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Abstract: White matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric 

communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients 

with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely 

unknown. Herein, we investigated the topological structure alterations of white-matter morphological brain networks in 233 MDD 

patients versus 257 matched healthy controls (HC) from the DIRECT consortium. White-matter networks were derived from 

magnetic resonance imaging (MRI) data by combining voxel-based morphometry (VBM) and three-dimensional discrete wavelet 

transform (3D-DWT) approaches. Support vector machine (SVM) analysis was performed to discriminate MDD patients from HC. 

The results indicated that the network topological changes in node degree, node efficiency, and node betweenness were mainly 

located in the sensorimotor superficial white-matter system in MDD. Using network nodal topological properties as classification 

features, the SVM model could effectively distinguish MDD patients from HC. These findings provide new evidence to highlight 

the importance of the sensorimotor system in brain mechanisms underlying MDD from a new perspective of white-matter 

morphological network.  
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1  Introduction 

 

Major depressive disorder (MDD) is a common psychiatric condition characterized by a persistent low 

mood and/or decreased interest (anhedonia), accompanied by feelings of worthlessness, guilt and hopelessness, 

as well as unexplained physical anomalies (Malhi and Mann, 2018). Although no well-established brain 

mechanism has reasonably explained these symptoms and disease etiology, MDD patients have consistently 

been reported to have structural and functional alterations in brain areas and circuits (Zhang et al., 2018). With 

the development and applications of neuroimaging techniques and modern network theory (Petersen and Sporns, 

2015), MDD is increasingly conceptualized as a brain network disorder (Bassett and Sporns, 2017). It has been 

further considered that MDD symptoms arise from network topological changes (Li et al., 2020). Previous 

researches have highlighted the disruption of topological properties of large-scale brain networks under the 
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MDD condition based on global metrics such as global and local efficiencies, as well as nodal metrics including 

degree and betweenness (Li et al., 2021; Yang et al., 2021). For instance, a previous study reported a negative 

correlation between the characteristic path length and the rate of decrease in Hamilton Depression Scale 

(HAMD-24) scores after an 8-week antidepressant treatment in MDD (Zhang et al., 2021). Another study found 

alterations in the topological features of dynamic brain networks in MDD, specifically a significant decrease in 

the variability of clustering coefficient in the frontal cortex, parietal cortex and thalamus in individuals with 

MDD (Zhou et al., 2024). These brain network studies about altered topological properties somewhat broadened 

our insights into clinical diagnosis and treatment options. 

The human brain is segmented into three tissue types: gray matter (GM), white matter (WM) and cere-

brospinal fluid (CSF). WM is made up of bunches of myelinated axons of interconnecting neurons, forming 

distributed neural networks (Fields, 2010). Given that WM densely connects various GM regions and comprises 

approximately half the volume of the human brain, many previous researchers have focused on the topological 

changes of white-matter networks in normal and clinical populations, such as MDD patients (Sampaio and 

Johansen, 2017). Magnetic resonance imaging (MRI) is a noninvasive neuroimaging technique to map the 

anatomical structures, physiological functions and tissues of brain in vivo, while voxel-based morphometry 

(VBM), as a widely adaptable analytical method, has been used for measuring voxel-level vol-

ume/concentration of brain tissues such as GM and WM (Whitwell, 2009). Previous MRI-based brain network 

studies mainly focused on the organization patterns between GM regions (Power et al., 2011; Yeo et al., 2011). 

However, there is accumulating evidence that resting-state blood oxygen level-dependent (BOLD) functional 

magnetic resonance imaging (rs-fMRI) signals can be reliably detected in white matter, and they dynamically 

fluctuate in a coordinated manner (Michael et al., 2017). For example, robust correlations have been observed 

between rs-fMRI signals from specific cortical GM regions and from segmented WM tracts (Wang et al., 2021). 

Structural network connectivity can be mainly assessed via diffusion-weighted tractography to reconstruct 

axonal tracts between WM regions. Most white matter structural networks are based on diffusion tensor im-

aging (DTI), whereas DTI has been surrounded by several controversies, such as the presence of false-positive 

connections (Aydogan et al., 2018), sensitivity to noise during image acquisition, such as head motion (Baum et 

al., 2018), and uncertainty in quantifying long-distance connections (Schilling et al., 2019). Previous evidence 

from microscale biology and macroscopic brain imaging studies suggests that the morphological similarity of 

brain regions can, to some extent, infer structural connectivity (Meinertzhagen, 2018; Seidlitz et al., 2018). For 

example, a study tested whether large-scale structural reorganization in schizophrenia was related to normative 

network architecture, particularly to regional centrality/centrality and connectivity patterns, and suggested that 

schizophrenia was associated with widespread alterations in brain morphology and might be shaped by un-

derlying connectome structures (Georgiadis et al., 2023). Based on these findings, it was hypothesized that 

axonal morphology can be applied to indirectly study structural connectivity between WM regions (Li et al., 

2023). The morphology-informed analysis of structural connectivity may be particularly suited for WM regions 

due to their relatively homogeneous cellular composition, consisting of oligodendrocytes and astrocytes. 

WM tracts are generally considered to play a pivotal role in transmitting sensory and motor information, 

facilitating interhemispheric communication and connecting various cortical regions (Wang et al., 2016). A 

growing body of research shows that MDD patients exhibit concurrent changes and a gradient in both low-level 

sensorimotor and higher-order cognitive processing (Xiao et al., 2023). On the other hand, it was previously 

indicated that a diverse range of sensorimotor stimulation could modulate depressive symptoms (Canbeyli, 

2013). Some studies have also suggested that MDD might lead to disruptions in the sensory perception system, 

and conversely, these disruptions in auditory and visual functions might be preclinical signs of depression (Lu et 

al., 2020). A meta-analysis found reduced regional homogeneity (ReHo) of the sensorimotor network in MDD 

patients, which was thought to involve psychomotor retardation (Iwabuchi et al., 2015). Sensorimotor-related 

brain regions could complement brain mechanisms underlying MDD to some extent and might also serve as 

target areas in antidepressant therapy involving transcranial magnetic stimulation. Nevertheless, extant research 

in this domain is limited, prompting the need for a comprehensive understanding of the sensorimotor signal 

patterns in MDD. 

In the present study, we investigated the topological properties of individual white-matter morphological 

networks derived from voxel-based morphometry (VBM) data using the three-dimensional discrete wavelet 

transform (3D-DWT) approach. Considering that sensorimotor changes have been shown to be significantly 
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involved in MDD, we hypothesized that aberrant network topological structure in the sensorimotor 

white-matter system would apparently mark MDD-related brain changes and might also discriminate MDD 

patients from normal controls. This study has great potential to highlight the clinical significance of the sen-

sorimotor system in understanding the potential pathological mechanisms of MDD from the new perspective of 

white matter network. 

 

 

2  Materials and methods 

2.1  Participants 

The dataset analyzed in the present study consisted of 233 MDD patients and 257 healthy controls (HC). 

Participants were drawn from a publicly available dataset contributed by the six study sites (Site 1, 2, 6, 7, 8 and 

14) of the REST-meta-MDD project (Yan et al., 2019) from the DIRECT consortium (Chen et al., 2022). 

During screening, participants in the REST-meta-MDD consortium were first excluded if they: 1) had no 

information on gender, age and education; 2) were aged <18 years or >65 years; 3) had no information on the 

sub-item scores of the 17-item Hamilton Rating Scale for Depression (HAMD-17). Furthermore, we excluded 

stations with fewer than 10 MDD patients or 10 HC subjects to balance the subjects for optimizing the overall 

sample size and keeping extreme bias to a minimum. MDD patients were also excluded if they achieved a 

HAMD score of < 8 points. The primary approach for the diagnosis of MDD used operational diagnostic criteria 

in the Diagnostic and Statistical Manual of Mental Disorders IV. The research protocols were carried out while 

following the recommendations of the Helsinki Declaration of Ethical Principles and approved by the local 

Institutional Review Boards (IRB) of each site. All study participants provided written informed IRB-approved 

consent before participating in the study procedures at their local institution.  

 
Table 1 Demographic and clinical characteristics 

Characteristics 
MDD patients 

 N = 233 

HC 

N = 257 
t/ɢ2 p 

Age(years) 34.738 ± 11.170 33.883 ±11.295 0.842 0.400 

Gender(male/female) 78/155 105/152 2.844 0.092 

Education level(years) 12.223 ± 3.709 13.973 ± 3.526 -5.338 0.001 

HAMD scores 23.537 ± 5.439 / / / 

Abbreviation̔HAMD, 17-item Hamilton Rating Scale for Depression; HC, healthy control; MDD, major depressive disorder. 

 

2.2  White-matter network construction by three-dimensional discrete wavelet transform (3D-DWT) 

The white matter morphological network was constructed by mapping inter-regional similarities based on 

regional morphology (i.e., WM volume) derived from structural MRI data. In this study, the nodes of the white 

matter morphological network were randomly generated anatomical nodes based on white matter volume, 

totalling 128 nodes. Connectivity was defined as the Pearson correlation coefficient of the wavelet feature 

vectors of regions of each node. The raw anatomical MRI data were pre-processed based on the standard pro-

cedure of VBM using DPABI software (http://www.rfmri.org/). The T1 images were first segmented into gray 

matter, white matter and cerebrospinal fluids in their original space, and the white matter images were subse-

quently modulated and spatially normalized using the DARTEL toolbox (Ashburner, 2007). The normalized 

images were modulated by multiplying the Jacobean determinants derived from previous DARTEL spatial 

normalization. 

Wavelet transformation is a multiscale analysis method that transforms the energy of a signal into hier-

archically organized levels of resolution, allowing the capture of both local and global features of anatomical 

MRI datasets. In this study, three-dimensional discrete wavelet transformation (3D-DWT) was applied to the 
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voxel-wise white matter volume using the waverec3 function in MATLAB (Wang et al., 2022). Each voxel was 

decomposed into three different levels, and each level was further divided into high-pass and low-pass com-

ponents. As a result, six (3×2) wavelet features were generated based on the volume of each voxel. An average 

white-matter structural mask across all participants was segmented into 128 contiguous anatomical regions (128 

network nodes) across the whole brain using the region-growing method reported by previous studies (Zalesky 

et al., 2010). The average wavelet feature vector of all voxels within each node was defined as the regional 

wavelet feature vector. The white matter morphological similarity matrix (128×128) of each subject was ob-

tained using the Pearson correlation coefficient between each pair of regional wavelet feature vectors, and then 

normalized using Fisher's r to z transformation. Follow-up analysis of network topological properties was 

performed based on the weighted WM similarity matrix. A schematic analysis of individual white-matter 

morphological networks is shown in Fig. 1. 

 

 
Fig. 1 Flowchart for the construction and analysis of individual white-matter morphological networks. 

(a) For each subject, voxel-based morphology (VBM) transform was performed on the spatially normalized and modulated T1 

weighted white matter images. (b) 3D wavelet transform was performed on the individual VBM volume. (c) The group-level WM 

mask was randomly separated into 128 anatomical nodes with an approximately identical size. The white matter was assigned to 

128 nodes. (d) Interregional morphological similarity was computed based on the correlation coefficients of the node’s wavelet 

features. (e) The WM white-matter morphological networks were constructed across a series of sparsities from 0.05–0.4 (inter-

val = 0.01). (f) The AUC values of topological properties (i.e., small-world topology and nodal topological properties) were then 

evaluated across a series of sparsity values. (g) The support vector machine model was used to classify MDD and HC. AUC, area 
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under the curve; GM, gray matter; HC, healthy control; MDD, major depressive disorder; WM, white matter; SVM, support vector 

machine. 

2.3  Graph theory analysis of white-matter networks 

The graph theory analysis of WM networks was performed using GRETNA software (Wang et al., 2015). 

We calculated the network topological properties over a range of network sparsity thresholds (from 5% to 40%, 

with 1% step size) for each individual weighted matrix. The global properties included clustering coefficient 

(Cp), characteristic path length (Lp), normalized clustering coefficient (ɔ), normalized characteristic path length 

(ɚ), global efficiency (Eglob), local efficiency (Eloc), and small-worldness (ñ). The nodal properties included 

node efficiency, node degree, and node betweenness. Some global properties were further normalized using the 

corresponding average of 100 matched random networks, generated by a topological rewiring algorithm to 

maintain the same degree distribution as the real networks (Maslov and Sneppen, 2002). Small-world WM 

networks have global properties (â > 1 and ê Ū 1, or ã = â/ê > 1) that indicate a relatively higher local 

interconnectivity and an approximately equivalent shortest path length compared with random networks (Liao 

et al., 2017).  

The small-worldness of a complex network is described by its Cp and Lp values, where Cp refers to the 

number of edges between a node’s nearest neighbours and indexes network segregation, and Lp represents the 

average shortest path length between all pairs of nodes in the network, which reflects the degree of network 

integration (Li et al., 2021). Global efficiency in the brain network is defined as “a measure of the overall ca-

pacity for parallel information transfer and integrated processing” (Bullmore and Sporns, 2012). These topo-

logical properties are known to be interrelated, with each providing a different viewpoint from which the major 

features of the large-scale architecture can be discerned (Zhang et al., 2011). The three nodal metrics selected in 

this study are among the most commonly utilized indicators in previous research. Nodal topological properties 

typically measure local information transfer efficiency, and alterations in nodal efficiency are considered to be 

associated with cognitive inhibitory deficits and depressive states (Li et al., 2021). To examine the distribution 

of nodes and between-group differences in nodal topological properties at the network level, we mapped the 

nodes with between-group differences (p < 0.05, FDR corrected) onto the defined 12 white matter networks. 

The ComBat harmonization models were implemented to remove the confounding effects introduced by the site 

effects, with age, gender and diagnosis as covariates (Fortin et al., 2018). 

2.4  Statistical analysis 

The two-sample t-test was applied to analyze the between-group differences of demographic and clinical 

data. The chi-square test was used to measure gender differences between the MDD and HC groups. The global 

and nodal topological properties were compared between MDD and HC using non-parametric Mann-Whitney U 

tests, with age, gender, education, and head movement as covariates. Head movement, quantified using 

framewise displacement (FD) derived from the subjects' fMRI scans, was considered in light of prior research 

demonstrating the potential impact of in-scanner head motion on morphometric measures (Alexander et al., 

2016; Pardoe and Martin, 2022). The threshold of statistical significance was set at 0.05, corrected for multiple 

comparisons with a false-discovery rate method (p < 0.05, FDR corrected). We mapped network nodes with 

significant differences to 12 white matter networks according to previous high-quality research (Peer et al., 

2017) (see Table 2). The Pearson correlation coefficients between the topological properties and HAMD scores 

were calculated in the MDD group. The false discovery rate (FDR) correction was applied separately to be-

tween-group comparisons of global topological properties, local topological properties, and network-level 

topological properties, with a threshold set at p < 0.05 for each type. Finally, we used support vector machine 

(SVM) classification models based on the area under the curve (AUC) values of global and nodal topological 

properties to distinguish between MDD and HC, and applied 5-fold cross-validation to the models. 
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Table 2 The white matter networks 

Network label Network name 

1 Cingulum and associated tracts  

2 Uncinate and middle temporal lobe tracts  

3 Sensorimotor superficial white -matter system 

4 Forceps minor system 

5 Superior longitudinal fasciculus system 

6 Visual superficial white -matter system 

7 Inferior longitudinal fasciculus system 

8 Inferior corticospinal tract  

9 Posterior cerebellar tracts  

10 Dorsal frontoparietal tracts  

11 Deep frontal white matter  

12 Ventral frontoparietal tracts  

 

2.5 Classification model based on the topological properties of WM morphological network 

Aiming to study the clinical application of the topological properties of the constructed white matter 

structural network, we used a support vector machine (SVM) model with a linear kernel function in Python's 

scikit-learn (https://scikit-learn.org/) to distinguish MDD patients from HC. The AUC values of global 

topological attributes (including ɔ, ɚ, ů, Cp, Lp, global efficiency, and local efficiency) and nodal topological 

attributes (including node degree, node efficiency, and node betweenness of 128 nodes) of each patient were 

used as classification features. We finally created two classification models, that is, the support vector machine 

classification model based on global topological properties and that based on nodal topological properties. We 

employed five-fold cross-validation to the SVM classification model, with the outputs of accuracy and the AUC 

value of the ROC curve for each fold as evaluation metrics for the classification model. Finally, to illustrate the 

ultimate classification performance, we computed the average AUC value and accuracy for each model. 

 

 

3  Results 

3.1 Between-group differences of network global topological properties 

Fig. 2A and B present the comparison results of AUC values of global network properties. Compared with 

HC, MDD patients showed a statistically significant increase in ů (Mann-Whitney U test, Z = 2.60, p = 0.009, 

FDR-corrected) and decrease in Lp (Mann-Whitney U test, Z = -2.67, p = 0.007, FDR-corrected). The other 

global network properties(ê, â, Cp, Eglob and Eloc) showed no significant between-group differences (p > 0.05). 

No significant correlations were found between two indicators (ñ and Lp) and the HAMD scores (p > 0.05). 
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Fig. 2 Between-group differences of network global topological properties. 

Cp, clustering coefficient; Lp, characteristic path length; ɔ, normalized clustering coefficient; ɚ, normalized characteristic path 

length; Eglob, global efficiency; Eloc, local efficiency; ů, small-worldness; AUC, area under curve; HAMD, 17-item Hamilton 

Depression Scale. 

 

3.2 Between-group differences of network nodal topological properties  

As shown in the left half of Fig. 3, MDD patients exhibited 30, 37 and 18 network nodes with significant 

differences (p < 0.05, FDR corrected) in node degree, node efficiency and node betweenness compared to HC, 

respectively. To examine the distribution of nodes on each network, we separately summarized the number of 

nodes with significant differences in each of the 12 networks, shown in the right half of Fig. 3. Network 3, 

described as the sensorimotor superficial white-matter system (see Table 2), had the maximum number of nodes 

with between-group differences (see the right half of Fig. 3; node degree: 9; node efficiency: 10; node be-

tweenness: 7). There were no significant correlations found between these indicators and the HAMD scores (p > 

0.05). 

As shown in Fig. 4, MDD patients showed statistically significant increase in the AUC values of node 

degree (Z = 4.48, p < 0.001, FDR corrected) and node efficiency (Z = 3.76, p = 0.002, FDR corrected), and 

decrease in the AUC values of node betweenness (Z = -3.12, p = 0.011, FDR corrected), mainly in the sen-

sorimotor superficial white-matter system (Network 3) compared to HC. Besides, we found that MDD patients 

exhibited significant decrease in the AUC values of node degree (Z = -3.80, p < 0.001, FDR corrected) and node 

betweenness (Z = -3.22, p = 0.015, FDR corrected) in Network 1, of node efficiency (Z = -2.76, p = 0.035, FDR 

corrected) in Network 2, and of node betweenness (Z = -2.89, p = 0.015, FDR corrected) in Network 7. 
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Fig. 3 Between-group differences of network nodal topological properties. 

The balls indicate significant between-group differences in the nodal topological properties (p<0.05), where red 

and blue balls denote increase and decrease in MDD compared to HC, respectively. The sphere size represents the significance of 

the difference (the Z value of the statistical test). 
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Fig. 4 Between-group comparison of nodal topologies in 12 white matter networks. 

The white-matter networks were defined by Peer’s 12 white-matter network parcellation atlas. 

 

3.3 Classification results based on the topological properties of white-matter networks 

As shown in Fig. 5, the average accuracy of the classification model based on global topological properties 

was 56.7% and its classification AUC value was 61.1% (sensitivity = 50% and specificity = 64%), while the 

average accuracy on nodal topological properties was 73% and its classification AUC value was 80.3% (sen-

sitivity = 72%, specificity = 75%). 
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Fig. 5 Performance evaluation of support vector machine classification. 

AUC, area under the curve; ROC, receiver operator characteristic. 

 

 

4  Discussion 

 

To the best of our knowledge, this is the first study to map MDD-related individual-level brain WM net-

work changes by using a combination of a wavelet transform method and structural MRI-based brain mor-

phological data. We found that MDD-related topological structure changes of the WM network primarily oc-

curred in the sensorimotor superficial white-matter system. Interregional morphological similarity was first 

computed to construct a WM network for each participant using 3D wavelet transform based on the white 

matter volume derived from VBM data. Subsequently, the graph theory method was used to characterize the 

network global and nodal topological abnormalities in MDD. A support vector machine model based on the 

nodal topological properties achieved a classification accuracy of 73%, which effectively differentiated MDD 

patients from HC. These results provide new evidence highlighting the clinical significance of the sensorimotor 

system and enhancing our understanding of the potential pathological mechanisms of MDD from the new 

perspective of white matter network. 

Our findings demonstrated the distinctive characteristics of morphological similarity or structure connec-

tivity of white-matter brain networks. These included reduced characteristic path length and increased 

small-worldness in MDD patients. The observed decrease in Lp in MDD patients suggested an increased inte-

gration capacity within the brain, indicating unusual information transmission. This finding aligns with a pre-

vious study reporting similar characteristics in the topological properties of functional brain networks in MDD, 

which indicated abnormally low Lp and higher overall efficiency (inversely related to Lp). This was explained as 

a less regular organized or randomization structure within the white matter network (Zhang et al., 2011). Our 

result on the abnormal small-world properties in MDD is consistent with the previous findings for white matter 

functional networks (Li et al., 2020; Yang et al., 2021). This structural basis of aberrant white matter in MDD 

might be an important factor underlying the wiring patterns of brain networks.  

The current study presents new data on the alterations in WM networks associated with MDD. Specifically, 

the observed elevation in the node degree and node efficiency of the sensorimotor superficial white-matter 

system in MDD suggests a heightened level of local interconnectedness and information processing within 

these regions (Petrella, 2011). This amplified local connectivity might signify a compensatory mechanism or an 

adaptive response to mitigate disturbances in sensorimotor functions associated with MDD (Luscher et al., 

2011). Conversely, the notable reduction in node betweenness within the sensorimotor superficial white-matter 

system implies a reduced capacity to act as key intermediaries in information transfer across brain networks 

(Korgaonkar et al., 2014). This decline in the pivotal role of the white-matter system might indicate a disrupted 

flow of information or impaired integration of sensorimotor-related WM tracts in MDD. Significant correlations 

have been reported between the abnormal topological structure of the sensorimotor white matter system and 
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some cognitive scores in MDD (Wang et al., 2022). These topological alterations also highlight the intricate 

network connectivity changes in white matter network topologies associated with MDD. 

Understanding how the structural connectivity pattern supports and shapes brain function is a fundamental 

question in systems neuroscience (Honey et al., 2010). The morphological WM network is optimally organized 

to support efficient information transmission and processing. Specifically, WM tracts play a crucial role in 

transmitting sensory and motor information, mediating interhemispheric communication, and connecting var-

ious cortical regions (Filley, 1998). It has been suggested that the loss of WM integrity in the frontal lobe might 

exist across various elder populations and that WM lesions might disrupt neural circuits involved in emotion 

regulation, involving the neuropathology of MDD (Ma et al., 2007). Our findings suggest that the abnormalities 

in cognitive control and emotional regulation observed in MDD patients might partly result from shortened 

information transmission and processing capacity in the sensorimotor network. This may be because the sen-

sorimotor superficial white-matter system interconnects the default mode, posterior attention, ventral attention, 

and frontoparietal control networks, suggesting the mediating role of white matter networks between these gray 

matter network regions across varying distances (Peer et al., 2017). The latter study categorized the organization 

of white matter networks into three tiers, with the superficial white matter network significantly correlated with 

gray matter networks while the deep network showing relatively less dependence on gray matter networks. 

Among these, the sensorimotor superficial white-matter system is a symmetric white matter network distributed 

throughout the entire brain. This further supports the previous notion that superficial white matter networks may 

indirectly interact with gray matter networks, whereas mid-level and deep white matter networks are more 

likely to communicate directly through axonal interactions (Fan et al., 2020). We tentatively propose that 

structural topological abnormalities in sensorimotor superficial white matter systems might involve the dis-

ruption of connections to regions highly associated with cognitive functions, which warrants further investiga-

tion. 

Using SVM classification models, we further explored whether the topological properties of white matter 

network could serve as potential biomarkers for the clinical identification of MDD patients. Our results showed 

with 73% accuracy that the nodal topological properties of white matter networks could effectively distinguish 

MDD patients from healthy controls. Previous studies have distinguished MDD and HC with accuracies of 66% 

(Ramasubbu et al., 2016), 63.7% (Shi et al., 2021), and 73.3% (Nakano et al., 2020) while using the SVM 

classification model. Another study also found that the small-world topological properties of the white matter 

functional network can distinguish between unmedicated MDD patients and healthy control subjects, with an 

accuracy rate of 76% (Li et al., 2020). Considering the above accuracy rates, the accuracy rate of 73% and AUC 

value of 80.3% in this study essentially constitutes a good classification performance and can guide potential 

clinical applications. In this way, our findings provide supplementary evidence about morphological networks 

underlying MDD.  

The present study has several limitations that need to be addressed. Firstly, previous MDD studies tradi-

tionally focused on aberrations in higher-order brain functions, including emotion regulation and attention 

control. Our findings based on the white matter network predominantly centers on the abnormalities of primary 

sensorimotor functions, providing new insights into the pathophysiology of MDD. Meanwhile, further inves-

tigating the relationship between white matter networks and emotional functions is a meaningful direction. 

Secondly, common research approaches to characterize white matter networks still remain insufficient. Beyond 

the morphological 3D-wavelet transform method utilized in the present study, there is a further need for the 

development and refinement of novel research methodologies pertaining to white matter. 

 

 

5  Conclusions 

 

In the present study, we detected abnormalities in the sensorimotor superficial white-matter system of 

MDD patients, which might serve as new neurobiological markers for this disorder. Moreover, we successfully 

achieved a good performance based on nodal topological properties of the WM network in distinguishing MDD 

patients from healthy controls, providing a valuable reference for clinical research. 
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