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Abstract: Polyetheretherketone (PEEK) has been widely applied in orthopedics because of its excellent mechanical properties,
radiolucency, and biocompatibility. However, the bioinertness and poor osteointegration of PEEK have greatly limited its
further application. Growing evidence proves that physical factors of implants, including their architecture, surface morphology,
stiffness, and mechanical stimulation, matter as much as the composition of their surface chemistry. This review focuses on the
multiple strategies for the physical modification of PEEK implants through adjusting their architecture, surface morphology, and
stiffness. Many research findings show that transforming the architecture and incorporating reinforcing fillers into PEEK can
affect both its mechanical strength and cellular responses. Modified PEEK surfaces at the macro scale and micro/nano scale
have positive effects on cell–substrate interactions. More investigations are necessary to reach consensus on the optimal design
of PEEK implants and to explore the efficiency of various functional implant surfaces. Soft-tissue integration has been ignored,
though evidence shows that physical modifications also improve the adhesion of soft tissue. In the future, ideal PEEK implants
should have a desirable topological structure with better surface hydrophilicity and optimum surface chemistry.
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1 Introduction

Millions of people suffer bone defects in response
to trauma, tumors, or congenital malformations (Swetha
et al., 2010). Such events have promoted the rapid de‐
velopment of bone substitute materials in attempts to
restore damaged bone functions. Ideal bone grafting
substitutes possess mechanical properties for load-
bearing applications as well as osteoconductivity, os‐
teoinductivity, and biocompatibility (Petite et al., 2000).
Titanium (Ti) and its alloy currently are the first choice
for orthopedics and dental implants because of their
excellent biological and mechanical properties. How‐
ever, they have some limitations, including an elastic
modulus mismatch, stress shielding, toxic metal ion
release, and medical imaging artifacts that interfere

with observation of the post-operation healing phase
(Kurtz and Devine, 2007; Mishra and Chowdhary,
2019).

Polyetheretherketone (PEEK) is a semi-crystalline,
synthetic polymer that was approved by the US Food
and Drug Administration in the late 1980s (Kurtz
and Devine, 2007). Because of its excellent biocom‐
patibility, fatigue resistance, mechanical properties,
and radiolucency, PEEK has been widely applied in
orthopedics, trauma treatments, spinal implants, and
joint replacement (Kurtz and Devine, 2007; Mishra
and Chowdhary, 2019). The elastic modulus of PEEK
(3–4 GPa) is closer to that of cortical bone (18 GPa)
than to that of titanium alloy (about 110 GPa). This
comparatively close compatibility aids in the preven‐
tion of negative stress-shielding effects (di Maggio
et al., 2017; Mishra and Chowdhary, 2019).

However, the bioinert nature of PEEK, together
with poor bone conduction, has greatly limited its use
in clinical trials and applications (Deng et al., 2015;
Spece et al., 2020). Recently, efforts have focused on
increasing the bioactivity of PEEK through two different
strategies, namely, surface modification and bioactive
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particle incorporation into PEEK substrates (Almasi
et al., 2016; Buck et al., 2020). Accumulating evidence
proves that the physical factors of implants, including
their architecture, surface morphology, stiffness, and
mechanical stimulation, are as important to implant
design as their chemical composition (Hao et al., 2017;
Tian et al., 2019; Rangel et al., 2020). Although
previous studies have proposed techniques to modify
the physical properties of PEEK (Khoury et al., 2017;
Han et al., 2019b; Wang L et al., 2019), there is still
no consensus on the optimum design.

This paper provides a review of multiple strat‐
egies for the physical modification of PEEK implants
through adjusting their architecture, surface morphology,
and stiffness. The effects of these changes on the bio‐
activity and osteogenesis of PEEK are outlined and dis‐
cussed. Finally, we provide an outline of the prop‐
erties of materials to be further explored and discuss
directions for future PEEK development.

2 Architecture of implants

The macrodesign of an implant is important for
its stability, both during and after osteointegration. Im‐
plants need to be designed to minimize extreme nega‐
tive stresses to the bone implant interface while also
delivering optimal favorable stresses to the greatest
extent (Abuhussein et al., 2010). An example of this
is dental implants, in which the implant shape was
transformed from hexagonal to conical, and now in‐
cludes a thread pattern in the surface to achieve long
term stability (le Guéhennec et al., 2007; Abuhussein
et al., 2010).

At the macroscale, bone consists of external
cortical bone and internal cancellous bone (trabecular
bone) and has a highly interconnected and porous
architecture (with pore size ranging from 20 to 400 μm)
(Vallet-Regí and Ruiz-Hernández, 2011). Bone substi‐
tutes are designed to be structurally similar to this,
including having a porous structure. Pore size is kept
between 100 and 600 µm, as this range is necessary
for cell penetration and vascularization, allowing for
better material integration with surrounding tissue
(Jarman-Smith et al., 2011; Vaezi and Yang, 2015).
There are several techniques for manufacturing PEEK
of a specific geometry or porous structure, including
three-dimensional (3D) printing and porogen leaching.

However, little consensus has been reached on the opti‐
mum pore size and pattern of scaffolds for PEEK
manufacture.

2.1 3D printing

Additive manufacturing (AM), also known as
3D printing, is able to produce patient-specific im‐
plants (Attaran, 2017). The AM technologies most
commonly used for PEEK manufacture are selective
laser sintering (SLS) and fused deposition modelling
(FDM) (Hoang et al., 2016). These technologies have
the ability to produce a customized PEEK shape with
variable surface roughness together with an intrinsic
porous structure. Implants that are 3D-printed and
customized have been used clinically for craniofacial
reconstruction (Sharma et al., 2020).

Characteristics such as pore size and pore morph‑
ology have integral effects on the bioactivity and me‐
chanics of implants. To determine the best pore size
of PEEK scaffolds, Feng et al. (2020) designed PEEK
implants with a settled porosity of 60%, but with pore
sizes of 300, 450, and 600 μm. PEEK implants de‐
signed with macropores (450 and 600 μm) performed
better than solid PEEK in terms of their cell-seeding
efficiency, proliferation, microvascular perfusion
ability, and new bone formation ability. Spece et al.
(2020) reported that different constructs (e.g., recti‐
linear, gyroid, or diamond) with a similar pore size
(600 μm) showed analogous cell activity. However, in
terms of mechanical properties, the diamond construct
had significantly greater yield strength than others.
Roskies et al. (2016) managed to fabricate porous
PEEK scaffolds by modifying the internal structure to
form a trabecular network by making use of the SLS
technique. The trabecular-like scaffold was able to
sustain the viability of both adipose-derived mesen‐
chymal stem cells (adMSCs) and bone marrow stro‐
mal cells (BMSCs), and also supported the osteo-
differentiation of adMSCs. Overall, 3D printing of
PEEK implants revealed limited biocompatibility when
compared to 3D-printed porous Ti alloy (Tsai et al.,
2021). PEEK scaffolds were found to have a higher
range of motion and less bone volume within the graft
window (McGilvray et al., 2018). Combining 3D
printing with other modification technologies may
solve this problem. For example, surface coating with
calcium hydroxyapatite (HA) contributed to both en‐
hanced mechanical strength and biological activity
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in vivo (Oladapo et al., 2020). Greater cellular infil‐
tration and biological integration of PEEK composites
within surrounding tissue were found in porous PEEK/
HA composites (Vaezi et al., 2016).

The average surface roughness of untreated
3D-printed PEEK was 22.28 μm, decreasing to 0.17–
0.52 μm after polishing or sandblasting (Han et al.,
2019b). Studies have shown that 3D-printed PEEK
without polishing or sandblasting showed stronger
osteointegration because of its roughness and unique
printing structure, specifically the distinct peaks and
valleys on its surface (Han et al., 2019a, 2019b). The
highly roughened surfaces of untreated PEEK provide
an enlarged available surface area. The manufacturing
process results in cell accumulation in surface grooves,
which might promote the establishment of cell–cell
contacts and enhance cell viability (Berent and Johnson,
2020; Zhang et al., 2020).

2.2 Porogen leaching

In scaffold design, pore interconnectivity (perme‐
ability) is essential for cell behavior, vascular forma‐
tion, and nutrient delivery, in addition to an optimum
pore size (Yu D et al., 2020). Porous PEEK implants
with pore diameters of 100–600 μm and high inter‐
connected porosity (>65%) can be fabricated by way
of porogen leaching. PEEK powder blended with
space-holding filler materials, such as sodium chloride
(NaCl), is considered molten or solvent, and can be
cast to create a composite. This composite is then
leached in a solution to remove the porogen (Hou
et al., 2003; Siddiq and Kennedy, 2015; Yuan et al.,
2018). In addition, the porous structure increases
implant stability in vivo by encouraging new bone
ingrowth, whereas dense samples have only small
amounts of bone creeping growth on the surface edge
(Hieda et al., 2017; Yuan et al., 2018). The study by
Conrad and Roeder (2020) showed that an ellipsoidal
porogen facilitated improved pore interconnectivity
and permeability when compared to a cubic porogen.
Additive material incorporated into porous structures
of PEEK implants helps further improve the osteointe‐
gration of porous PEEK. Bioactive materials incorp‑
orated into PEEK substrates include nano-bioglass
(Zhang et al., 2018), mesoporous diopside (Cai et al.,
2017), biphasic bioceramics (Yu et al., 2018), nano‐
porous lithium-doped magnesium silicates (Wang L
et al., 2019), and silicon nitrides (Boschetto et al., 2021).

As mentioned above, the advantage of PEEK is
that its elastic modulus is similar to that of bone.
Introduction of a macropore structure can impair the
mechanical properties of PEEK, which limits its clin‐
ical application. Increased porosity (75%–90%) leads
to a non-linear decrease in elastic modulus and strength
yields for PEEK implants (Converse et al., 2009). The
increased compressive yields on stress and stiffness
for samples with 84% porosity were about 1 and
30 MPa, respectively (Siddiq and Kennedy, 2015).
Researchers have previously tried to incorporate addi‐
tive fillers, such as carbon nanotubes, carbon fibers,
and HA whiskers, into wholly porous PEEK to en‐
hance its mechanical properties (Converse et al., 2009;
Uddin et al., 2019); however, efficacy has thus far
been limited. Therefore, for clinical applications of
porous PEEK, implantation sites should be carefully
selected, paying attention to the matching of the ma‐
terials and the mechanical properties of surrounding
tissues. Better ways to manufacture porous PEEK so
that its strength matches that of the surrounding
bone structures still need to be developed. Opti‐
mizing the structural design of the material may also
be an option (Cheng et al., 2020).

3 Modification of surface morphology

3.1 Macroscale surface modification

Overall, macroporous structures degrade the mech‑
anical properties of PEEK. Some studies have pro‐
posed that limited macroscopic structural modifica‐
tion to the surface of the substrate can solve this
problem (Zhou et al., 2010; Torstrick et al., 2016).
Large-scale surface features can support bone in‐
growth as well as increased mechanical interlocking,
while retaining mechanical properties.

3.1.1 Melt extrusion technique

Torstrick et al. (2016) and Evans et al. (2015)
developed a novel method to fabricate PEEK with
porosity limited to that of the implant surface. NaCl
crystals were pressed into PEEK under heat and high-
pressure conditions. After cooling, the embedded
NaCl crystals were resolved in water, and a porous
surface layer was left without changing the chemical
composition. Pore sizes can be reliably controlled by
adjusting the diameter of the NaCl crystals (ranging
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from 200 to 500 µm), and interconnectivity can reach
99.9%. Mechanical tests revealed that surface porous
PEEK preserved over 70% of the strength and elastic
modulus of solid PEEK, with the pore layer shear
strength being significantly improved (Evans et al.,
2015). Surface porous PEEK promotes the prolifera‐
tion of osteoblasts at the early stage (48 h) and acceler‐
ates the differentiation and mineralization of osteo‐
blasts. Different pore sizes showed no differences in
the support of cell growth (Torstrick et al., 2016).
However, cell numbers at later time points were lower
than those of smooth PEEK surfaces. This result was
in response to hypoxic conditions for cells residing
within the deeper pores (as shown by increased vas‐
cular endothelial growth factor (VEGF) production)
(Torstrick et al., 2016). Adjusting the thickness of the
porous layer may solve this problem. Hypoxia may be
reduced and nutrient diffusion improved by vasculariza‐
tion into the pore network when surface porous PEEK
enters the body. However, more experiments are needed
to evaluate the in vivo angiogenesis and osteointeg‐
tation of surface porous PEEK. Surface porosity im‐
proves implant stability by encouraging bone in‐
growth within the pore layer to produce greater im‐
plant fixation and less fibrous encapsulation (Evans
et al., 2015). At eight weeks after implantation into the
proximal tibiae of rats, the force required to remove
the implant was increased by 3.4-fold compared to that
of implants with smooth interfaces (Torstrick et al.,
2018). However, the study also showed lower bone-
implant contact (BIC) at the bone-implant interface
on surface porous PEEK than on plasma-sprayed Ti-
coated PEEK, indicating insufficient bioactivity of sur‐
face porous PEEK (Torstrick et al., 2018). Future studies
should consider incorporating other modifications to
improve the osteogenesis of surface porous PEEK.

Based on their successful mechanical and bio‐
logical performance in previous studies, spinal fusion
PEEK implants incorporating a surface porous struc‐
ture have been included in clinical applications (Tor‐
strick et al., 2017). Positive short-term results have been
achieved in some patients, but long-term follow-up is
needed. Furthermore, interactions between PEEK scaf‐
folds with the host bone still need to be investigated.

3.1.2 Laser ablation

Laser ablation has many advantages for producing
polymers with microstructures. It is also a non-contact

procedure with high controllability and reproducibility.
Characterized by the application of heat to a small re‐
gion while controlling depth (Duncan et al., 2002),
the advantages of this technique are its fast operation,
low cost, preservation of bulk properties, and possi‐
bility of processing various materials (Riveiro et al.,
2012). Laser ablation of parallel microgooves can be
found in a variety of polymers, including PEEK.

Surface pores with diameters ranging from 200
to 600 μm have been manufactured by laser treat‐
ment. An in vitro test of MC3T3-E1 showed more cell
adhesion and proliferation on 400-μm macropores than
on pores of other sizes (Huang et al., 2021). Cordero
et al. (2013) produced parallel microgrooves, about
40 µm in width, separated by distances of 25, 50, 75,
and 100 µm, with unchanged chemical compositions.
However, the surface wettability was slightly improved;
namely, the contact angles of irradiated areas were
reduced by 5%. MC3T3-E1 osteoblasts grew by
following the direction of the parallel grooves and were
most pronounced using the 25-μm pattern. Gheisarifar
et al. (2021) also reported that elongated human gin‐
gival fibroblasts (HGFs) with more pseudopods aligned
on laser-grooved PEEK surfaces, but the precise chan‐
nel size was not mentioned (Gheisarifar et al., 2021).
Enhanced cell adhesion in micro-grooved surfaces
may result from the increased contact areas, as well as
the better integration of cell pseudopods and collagen
microfibrils with the surface (Weiner et al., 2008).
Riveiro et al. (2012) found that different laser irradia‐
tion wavelengths not only affect surface morphology,
but also alter surface hydrophilicity. Results showed
that ultraviolet (λ=355 nm) laser radiation enhances
surface wettability most effectively, but has only a slight
thermal effect on the surface structure.

Combinations of different surface modification
techniques and laser texturing can further enhance
cell behavior. Hierarchically patterned PEEK surfaces
consist of both nanostructures and microstructures,
with improved surface wettability successfully pro‐
duced by combining plasma etching and pulsed laser
ablation (Akkan et al., 2013; Zheng et al., 2015). Plasma
treatment introduces surface carboxyl groups onto
PEEK surfaces, whereas laser treatment constructs
microgrooves 58 μm in width with 250 μm distance
between them, over the PEEK surface. The highest
initial cell adhesion for 4 h and later cell proliferation
was found on dual-modified PEEK (Zheng et al.,
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2015). A similar result was observed in HGFs (Ghei‐
sarifar et al., 2021).

3.2 Microscale and nanoscale surface modifications

Micron-sized topography and proper surface
roughness have been shown to affect cell behavior
and bone formation (Zhuang et al., 2021). Proper sur‐
face roughness facilitates absorption of extracellular
matrix (ECM) proteins, which is necessary for initial
cell adhesion. The extracellular domains of integrins
then bind specifically to ECM peptide ligands, i.e.,
the tripeptide Arg-Gly-Asp (RGD). Following this,
various cellular signal pathways are activated and nu‐
clear deformation is induced, finally affecting gene
expression, cell morphology, migration, proliferation,
and differentiation (Kechagia et al., 2019). It is recog‐
nized that not only the scale of morphology, but also
the degree of order (random, half-ordered, and or‐
dered), type of morphology (e.g., ridges, steps,
grooves, pillars, or pits), and symmetry regulate cell
function (Biggs et al., 2010; Gui et al., 2018). There
are various techniques for manufacturing PEEK with
microscale surface morphology, for example, sand‐
blasting, sulfonation, and plasma treatment. Different
morphologies can be obtained by applying the different
techniques. In this section, we discuss the effects of
each method on the surface morphology and biological
activity of the material.

3.2.1 Sandblasting

It is well known that roughened Ti, or Ti alloy
prepared using a sandblast technique, gives enhanced
osteoconductivity and implant osteointegration ability
compared with machined surfaces (Grassi et al., 2006;
Elias et al., 2008). Previous research focused on the
effect of sandblasting PEEK surfaces, during which
abrasive particles, such as aluminum oxide (Al2O3),
titanium oxide (TiO2), and silicon oxide (SiO2), are
usually used to roughen PEEK surfaces. The surface
roughness depends mainly on the size of the abrasive
particles. Deng et al. (2015) evaluated the impact of sur‑
face roughness on the cellular responses of osteoblast-
like MG-63 cells and in vivo osteointegration. Treat‐
ment with different Al2O3 particle grit sizes increased
PEEK surface roughness from (0.12±0.01) to (0.93±
0.09) μm (low roughness), (1.96±0.21) μm (moderate
roughness), and (2.95±0.35) μm (high roughness). The
results revealed that PEEK with moderate surface

roughness had the best cell attachment, proliferation,
and osteogenic activity among all groups. In addition,
the greatest percentage of BIC was found on the mod‐
erately roughened implant (Deng et al., 2015). Alumina
particles induced a PEEK surface with medium
roughness at about 2.3 μm, whereas the roughness of
polished PEEK was only 0.06 μm (Sunarso et al.,
2018). Micro-roughening significantly improves the
proliferation and differentiation of BMSCs, as shown
by cell counting kit-8 (CCK-8) and alkaline phospha‐
tase (ALP) activity. Additionally, the pull-out force of
roughened surface PEEK was about four times higher
than that of polished surfaces, indicating that sand‐
blasting promotes implant-bone integration (Sunarso
et al., 2018). Some studies showed mild improvements
in surface cell response on PEEK surfaces treated
with sandblasting (Fukuda et al., 2018; Gültan et al.,
2020).

The surface bio-performance of PEEK com‐
posites incorporating bioactive particles can greatly
improve following sandblasting (Deng et al., 2015;
Tang et al., 2017). For example, cell responses to
nano-calcium silicate (n-CS)/PEEK composites, in‐
cluding cell attachment, cell spreading, proliferation,
and osteogenic differentiation, were significantly pro‐
moted after sandblasting compared to untreated com‐
posites (Tang et al., 2017). Scanning electron micro‐
scope (SEM) confirmed that more bioactive materials
were exposed on composite surfaces when treated
with sandblasting (Deng et al., 2015). The same ef‐
fect was observed in PEEK composite treated with
abrasive paper. However, cell behaviors were not sig‐
nificantly improved on abraded surfaces (Cai et al.,
2018; Mei et al., 2019). Therefore, we believe that
sandblasting can improve the biocompatibility of
PEEK by introducing surface roughness.

3.2.2 Sulfonation

PEEK is chemically inert because of its structure
of aromatic molecular backbones with combinations
of ketone and ether functional groups between aryl
rings (Panayotov et al., 2016). However, by conducting
sulfonation in concentrated sulfuric acid, 3D, porous,
nanostructured networks, and SO3H groups can be
successfully introduced into PEEK surfaces (Zhao et al.,
2013). Pore diameter ranges from 0.5 to 1.0 μm, and
the thickness of the modified layer is about 100 μm.
On sulfonated PEEK, osteoblast functions are all
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ameliorated, including initial cell adhesion, cell viability,
proliferation, differentiation, bone regeneration, and
apatite formation (Zhao et al., 2013). However, the
residual sulfur and low-pH environment have been
reported to have adverse impacts on osteoblast cell be‐
havior and new bone formation (Meng et al., 2004;
Zhao et al., 2013). Appropriate post-treatment methods,
such as hydrothermal treatment (Cheng et al., 2019),
acetone washing (He et al., 2019), and NaOH rinsing
(Wang WG et al., 2019), help remove excess sulfur.
Recently, Ma et al. (2020) systematically compared
different acid treatment time and post-treatment
methods by examining cellular behavior and surface
morphology. Immersion time was 0.5, 1, 3, 5, and
7 min, and the post-treatment methods included ace‐
tone rinsing, hydrothermal treatment, and NaOH im‐
mersion. Results showed that the optimal sulfonation
time was 5 min, and different post-treatment methods
had an equivalent effect in eliminating residual sulfuric
acid and cell reaction.

Surface wettability affects the in vivo rate of os‐
seointegration by regulating the absorption of macro‐
molecules and adjusting cell interaction between sub‐
strates and the surrounding tissue (Han et al., 2019b).
Studies have shown that sulfonation leads to only
limited bioactivity improvement. This may be due to
decreased hydrophilicity on sulfonate PEEK, which
may reduce the beneficial effects of chemical structures
and surface morphologies on cell reactions. However,
previous studies have indicated an increase in hydro‐
philicity. Wang WG et al. (2019) found that NaOH
immersion following short-time sulfonation (about 20 s)
helped reduce the PEEK water contact angle from 78°
to 37°. Another study found that a significant reduction
in contact angle of sulfonated PEEK was produced
after 24 h of NaOH treatment, without any change
in surface morphology or chemical structure (Cheng
et al., 2019). A further study by Miyazaki et al. (2017)
reported that hydrophilicity increased for all substrates
after sulfonation, followed by 24-h immersion in a
1 mol/L CaCl2 solution. For PEEK treated with 80%
(volume fraction) sulfuric acid for 3 h, the contact angle
(92.7°±2.3°) showed a greater reduction (to 53.6°±5.3°)
than hydrophilicity after sulfonation. Modified samples
promoted better MSC growth and proliferation (Yuan
et al., 2016). The combination of various surface
treatment methods with sulfonation, such as plasma
treatment, can also ameliorate the cell response by

enhancing surface hydrophilicity (Yabutsuka et al.,
2017; Wang et al., 2018).

3D porous surfaces manufactured with sulfona‐
tion are ideal for drug loading. Researchers have suc‐
cessfully immobilized functional biomolecules and
drugs to the 3D porous PEEK surface to improve
bone conductivity. For example, cell proliferation and
the expression of bone formation-related genes were
promoted after phosphorylated gelatin loaded with
bone morphogenetic protein 2 was coated on sulfo‐
nated PEEK. Combined with a bioactive coating, the
behavior of MC3T3-E1 was further improved com‐
pared with sulfonated PEEK (Wu et al., 2018). How‐
ever, these methods have limitations. Firstly, it is dif‐
ficult to control the release rate and local concentra‐
tion of active molecules in an in vivo environment
(Guillot et al., 2016). In addition, non-covalently
bound proteins do not adhere well to the substrate
and are likely to detach from the surface.

3.2.3 Plasma treatment

Plasma, also known as the fourth state of matter,
is defined as an ionized gas with an equal density of
positive and negative charges (Fu et al., 2021). Plasma
striking the material surface breaks the covalent bond
and disrupts the polymerization chain, leading to
changes in the surface chemical composition, topog‐
raphy, and hydrophilicity (Wang et al., 2014; Zhao
et al., 2016). This effect has been used to amplify the
bonding strength between dental prostheses of PEEK
and veneering composites and enhance the biocompati‐
bility of PEEK implants (Waser-Althaus et al., 2014).

Compared to untreated surfaces, plasma-treated
PEEK exhibits higher hydrophilicity (Fu et al., 2021).
The effect of plasma treatment depends on the pro‐
cess gases. Carboxyl and hydroxyl groups are intro‐
duced after oxygen plasma treatment, whereas more
carbon single bond hydroxyl groups are introduced
after hydrogen plasma treatment (Fu et al., 2021). Sur‐
faces with more nitrogen-containing functional groups
are manufactured after ammonia or N2 plasma treat‐
ment (Briem et al., 2005). Water plasma treatment forms
more OH groups on surfaces (Wang et al., 2014). Wang
et al. (2014) demonstrated that the osteogenesis of
MC3T3-E1 and rat BMSCs (rBMSCs) were enhanced
by the ravined nanostructure (arithmetic average
roughness (Ra) =15.3 nm). The expression of osteo‐
genic differentiation-related genes was upregulated
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after 2 d, indicating that protrusions and a ripple-like
surface with an average roughness of less than 15.7 nm
also effectively promote osteointegration (Zhao et al.,
2016). Similarly, Waser-Althaus et al. (2014) found
that pillar-like structures in the range of 10 nm show
better osteogenic differentiation than does PEEK with
greater roughness. However, several studies have shown
that higher roughness is more suitable for supporting
cell behavior. Gan et al. (2016) produced PEEK with
nanostructured surfaces of different roughness (Ra=436,
443, or 608 nm) by N2-plasma immersion ion implant‑
ation (PIII). With the increase of surface roughness,
cell proliferation, viability, and ALP activity were im‐
proved remarkably. MC3T3 osteoblasts showed the
best osteogenic activity on PEEK-N2/argon (Ar) cold
plasma treatments with moderate roughness ((150.20±
5.23) nm), as indicated by ALP staining. In contrast,
surface roughness of the material showed no obvious
change after low-pressure plasma treatments, whereas
cell adhesion on the surface of the material was still
significantly improved (Fu et al., 2021). The inconsis‐
tency of the optimum roughness scale may be related
to the variable chemical composition and surface
morphology following different plasma treatments
(Table 1).

3.2.4 Accelerated neutral atom beam

Accelerated neutral atom beam (ANAB) is a sur‐
face treatment technique, in which the PEEK surface is
bombarded with atoms from of a neutral reactive spe‐
cies generated by a gas cluster ion beam (Kirkpatrick
et al., 2013; Khoury et al., 2019). The technique has
an extremely shallow penetration and causes dimples
no deeper than 2–3 nm without changing the surface
chemical composition (Awaja et al., 2012).

The roughness of ANAB-treated PEEK (Ra=
(3.45±0.52) nm) is slightly lower that that of control
samples (Ra= (4.63±0.78) nm) (Khoury et al., 2019).
However, a nano-texture was manifested in ANAB-
treated PEEK surfaces (ranging from 10 to 50 nm).
This texture may substantially enhance surface hydro‐
philicity and thus promote the attachment, proliferation,
and differentiation of osteoblasts and BMSCs (Khoury
et al., 2013, 2017). The growth of human MSCs, skin
fibroblasts, and human osteoblasts showed that both
metabolic activity and proliferation were significantly
increased on ANAB PEEK compared to an untreated
control. Additionally, the increased levels of ALP of

MSCs seeded on ANAB PEEK in the presence of
osteogenic media indicated that ANAB treatment may
improve osteointegration (Ajami et al., 2017). ANAB
treatment also affects the behavior of dental pulp stem
cells with pronounced genetic distinction, indicating
earlier progression toward osteogenic differentiation
(Khoury et al., 2019). In in vivo studies with ovine
bone, an ANAB-treated sample showed evidence of
bone ingrowth at both early and later stages. This
resulted in a 3.09-fold improvement in BIC and a
2.07-fold increase in push-out strength, compared with
untreated PEEK controls (Khoury et al., 2017). Taken
together, ANAB processing has great potential to ame‐
liorate the bioactivity and bone generation of PEEK
surfaces by producing nano-textured surface profiles.

4 Modification of PEEK stiffness

Substrate stiffness plays a significant role in the
regulation of cell behavior including differentiation,
proliferation, migration, and apoptosis (Chaudhuri
et al., 2020). For example, MSCs tend to differentiate
into osteoblasts when the matrix rigidity matches that
of the surrounding bone tissue (11–40 kPa), whereas
they tend to differentiate into myoblasts on matrices
that mimic striated muscle elasticity (Engler et al.,
2006). Generally, a reconstruction material with elas‐
ticity matching that of the surrounding tissue is benefi‐
cial for integration (Ochsner, 2011). The elastic modu‐
lus of PEEK is far below that of Ti, which effectively
avoids stress shielding. However, the elastic modulus
of pure PEEK material (3–4 GPa) is lower than that
of cortical bone (6–30 GPa) (Lee et al., 2012). Defi‐
ciencies in mechanical strength limit the application
of PEEK as a bone substitute, especially when applied
in a bearing zone. This will encourage the development
of new techniques to modify mechanical strength
(Qin et al., 2019; Gao et al., 2020).

Carbon materials, such as carbon nanotubes and
carbon fiber, are often used as reinforcing fillers to
prepare polymer composites. Compared with that of
pure PEEK, the modulus of PEEK composites incorp‑
orating carbon fiber or carbon nanotubes is increased
from 7.7 to 11.5 GPa, matching the modulus of human
cortical bone (Hassan et al., 2018; Qin et al., 2019).
However, results have been inconsistent concerning the
cytotoxicity of carbon fiber-reinforced (CFR)-PEEK.
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Han et al. (2019b) found no cytotoxicity on CFR-
PEEK. Two other studies reported that the addition of
carbon fiber showed mild toxicity, and that the cyto‐
toxicity increased with increasing carbon fiber con‐
tent (Qin et al., 2019), but was independent of fiber
length (Li et al., 2019). Differences in CFR-PEEK
manufacturing techniques may have contributed to
the inconsistent results. Therefore, more investigation is
required to identify the biocompatibility of CFR-
PEEK. In addition, CFR-PEEK tends to exhibit higher
bioactivity than does pure PEEK when applied to
other surface modification techniques as additional
carbon phases (Miyazaki et al., 2017; Qin et al., 2020).
HA is also commonly used to fill PEEK composites.
The elastic modulus of the composites increases, but
the tensile strength decreases, as the HA content in‐
creases, which means that the composites have high
stiffness, but are brittle (Converse et al., 2007; Ma
and Guo, 2019). Owing to the excellent biocompati‐
bility of HA and its chemical similarity to the inor‐
ganic constituents of natural bone, the biological func‐
tions (both in vitro and in vivo) of HA-PEEK are con‐
siderably improved (Li et al., 2012; Yu XZ et al.,
2020). Other fillers, such as nano-TiO2 (Wu et al.,
2012), tantalum nanoparticles (Zhu et al., 2019), and
silica fibers (Monich et al., 2017), can also improve
mechanical properties while maintaining or improving
the biological activity of the composite. Making altera‐
tions to the elastic modulus of PEEK may have only a
small impact on bioactivity. This may be because the
elasticity modulus of pure PEEK is already close to
that of natural bone. Therefore, the improvement of
composite biocompatibility depends more on filler
bioactivity.

5 Soft tissue

Current research is centered on improving the
bone-binding properties of PEEK while ignoring soft-
tissue integration. Nevertheless, the long-term success
of implants depends not only on stable osteointegra‐
tion, but also on the uniform integration of substrate
surfaces with surrounding soft tissues (Griffin et al.,
2016; Wang YL et al., 2016). This is especially im‐
portant in the maxillofacial region where implants are
in contact with large areas of soft tissue. Significantly
more multinucleated giant cells were found on PEEK

surfaces than on Ti closure caps, indicating a stronger
foreign body reaction on PEEK (Caballé-Serrano et al.,
2019). Therefore, the soft tissue integration ability of
PEEK still needs to be improved.

Studies have found that the surface morphology
of PEEK may affect soft tissue adhesion. Gheisarifar
et al. (2021) found more functionally oriented HGFs
and enhanced cell adhesion presented on laser-grooved
surfaces. The proliferation of HGF cells was improved
by plasma treatment. Wang X et al. (2016) fabricated
a unique multilevel TiO2 nanostructure on CFR-PEEK
using the Ti PIII technique. They found that the mi‐
gration activity formation of focal adhesions along
with the expression of ECM-related genes of HGFs
was promoted because of the nanoscale surface.
Microporous surfaces fabricated by acid-etching encour‐
age human skin fibroblast adherence as well as the
expression of soft tissue growth genes, whereas internal
cross-linked structures with macropore diameters of
1.0–2.0 mm encourage ingrowth of soft tissues (Feng
et al., 2019). PEEK with 1.5-mm porous specimens
showed a better mechanical combination with soft tis‐
sues (Feng et al., 2019).

6 Conclusions

PEEK implants with multi-scale topography
show considerable potential as a biomaterial for bone
grafting applications. Various techniques have been ex‐
plored to enhance their osteointegration by changing
the PEEK structure and surface morphology (Fig. 1).
However, unlike porous scaffolds, which are more
common in bone-tissue engineering, PEEK is more like
a prosthetic implant for bone defect reconstruction
than a bone substitute. So, it is vital to preserve bulk
properties to maintain the mechanical strength of PEEK
in most application scenarios. Therefore, we believe
that techniques which preserve the overall mechanical
properties of PEEK are superior to others. Techniques
like porogen leaching that introduce a wholly porous
structure could decrease material elastic modulus and
strength. Melt extrusion technique, laser ablation, and
other techniques that limit topography alteration to the
material surface have successfully promoted osteoin‐
tegration while retaining mechanical properties. 3D
printing is a more flexible method that generates
implants with specially designed structures tailored
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to different clinical scenarios. With the development of
computer-aided design (CAD) and topology optimi‐
zation, clinical applications of 3D-printed PEEK will
become more accepted and extensive in the coming
decades.

PEEK implants with variable scales of porous
structures each have their own advantages; however,
none of the methods we mentioned has been able to
fulfill all the requirements of bone substitutes. There‐
fore, a single change in physical structure may be of
limited benefit. We should expand our focus to com‐
bine surface modifications, such as wettability and
chemical composition. PEEK with optimized surface
bioactivity might be obtained by combining a desirable
topological structure with better surface hydrophilicity
and chemical modification. Finally, the integration of

implant surfaces with surrounding soft tissues should
not be neglected.
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