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3D brain glioma segmentation in MRI through integrating multiple
densely connected 2D convolutional neural networks
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Abstract: To overcome the computational burden of processing three-dimensional (3D) medical scans and the lack of spatial
information in two-dimensional (2D) medical scans, a novel segmentation method was proposed that integrates the
segmentation results of three densely connected 2D convolutional neural networks (2D-CNNs). In order to combine the low-
level features and high-level features, we added densely connected blocks in the network structure design so that the low-level
features will not be missed as the network layer increases during the learning process. Further, in order to resolve the problems
of the blurred boundary of the glioma edema area, we superimposed and fused the T2-weighted fluid-attenuated inversion
recovery (FLAIR) modal image and the T2-weighted (T2) modal image to enhance the edema section. For the loss function of
network training, we improved the cross-entropy loss function to effectively avoid network over-fitting. On the Multimodal
Brain Tumor Image Segmentation Challenge (BraTS) datasets, our method achieves dice similarity coefficient values of 0.84,
0.82, and 0.83 on the BraTS2018 training; 0.82, 0.85, and 0.83 on the BraTS2018 validation; and 0.81, 0.78, and 0.83 on the
BraTS2013 testing in terms of whole tumors, tumor cores, and enhancing cores, respectively. Experimental results showed that
the proposed method achieved promising accuracy and fast processing, demonstrating good potential for clinical medicine.
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1 Introduction

Glioma is one of the most common and aggressive
types of primary brain tumor, with a low survival rate
(Zhuge et al., 2017). The World Health Organization
(WHO) has divided brain gliomas into four grades ac‐
cording to their severity: Grade 1 and Grade 2 are
mildly dangerous and known as low-grade glioma
(LGG), slowly advancing tumors, while Grade 3 and
Grade 4 are high-grade glioma (HGG) tumors with
high malignancy (Mohan and Subashini, 2018). Accu‐
rate quantification of tumor size can be considered as
a method of efficacy evaluation. Precise segmentation
also provides a basis for developing a radiotherapy plan
and surgical strategy. Therefore, accurate and reliable

segmentation of brain glioma is a goal of great clinical
significance. Up to now, clinical segmentation of brain
glioma is generally carried out manually. In addition,
the manual segmentation of brain glioma is time-
consuming and laborious; its success also relies on
the doctor’s clinical experience and is subject to sub‐
jective factors (Mengqiao et al., 2017). Hence, research
on accurate automatic segmentation methods of brain
glioma has been a long-time goal of medical image
processing. However, gliomas may appear in any position
of the brain, with varied shape, appearance, and size,
making it a challenge to segment gliomas automatically
and accurately (Udupa and Vishwakarma, 2016).

Magnetic resonance imaging (MRI) is a widely
used, non-intrusive imaging modality, because it gives
sensitive tissue contrast. It is a unique imaging tech‐
nique that is especially suitable for human brain tumors.
Thus, MRI is the most commonly used image for brain
tumor detection and segmentation. Multiple sequences,
including T2-weighted fluid-attenuated inversion
recovery (FLAIR), T1-weighted (T1), T1-weighted
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contrast-enhanced (T1c), and T2-weighted (T2) se‐
quences, were assessed to jointly diagnose and segment
brain gliomas. Notably, the intensity inhomogeneity of
MRI data further increases the difficulty of automatic
segmentation of brain gliomas.

Recent brain glioma research has mainly analyzed
lesion tissue in images generated by image processing,
pattern recognition, and artificial intelligence. The
existing automatic and semi-automatic brain tumor
segmentation methods can be broadly categorized as
generative model-based or discriminative model-based
methods (Goetz et al., 2015). The generative models
need prior information, such as tumor shape and tumor
appearance, but have the advantage of fast conver‐
gence during training. The discriminative models in‐
clude random forests, support vector machine, and
conditional random field (CRF). Segmentation methods
based on the discriminant model can directly learn the
characteristics of tumors without prior knowledge. In
the classification recognition task, the accuracy of
methods based on discriminant model is higher than
that based on the generation model (Zhao and Jia,
2015). More recently, traditional methods and deep
learning methods have been widely used in the seg‐
mentation of gliomas. For example, Li et al. (2018)
proposed a unified glioma segmentation algorithm
that combines spatial fuzzy c-mean clustering, region
growth, and post-processing. Islam et al. (2020) pro‐
posed an efficient multilevel segmentation method
that combines optimal threshold and watershed seg‐
mentation technique followed by a morphological oper‐
ation to separate the tumor. Currently, segmentation
methods based on convolutional neural networks
(CNNs) have achieved good results in brain glioma
segmentation tasks. Both two-dimensional (2D)-CNNs
and three-dimensional (3D)-CNNs have been adopted
for segmentation of brain gliomas. Zikic et al. (2014)
developed a brain tumor segmentation method based
on 2D-CNNs in which they built a five-layer CNN
segmentation model with four channels of 19×19 2D
image patches as the input. The four channels were
image patches of T1, T2, T1c, and FLAIR. Havaei
et al. (2017) proposed a deep learning model with two
pathways of CNNs, including a convolution pathway
and a fully connected pathway. Dvořák and Menze (2016)
modeled the multi-class brain tumor segmentation
task as three binary segmentation sub-tasks; each sub-task
was solved using CNNs, with each task segmenting a

sub-region of a brain glioma. Most previous brain
tumor segmentation tasks based on 2D-CNNs use image
patches (local areas in MRI images) to train the models,
transform the segmentation tasks into classification
tasks, and sort the image patches into (1) edema region,
(2) necrosis/non-enhancing tumor, and (3) enhancing
tumor. Then the classification results of each image
patch are used to mark its central voxel for tumor seg‐
mentation. In addition, Krishna et al. (2019) used an
end-to-end 2D U-Net network to segment glioma.
The methods of brain glioma segmentation based on
2D-CNNs, however, which use 2D MRI image patches
as input, cannot make full use of the neighborhood
and spatial features of each pixel. To make full use of
the 3D information of brain glioma MRI, it is more ef‐
fective to directly use the 3D data of brain glioma
MRI for segmentation. Urban et al. (2014) first applied
the 3D-CNN model to segmentation of gliomas; they
proposed a 3D-CNN segmentation model with inputs
of 9×9×9 in size and used four modal MRI data to
achieve 3D segmentation of a brain glioma. Chen
et al. (2018) developed a densely connected 3D-CNNs
with an input image size of 38×38×38. The output is
not a classification probability value of individual
pixels, but a central image body of 12×12×12 in size.
This output method greatly improves the brain glioma
segmentation speed. The dense connection method of
the convolutional layer in the segmentation model
solves the problem of gradient disappearance during
the network training process to a certain extent, and im‐
proves the segmentation accuracy of the brain glioma.
Guo et al. (2019) proposed a cascade of global con‐
text CNNs; their network is a modification of the 3D
U-Net, consisting of residual connection, group nor‐
malization, and deep supervision. Baid et al. (2020),
Pan et al. (2020), and Zhou et al. (2020) designed dif‐
ferent 3D segmentation models of gliomas, based on
3D-CNNs; each model can segment various radiologi‐
cally identifiable sub-regions such as edema region,
enhancing tumor, and necrosis. The brain glioma seg‐
mentation model based on 3D-CNNs takes 3D MRI
image patches as input. Even if the 3D information of
MRI data is used fully, it also increases the network
parameters and cost of calculation, taking up more
memory. Though many algorithms have been pro‐
posed over the decades to achieve this task, most
have shortcomings that limit their utility in routine
clinical practice.
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To address the above challenges in glioma seg‐
mentation, we have proposed a fully automatic brain
tumor segmentation model with densely connected ar‐
chitecture based on CNNs. The aim of this study is to
design a fully automated brain tumor segmentation al‐
gorithm that will accurately segment the tumors and
act as an assistive tool for radiologists for exact tumor
quantification. The main contributions are as follows:

(1) The boundary of brain glioma edema is am‐
biguous and difficult to segment. FLAIR and T2 su‐
perimposed fusion was used as one of the preprocessing
steps to enhance the edema region of brain gliomas,
so that the boundary of the brain glioma edema area
was clear and easy to segment.

(2) For the network structure design, 2D dense
connection blocks were added; these blocks consist of
a series of convolutional layers. Each of the layers
accepts the feature of all of the layers in front of it as
an input. In addition, in the process of feature extrac‐
tion, we also extracted features in stages; both low-
level features and high-level features can be used, so
that the network did not miss any information as the
number of network layers increased.

(3) We defined a new loss function that makes
model training easier and avoids network over-fitting.

(4) In order to make full use of the neighborhood
and spatial characteristics of pixel points, different
views of the multi-modal MRI data were used as the
training dataset. Three densely connected 2D-CNNs
segmentation models with the same structure were

trained. Then the segmentation results of three views
were fused and post-processed, and the brain glioma
was 3D-segmented by multiple 2D-CNNs.

2 Methods and experiments

2.1 Methods

The proposed densely connected 2D-CNN model
for brain tumor segmentation is illustrated in Fig. 1.
This model includes the following steps: (1) multi-
modal MRI pre-processing; (2) training three densely
connected 2D-CNN segmentation models; (3) com‐
bining the segmentation result of three views using
fusion strategy; (4) post-processing the fused image.

2.1.1 Pre-processing

The MRI images extracted from volumetric data
have bias field distortion and intensity inhomogeneity
due to the principles of MRI, technical limitations,
and various factors in the image acquisition process.
These limitations cause the intensity of the same tissues
in different patients to vary across the image. Kamnitsas
et al. (2017) applied N4ITK bias correction to T1 and
T1c MRI sequences as a step in pre-processing,
which resulted in removal of the intensity gradient of
each scan. Zhao et al. (2018) adopted a robust intensity
normalization method to make MRI scans of different
patients comparable; this technique effectively reduced
the non-uniform intensity of the MRI image. The

Fig. 1 Flowchart of the proposed method. MRI: magnetic resonance imaging; 2D-CNN: two-dimensional convolutional
neural network.
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blurred edge of the brain glioma and unclear boundary
of the edema region increase the difficulty of segmen‐
tation. The T2 sequence of an MRI is the generated MR
signal when the transverse magnetic vector attenuates
and disappears; it highlights the difference in T2 trans‐
verse relaxation between tissues and is suitable for
observing diseased tissue. The T2 sequence shows fluid-
filled tissues as bright signals. In FLAIR, brain ventri‐
cles show low signals, and tissue lesions show bright
signals. To avoid the influence of bright ventricular sig‐
nals, due to the high fluid content in gliomas, on seg‐
mentation of glioma, the two modalities of T2 and
FLAIR can be combined to segment the glioma as a
whole. Therefore, in order to segment the edema
portion of the glioma more completely, a new pre-
processing method was presented based on the charac‐
teristics of brain glioma. The first step in our pre-
processing is algebraic superposition fusion of the two
modal images of FLAIR and T2 to get the enhanced
image of edema (Ienhance), which is given by

Ienhance = (FLAIR + T2) / (FLAIR × T2). (1)

Some examples after pre-processing are indicated
in Fig. 2. The normalization of zero mean and unit
variances of FLAIR, Ienhance, T1c, and T1 data is regarded
as the second step of our pre-processing. Such processing
preserves the original information of the image to the
greatest extent. Finally, patches are normalized with
respect to mean and variance.

2.1.2 Classification

The structure of our proposed densely connected
2D-CNNs is shown in Fig. 3. The proposed architecture
takes patches of multiple modalities as input and predicts
the class of center pixel in respective patches. Simonyan
and Zisserman (2015) found that when a network
model has the same performance, the number of param‐
eters in the network can be reduced and take up less
memory by using a smaller convolution kernel. In‐
spired by their research, a small convolution kernel of
3×3 is used in our network structure. VggNet and
ResNet are commonly used medical image segmentation
models (Simonyan and Zisserman, 2015; He et al.,
2016). These models can only learn higher-level features
from the characteristics of the previous layer. Low-
level features cannot be fully utilized, and important
information may be ignored. DenseNet was proposed

to overcome the problem of low feature utilization
(Huang et al., 2017). The greatest advantage of this
program is that each layer accepts the features of all
the previous layers as input and reuses them. So, we
added two dense connection blocks when designing
the network structure. A densely connected block is
formulated as:

y (m + 1) = f ( [ y (0 ), y (1),…, y (m ) ]), (2)
f ( y (n ) ) = W*δ ( B ( y (n ) ) ), n∈{ 0, 1,…, m } , (3)

where W is the weight matrix, * denotes convolution
operation, B(· ) represents batch normalization, δ(· )
denotes rectified linear unit for activation (Nair and
Hinton, 2010), and [y(0), y(1), …, y(m)] represents the
concatenations of all outputs of previous layers before
the layer of m+1. The design is illustrated in Fig. 4.

The input size of our network is 33×33×4. Four
channels are four modal image patches. We used 64
kernels with each kernel size of 3×3 for the initial
convolution; then two densely connected blocks are
utilized respectively. The proposed architectures of the
densely connected block 1 and the densely connected
block 2 are presented in Tables 1 and 2, respectively.

In addition, the feature map extracted by the
densely connected block 1 has two functions: (1) it is

Fig. 2 Three cases from the 2018 global multi-modal
brain tumor segmentation challenge (BraTS2018) training
datasets (https://www.med.upenn.edu/sbia), showing rep‐
resentative improvements when using the fusion of two
modal images of T2-weighted fluid-attenuated inversion
recovery (FLAIR) and T2 approach. Ienhance: enhanced image
of edema.
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directly used as low-level features; (2) it is used as the

input of densely connected block 2 to extract high-level

features. Low-level features and high-level features

were concatenated. Passing through a series of convo‐
lutional and pooling layers, feature maps were then
fed into a four-class soft-max classifier (e.g., back‐
ground, edema region, necrosis/non-enhancing tumor,
and enhancing tumor).

2.1.3 Fusing segmentation results obtained in axial,
coronal, and sagittal views

Three densely connected 2D-CNN segmentation
models were trained with training datasets of axial,
coronal, and sagittal views. In the test, three segmen‐
tation models were used to segment the 3D MRI data
of patients. Three views of segmentation results are
obtained. Next, a fusion strategy is used to fuse the
three segmentation results. ra, rc, and rs denote the seg‐
mentation results of one voxel gotten in axial, coronal,
and sagittal views, respectively. r denotes the segmen‐
tation result after fusion, and 0, 1, 2, and 4 denote a
voxel labeled as healthy tissue, necrosis/non-enhancing
core, edema, and enhancing core, respectively. The
fused segmentation result is obtained by following

Fig. 4 Structure of densely connected 2D-CNN feature extractor. BN: batch normalization; CNN: convolutional neural
networks; Conv: convolutional layer.

Table 1 Architecture of the 2D densely connected block 1

Layer
1
2
3
4
5
6
7
8

Filter size
3×3
3×3
3×3
3×3
3×3
3×3
3×3
3×3

Stride
1×1
1×1
1×1
1×1
1×1
1×1
1×1
1×1

Input
64×33×33
88×33×33

112×33×33
136×33×33
160×33×33
184×33×33
208×33×33
232×33×33

Output
24×33×33
24×33×33
24×33×33
24×33×33
24×33×33
24×33×33
24×33×33
24×33×33

Table 2 Architecture of the 2D densely connected block 2

Layer
1
2
3
4
5
6

Filter size
3×3
3×3
3×3
3×3
3×3
3×3

Stride
1×1
1×1
1×1
1×1
1×1
1×1

Input
256×33×33
268×33×33
280×33×33
292×33×33
304×33×33
316×33×33

Output
12×33×33
12×33×33
12×33×33
12×33×33
12×33×33
12×33×33

Fig. 3 Network structure of our densely connected 2D-CNNs. CNNs: convolutional neural networks; Conv: convolutional
layer.
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strategies: (1) if ra=rc=rs, let r=ra; (2) if any two of ra,
rc, and rs are equal, let r equal to the equal value (e.g.,
if ra=rc, let r=ra=rc); (3) if two or more than two of ra,
rc, and rs are greater than 0, let r equal to 2, and other‐
wise, let r equal to 0.

2.1.4 Post-processing

To further improve the brain tumor segmentation
performance, fully connected CRFs are used as our
post-processing method. This method can be com‐
bined with the relationship among all the pixels in the
original image to process the classification results
obtained by depth learning, optimize the rough and
uncertainty marks in the classification image, correct
the fine misclassification area, and obtain a more
detailed segmentation boundary.

2.2 Experiments

For the implementation of our models, Keras
(https://keras.io) and Tensorflow (https://tensorflow.
google.cn) were used as backends. Keras is an open-
source deep learning library in high level; it runs on
the top of Tensorflow which benefits from a massive
parallel architecture such as graphics processing unit
(GPU) to optimize the deep learning models.

2.2.1 Materials

We use datasets provided by the 2018 global
multi-modal brain tumor segmentation challenge
(BraTS2018) to train and test our segmentation model
(Menze et al., 2015; Bakas et al., 2017). The training
dataset included 210 HGG cases and 75 LGG cases.
Brain images of each patient come with four MRI
sequences (i. e., FLAIR, T1, T1c, and T2) and the
ground truth labels are manually determined by experts.
In Fig. 5, the edema region, necrosis/non-enhancing
tumor, and enhancing tumor are indicated in green,

yellow, and blue, respectively. The validation dataset
consists of 66 cases with unknown grades. Because
brain images of each patient include four MRI se‐
quences (i.e., FLAIR, T1, T1c, and T2) without ground
truth labels, we need to upload our segmentation re‐
sults for online evaluation. To further test the gener‐
alization ability of our designed segmentation model,
we also used the BraTS2013 training datasets (in‐
cluding 20 HGG cases and 10 LGG cases) for test‐
ing (Kistler et al., 2013).

2.2.2 Implementation details

We use 80% of the BraTS2018 training dataset for
the training, and the remaining 20% is our test datasets.
In the training dataset, four sequences of each patient,
including FLAIR, T1, T1c, and T2, were sliced, and
then axial, coronal, and sagittal 2D patches were
extracted from each slice. Forty patches were extracted
from each slice. The number of extracted patches for
different classes are equal, effectively alleviating the
problem of data imbalance. In our experiments, the
training image patches and their labels of the axial,
coronal, and sagittal views are sent to the densely con‐
nected 2D-CNN model. The back propagation (BP)
algorithm and the stochastic batch gradient descent
(SGD) algorithm are used to supervise the loss func‐
tion and to optimize the network parameters. Finally,
three optimized densely connected 2D-CNN models
were obtained.

When training the axial densely connected 2D-
CNNs, axial patches are fed into densely connected
2D-CNNs. The input size is 33×33×4, and patches in
these four channels are extracted from pre-processed
FLAIR, T1c, Ienhance, and T1, respectively. The training
batch size is set to 64, and the initial learning rate is
set to 0.0001. The learning rate is divided by 10 after
each 30 epochs. The convolution weight is regularized

Fig. 5 Four MRI modalities of a patient with glioblastomas disease and its ground truth. The edema region, necrosis/
non-enhancing tumor, and enhancing tumor are indicated in green, yellow, and blue, respectively. MRI: magnetic
resonance imaging; FLAIR: T2-weighted fluid-attenuated inversion recovery; T1: T1-weighted; T1c: T1-weighted
contrast-enhanced; T2: T2-weighted (Note: for interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).
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by L1, and the regularization coefficient is 0.0001.
First, the cross entropy loss function is used as the
loss layer function for the experiment. The training
loss and the validation loss changes with the training
epoch are shown in Fig. 6a. Fig. 6a shows that with
the increase of the epoch, the problem of over-fitting
appeared in the network. In order to avoid network
over-fitting, a new loss function is proposed. The loss
function in 2D-CNNS model is given by

Loss = -(1 - ε )∑
i

qi ln pi - ε∑
i = 1

n 1
n

qi ln pi , (4)

where pi is the predicted distribution, qi is the true dis‐
tribution, n represents the number of categories, and ε
is a constant. Our loss function consists of two parts,
the first part is the most commonly used cross entropy
in classification studies and the second part is the
uniform distribution function. For example, if the
output is [z1, z2, z3, z4] and the target is [1, 0, 0, 0], the
cross entropy loss function is

Loss = -ln (ez1 /Z ), Z = ez1 + ez2 + ez3 + ez4. (5)

As long as z1 is already the maximum value of
[z1, z2, z3, z4], we can always then “intensify” by

increasing the training parameters, so that z1, z2, z3,
and z4 increase by a large enough ratio (equivalently,
increase the vector [z1, z2, z3, z4] modulus length) and
ez1 /Z is close enough to 1 (equivalently, loss is close
enough to 0). As long as the model length is blindly
increased, the loss can be reduced. This is the source
of overconfidence in softmax. In order to prevent
over-confidence, one solution is to use a little effort to
fit the uniform distribution rather than simply fitting
the one-hot distribution. From Eq. (4) in our study, it
can be concluded that Eq. (5) is equivalent to

Loss = -(1 - ε )ln (ez1 /Z ) - ε∑
j

4 1
4

ln (ezj /Z ),

Z = ez1 + ez2 + ez3 + ez4.

(6)

In this way, blindly increasing the ratio to make
ez1 /Z close to 1 is no longer the optimal solution, thus
alleviating softmax overconfidence and preventing
over-fitting.

In BraTS2018, we verify the superiority of the
improved loss function. The results of the training
process of axial densely connected 2D-CNNs are
shown in Fig. 6. Fig. 6a demonstrates the loss and the
accuracy of the network training process when the

Fig. 6 Results of the training process of axial densely connected 2D-CNNs. (a) Cross-entropy loss function; (b) New loss
function. CNNs: convolutional neural networks.
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cross-entropy loss function is used, and Fig. 6b shows
the loss and the accuracy when using the improved
cross entropy loss function. It can be seen from Fig. 6
that the improved loss function increases the segmen‐
tation accuracy of the network from 80% to 86%.
Throughout the entire training process, there is no
over-fitting or under-fitting. The loss is continuously
decreasing and the network is continuously opti‐
mized. Fig. 6 fully illustrates the necessity and effec‐
tiveness of adding a uniform distribution to the basis
of the cross-entropy loss function. When the training
is completed, the axial densely connected 2D-CNN
segmentation model is obtained. Meanwhile, the
coronal densely connected 2D-CNNs and the sagittal
densely connected 2D-CNNs are gained by using the
same training parameters.

2.2.3 Evaluation parameters

We evaluated the experimental results based on
three metrics: dice score, sensitivity, and specificity.
These metrics are calculated as follows:

Dice = 2TP/ (2TP + FP + FN ), (7)
Sensitivity = TP/ (TP + FN ), (8)
Specificity = TN/ (TN + FP), (9)

where TP, TN, FP, and FN are “true positive,” “true
negative,” “false positive,” and “false negative” pre‐
dictions, respectively. The dice score measures the
overlap area of the predicted lesion region and the
ground truth. Sensitivity is the measure of tumor pixels
that have been correctly classified. Specificity is the
measure of normal regions that have been correctly
classified. Specifically, the complete region includes
the enhancing core, edema, non-enhancing core, and
necrosis components; the core region includes the
enhancing core, non-enhancing core, and necrosis; the
enhancing region only includes the enhancing core.

3 Results

In the test phase, the segmentation task is trans‐
formed into a classification task, and each image patch
is classified to realize segmentation. First, in order to
make every pixel of the image predictable, we fill 0
around the original image to expand the image size
from 240×240 to 273×273. Next, the 33×33 size image
patches are captured by column in turn, and sent to

the segmentation model to obtain the classification
results of the central pixel pixels. Finally, the segmen‐
tation result of the slice was obtained by combining
the classification results of each pixel by columns.

3.1 Primary experiments tested on the BraTS2018
training datasets

We use 20% (57 cases) of the data in the
BraTS2018 for our preliminary test set. Table 3 shows
the evaluation results of axial, coronal, and sagittal
densely connected 2D-CNNs, fusion processing, and fu‐
sion with post-processing. Table 3 also lists the seg‐
mentation results of gliomas with and without pre-
processing. The segmentation results of axial, coronal,
and sagittal views obtained with pre-processing are
superior to those obtained without pre-processing. The
dice coefficient, sensitivity, and specificity of the
whole tumor area were increased by 5.3%, 5.1%, and
3.4%, respectively. The evaluation metrics of tumor
core area and tumor enhancement area are also slightly
improved, indicating the effectiveness of the pre-
processing step for the edema area of brain glioma.
The scores in Table 3 also indicate that the fusion of
segmentation results obtained from different views
markedly improves segmentation accuracy. Without
pre-processing, the fusion process will increase the dice
of the complete region, core region, and enhancing
region by 2.7%, 6.7%, and 1.3%, respectively; if pre-
processing is performed, the fusion process will in‐
crease the dice by 8.0%, 9.7%, and 5.2%, respectively.
The segmentation model of a single view is prone to
over-segmentation and under-segmentation due to the
lack of spatial location information of the glioma. The
segmentation results of multiple views are merged
through the majority voting strategy to improve the
accuracy of glioma segmentation, especially of the
entire tumor. For some obvious false positives that
appear in the segmentation results of a certain view,
such as small nodules, such false positives can be di‐
rectly reduced through majority voting strategy fusion
processing. Furthermore, post-processing slightly im‐
proved the segmentation results. Fig. 7 shows that the
segmentation results of fusing three views can remove
some obvious false positives, which appear in one of
the three results and do not appear in the other two
results. From the two sample segmentations, we can
clearly see that when the glioma slice has only one tumor
type, it can also be accurately segmented.
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3.2 Segmentation performance on BraTS2018
validation datasets

The evaluation scores of our method for the
BraTS2018 validation dataset are provided by BraTS2018
organizer (https://ipp.cbica.upenn.edu). The evaluation
results of our method are listed in Table 4, along with
the segmentation results of other methods participating
in the BraTS2018 challenge. McKinley et al. (2018)
introduced a new family of classifiers based on
DeepSCAN architecture, in which densely connected

blocks of dilated convolutions are embedded in a shal‐
low U-Net-style structure of down/up sampling and skip
connections. Zhou et al. (2018) designed multiple deep
architectures of varied structures for learning contex‐
tual and attentive information, and then integrated the
predictions of these models to obtain more robust
segmentation results. The proposed method has great
advantages in sensitivity, with sensitivity scores of
0.8441, 0.9511, and 0.9228 for the enhancing tumor,
whole tumor, and tumor core, respectively (Table 4).

Table 3 Average performance of our system on the 57 glioma cases examined

Method

Without pre-processing
Axial
Coronal
Sagittal
Mean
+Fusion
+Post

With pre-processing
Axial
Coronal
Sagittal
Mean
+Fusion
+Post

Dice
Comp.

0.7630
0.7521
0.7434
0.7528
0.7804
0.7806

0.8103
0.8055
0.8112
0.8090
0.8337
0.8393

Core

0.6931
0.7248
0.7570
0.7249
0.7923
0.7930

0.7047
0.7566
0.7950
0.7521
0.8227
0.8231

Enh.

0.7879
0.7649
0.7850
0.7792
0.7932
0.7931

0.8142
0.7888
0.8070
0.8033
0.8319
0.8327

Sensitivity
Comp.

0.8443
0.8376
0.8567
0.8462
0.9028
0.9031

0.9172
0.8740
0.9024
0.8978
0.9532
0.9532

Core

0.8391
0.8535
0.8620
0.8516
0.8798
0.8812

0.8778
0.8948
0.9004
0.8910
0.9261
0.9261

Enh.

0.8710
0.8539
0.8628
0.8625
0.8932
0.8932

0.9084
0.8813
0.8919
0.8938
0.9128
0.9129

Specificity
Comp.

0.9276
0.9147
0.9248
0.9223
0.9429
0.9432

0.9585
0.9679
0.9651
0.9638
0.9783
0.9784

Core

0.9569
0.9567
0.9429
0.9521
0.9632
0.9634

0.9937
0.9820
0.9651
0.9802
0.9972
0.9972

Enh.

0.9745
0.9689
0.9730
0.9721
0.9876
0.9845

0.9946
0.9948
0.9964
0.9952
0.9974
0.9974

Comp.: complete; Enh.: enhancing.

Fig. 7 Two segmentation examples demonstrate the effectiveness of integrating multiple densely connected 2D-CNNs.
The first and second rows show segmentation results of the 50th and 75th slices of the axial view of patient
Brats18_TCIA06_211_1, respectively. The third and fourth rows show the segmentation results of the 95th and 125th
slices of the axial view of patient Brats18_2013_18_1, respectively. From left to right: FLAIR, T1, T1c, T2, segmentation
results of axial densely connected 2D-CNNs, segmentation results of coronal 2D densely connected CNNs, sagittal
densely connected 2D-CNNs, fusion, fusion+post-process, and the ground truth labels. In the segmentation results,
the edema region, necrosis/non-enhancing tumor, and enhancing tumor are indicated in green, yellow, and blue,
respectively. FLAIR: T2-weighted fluid-attenuated inversion recovery; T1: T1-weighted; T1c: T1-weighted contrast-
enhanced; T2: T2-weighted; CNNs: convolutional neural networks (Note: for interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).
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Baid et al. (2020) have designed a novel 3D U-Net
architecture that segments various radiologically iden‐
tifiable subregions such as edema, enhancing tumor,
and necrosis; they proposed a weighted patch extrac‐
tion scheme from the tumor border regions to address
the problem of class imbalance between tumor and
non-tumorous patches. Fig. 8 shows the dice scores
of complete regions obtained with our methods on
the BraTS2018 validation dataset, which reached an
average of 0.81. Fig. 9 shows the mean, median, and
standard deviation of the segmentation results of the
BraTS2018 validation dataset. The median and mean
values of each evaluation metrics were highly consis‐
tent for enhancing tumor, whole tumor, and tumor
core, and the standard deviation was small, indicating
that the proposed segmentation method has high sta‐
bility (Fig. 9). Fig. 10 shows the segmentation results
of seven patients.

3.3 Segmentation performance of BraTS2013
datasets

The BraTS2013 training dataset including 20
cases of HGG and 10 cases of LGG was used for
testing. For evaluating the effectiveness of the

proposed model, a comparative analysis is presented
in Table 5. Hussain et al. (2017) developed a brain
tumor segmentation method based on the cascaded
deep CNNs. Li et al. (2016) proposed a probabilistic
model that combines sparse representation and
Markov random field to classify tumor pixels. Table 5
demonstrates the superior performance of our proposed
model in terms of dice score and sensitivity.

4 Discussion and conclusions

Brain tumor segmentation plays an important
role in diagnostic procedures in brain glioma, radiation
therapy, clinical surgical planning, and assessment of
benign and malignant conditions. Not only is clinical
diagnosis facilitated, but the survival chances of a
brain glioma patient also greatly increase when segmen‐
tation accuracy is high. In this study, 3D brain images
were segmented by integrating the segmentation results
of multiple densely connected 2D-CNNs, which were
trained to segment brain images from axial, coronal,
and sagittal views. Segmentation begins at a pre-
processing stage consisting of bias field correction,

Table 4 Average sensitivity scores of the BraTS2018 validation dataset (66 cases)

Study

This study

McKinley et al. (2018)

Zhou et al. (2018)

Baid et al. (2020)

Dice

Comp.

0.8165

0.9007

0.9094

0.8780

Core

0.8488

0.8473

0.8650

0.8267

Enh.

0.8249

0.7924

0.8135

0.7480

Sensitivity

Comp.

0.9511

0.9107

0.9142

Core

0.9228

0.8359

0.8682

Enh.

0.8441

0.8290

0.8134

Specificity

Comp.

0.9961

0.9937

0.9941

Core

0.9823

0.9912

0.9968

Enh.

0.9948

0.9980

0.9983

BraTS2018: 2018 global multi-modal brain tumor segmentation challenge; Comp.: complete; Enh.: enhancing.

Fig. 8 Bar plots for the dice score of complete tumor on the validation dataset. Dice_Comp means the dice score of
complete tumor.
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edema enhancement, and patch normalization. Next,
the same numbers of image patches for each class
were used as training image patches to avoid data
imbalance problem. Convolutional layers with small
kernels 3×3 in size to allow deeper architectures
build the densely connected CNNs. Three segmenta‐
tion models were trained using 2D image patches to
obtain axial, coronal, and sagittal views. The three
models are integrated to segment brain glioma using
fusion strategy.

Based on the characteristics of brain glioma itself,
a new pre-processing method was proposed to acquire
clear brain glioma edema, FLAIR, and T2 modal

images. Fig. 2 indicates that the proposed pre-processing
method clarifies the edema boundary. The segmentation
results for BraTS2013 shown in Table 5 also demon‐
strate that our method segments the complete tumor
very well. Compared with other methods, our approach
is more accurate for segmentation of the edema tumor.

To overcome the limitations of existing segmen‐
tation models based on CNNs, 2D densely connected
blocks are added to our network structure. The effect
of densely connected blocks is to reuse the features of
all the previous layers, each of which accepts the fea‐
tures of all the layers in front of it as input. Because
the image features are extracted in stages, both

Fig. 10 Examples of segmentation results for the BraTS2018 validation dataset. The first row shows the 90th slice of
FLAIR. The second row shows the segmentation results: green, edema; yellow, non-enhancing/necrosis; blue, enhancing
tumor. From left to right: Brats18_CBICA_AAM_1, Brats18_CBICA_BHN_1, Brats18_TCIA03_604_1, Brats18_MDA_
922_1, Brats18_WashU_S041_1, Brats18_CBICA_AP-M_1, and Brats18_TCIA07_600_1. BraTS2018: 2018 global multi-
modal brain tumor segmentation challenge; FLAIR: T2-weighted fluid-attenuated inversion recovery (Note: for
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 9 Mean, median, and standard deviation for the segmentation results of the BraTS2018 validation dataset. BraTS2018:
2018 global multi-modal brain tumor segmentation challenge; StdDev: standard deviation; ET: enhancing tumor; WT: whole
tumor; TC: tumor core.

472



J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2021 22(6):462-475 |

low-level features and high-level features can be used.
Therefore, the network does not ignore information as
the number of network layers increases during the
training process. Moreover, we defined a new loss
function which facilitates model training. The training
loss values shown in Fig. 6 indicate that our model has
good learning ability and does not result in over-fitting.

We evaluated the proposed method in BraTS2013
and BraTS2018 glioma datasets. The experimental
results shown in Table 3 indicate that the fusion result
improves the segmentation accuracy by removing
some obvious false positive results. The HGG tissue
was obvious, but the boundary between edema tumor
and core tumor in LGG was fuzzy. Fig. 8 shows that
the segmentation results of each patient are slightly
different, with a standard deviation is 0.079. However,
the average dice score of 0.82 is equal to the dice
scores of 57 patients in the training set, indicating that
the algorithm developed in this paper has high stability.
Tables 3 and 5 also indicate that the segmentation re‐
sults of BraTS2018 were better than those of BraTS2013.
These notable differences suggest a reason why the
generalization ability of our model needs to be further
improved. Accordingly, the next important goal of our
research is to explore an automatic segmentation model
that can adapt to the large differences in data by ad‐
justing the input size of the network and changing the
network structure to obtain a more stable segmentation
model. Currently, adversarial networks are outperforming
state of the art methods for semantic segmentation in
several computer vision tasks. This approach might
be further investigated as a means of improving seg‐
mentation in medical images.

In this paper, we have presented a fully automatic
brain tumor segmentation method based on three
densely connected 2D-CNNs. We considered different
training schemes with variable loss functions, data
pre-processing methods, and fusion strategy. Our
enhanced brain glioma segmentation method, analyzed
three testing datasets, and achieved high accuracies of

0.86, 0.82, and 0.81 dice scores, respectively, over the
entire tumor region. However, despite application of
multiple densely connected 2D-CNNs, the 3D infor‐
mation of MRI data were still not obtained. In addition,
the post-processing method is relatively simple. Our
ongoing work aims to change the network structure
and post-processing methods to make full use of the 3D
information of MRI in brain glioma to further improve
tumor segmentation performance.
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