protein kinase A; CRE, cyclic AMP response element; CREB-P, cyclic AMP response ele-
ment binding protein 
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important role in regulating inflammatory response. 
Therefore, gut microbiota help regulate BA compo-
sition and related signaling, which is important for the 
development and prevention of disease. 

Keitel et al. (2008) found that, after activation of 
TGR5 in liver Kupfer cells by BAs or TGR5 agonists, 
intracellular cAMP levels were elevated. This inhib-
ited LPS-induced up-regulation of TNF-α, IL-6, 
IL-1β, and IL-1α. The synthesis of LPS-stimulated 
pro-inflammatory cytokines was significantly higher 
in TGR5−/−-isolated macrophages than in TGR5+/+ 
mice (Pols et al., 2011). This further supports the role 
of TGR5 signaling in the down-regulation of the in-
flammatory response to Gram-negative bacteria. In 
addition, the anti-inflammatory effect of TGR5 is 
mediated mainly by the inhibition of pro-inflammatory 
transcription factor B (e.g. NF-κB) (Pols et al., 2011). 
For mice without the TGR5 gene, the mRNA expres-
sion levels of various pro-inflammatory genes tar-
geted by NF-κB were higher than those of macro-
phages from wide-type (WT) mice (Wang et al., 
2011). Therefore, a metabolic balance between BAs 
and the microbiome is essential to prevent disease. 

Although many studies have shown that acti-
vating TGR5 can improve metabolism and immunity, 
there is still much controversy about its function and 
mechanism. Further research into the TGR5 signaling 
pathway will provide a more complete understanding 
of the physiological and pathological roles of TGR5. 

3.3  Relevance of VDR for diseases 

The VDR-encoded nuclear transcription factor 
forms dimers with the retinoid X receptor (RXR). The 
dimers exert a series of physiological effects through 
endogenous or exogenous ligands. Bacterial metabo-
lites also have a function through the VDR–RXR 
dimer. VDR is closely related to bacteria. VDR gene 
expression in GF and conventionally raised mice is 
different, indicating that this gene plays an important 
role in the balance of intestinal microbes (Wang et al., 
2016). 

Inflammatory bowel disease (IBD) is a chronic 
intestinal inflammation associated with intestinal 
microecological disorders and autoimmune disorders. 
Decreased expression of VDR leads to the develop-
ment of ulcerative colitis, dysplasia, and colitis- 
associated colorectal cancer (Wada et al., 2009). VDR 
is expressed in hepatocytes, and VDR ligands can 
inhibit the synthesis of BAs. It plays an important  

role in maintaining bile homeostasis by inhibiting the 
transcription of the CYP7A1 gene in the liver and 
inducing the detoxification mechanism of LCA in the 
intestine (Cheng et al., 2014). In addition, vitamin D 
deficiency and decreased VDR are also related to 
obesity and diabetes. When bacteria invade the intes-
tine, they induce VDR dysfunction. Under the action 
of antigen, intestinal mucosal tissue T cells are acti-
vated, Th17 cells proliferate and differentiate, and the 
inflammation is regulated by the release of inflam-
matory cytokines such as IL-17, IL-6, and IL-8 
(Espinosa et al., 2009). At the same time, Th17 cyto-
kines can also induce the expression of chemokines 
such as monocyte chemoattractant protein-1 (MCP-1), 
and mediate local infiltration of inflammatory cells, 
leading to intestinal mucosal tissue damage (Espinosa 
et al., 2009). Jin et al. (2015) found that VDR affected 
intestinal microflora and correlated the VDR-associated 
bacterial changes with clinical diseases. Decreased 
VDR expression in the intestine can lead to micro-
organism imbalance, which leads to decreased con-
centrations of butyrate-producing bacteria, resulting in 
susceptibility of VDR knockout mice to chemical- 
induced colitis (Sun, 2016). 

Many studies have shown that changes in gut 
microorganisms play a key role in the occurrence and 
development of colorectal cancer (Yang et al., 2013; 
Vogtmann and Goedert, 2016). VDR-mediated LCA 
detoxification may help vitamin D in the prevention 
of colon cancer. The mechanism of VDR in colorectal 
cancer may be related to gut microbial interactions 
and inflammatory responses (Sun, 2017). Wu et al. 
(2010) found that VDR inhibited the NF-κB signaling 
pathway and decreased the number of harmful bacte-
ria, resulting mouse mortality caused by Salmonella 
infection. 

Further research into the role of VDR in micro-
bial infection-related diseases will help elucidate the 
function and mechanism of VDR in immune regulation. 
Understanding the interaction between VDR and gut 
microbiota could enable new targets for the preven-
tion and treatment of various diseases. 
 
 
4  Conclusions 
 

The gut microbiota interact with BAs to affect 
the hydrophobicity, toxicity, and regulation of BAs 
through biotransformation reactions. BA pools have a 
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central role in physiology and physiopathology. Dis-
orders of BA pools caused by diseases or temporary 
use of antibiotics may lead to many diseases. The 
FXR, TGR5, and VDR signaling pathways are in-
fluenced by gut microbiota during BA synthesis and 
metabolism. Therefore, there has been an increasing 
research focus on the microbial community structure, 
especially in unhealthy organisms, to determine how 
microorganisms can interfere with these pathways. 
Studying microbial–BA–host interactions to develop 
BA signaling as an intervention target for the treat-
ment of cholestasis diseases and tumor-related dis-
eases will be a significant advancement in the de-
velopment of personalized therapeutic and diagnostic 
tools using microorganisms. 
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中文概要 
 
题 目：肠道微生物调节疾病中胆汁酸代谢相关的信号通路 
概 要：近十年来，微生物与胆汁酸代谢的相互作用越来

越受到关注。胆汁酸不仅参与营养物质的代谢，

而且在调节宿主生理活动的信号转导中也起着

重要作用。已有研究表明，微生物调控的胆汁酸

代谢对许多疾病都有显著的影响，但对微生物受

体信号通路调控疾病的相关研究并不多。本文综

述了近年来有关法尼醇受体（FXR）、G 蛋白偶

联胆汁酸受体（TGR5）和维生素 D 受体（VDR）
信号通路在健康和疾病的微生物-宿主相互作用

中的核心作用。研究这些信号通路之间的关系，

有助于我们了解人类疾病的发病机制，为人类疾

病的治疗提供新的解决方案。 
关键词：肠道微生物群；胆汁酸；法尼醇受体；维生素 D

受体；代谢 


