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Abstract:    A DP curve is a new kind of parametric curve defined by Delgado and Peña (2003); it has very good properties when 
used in both geometry and algebra, i.e., it is shape preserving and has a linear time complexity for evaluation. It overcomes the 
disadvantage of some generalized Ball curves that are fast for evaluation but cannot preserve shape, and the disadvantage of the 
Bézier curve that is shape preserving but slow for evaluation. It also has potential applications in computer-aided design and 
manufacturing (CAD/CAM) systems. As conic section is often used in shape design, this paper deduces the necessary and suffi-
cient conditions for rational cubic or quartic DP representation of conics to expand the application area of DP curves. The main 
idea is based on the transformation relationship between low degree DP basis and Bernstein basis, and the representation theory of 
conics in rational low degree Bézier form. The results can identify whether a rational low degree DP curve is a conic section and 
also express a given conic section in rational low degree DP form, i.e., give positions of the control points and values of the weights 
of rational cubic or quartic DP conics. Finally, several numerical examples are presented to validate the effectiveness of the 
method. 
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1  Introduction 
 

Conic sections (or simply, conics) play a vital 
role in geometric shape design and machine manu-
facture. They are an essential part of the outline of 
most machine elements and an important design tool 
in the aircraft industry. They are also used in some 
artistic areas such as font design (Farin, 2001). In 
modern design systems, conics are expressed mostly 
in rational low degree polynomial form for the fol-
lowing reasons. First, rational parametric curves can 
unify the expressions of conic and polynomial para-
metric curves, and can also flexibly adjust the shape 
of the curve using weights. Second, their low degree 
is favorable for quick computing and storage com-
pression. They have become an attractive and prom-

ising research direction, as shown by the amount of 
publications on rational low degree Bézier conics. 
Chou (1995) proved that the degree of the Bézier 
curve forming a full circle must be at least five for the 
curves to have all positive weights. This was gener-
alized by Sánchez-Reyes (1997) to obtain rational 
Bézier circular arcs of arbitrary sweep angle and ar-
bitrary even-degree. Wang and Wang (1992) investi-
gated the necessary and sufficient conditions for 
representing conics in rational cubic Bézier form with 
proper parameterization. Fang (2002) presented a 
special representation for conics in rational quartic 
Bézier form such that the joined curves still have C1 
continuity in homogeneous space. Based on the fact 
that all rational Bézier conics except for degree two 
are degenerate (Sánchez-Reyes, 1997), Hu and Wang 
(2007) used a totally different method to present the 
necessary and sufficient conditions for the rational 
quartic Bézier representation of conics. 

Following on from these in-depth studies, cur-
rent investigations have tended to focus on the  
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following two aspects of rational parametric curves: 
decreasing computational complexity and obtaining 
shape preservation. As for a parametric curve, evalu-
ation is a fundamental operator in shape design, and 
low computational complexity for evaluation is of 
great benefit for improving the design efficiency. 
However, shape preservation is a basic requirement in 
shape design. Research shows that the parametric 
curve formed by normalized totally positive (NTP) 
basis imitates the shape of its control polygon because 
of the diminishing variation property of totally posi-
tive (TP) matrices (Delgado and Peña, 2003). 
Goodman and Said (1991) pointed out that “if the 
parametric curve is formed by NTP basis, then in 
many ways the shape of it mimics or ‘preserves’ the 
shape of the control polygon”. But unfortunately, a 
parametric curve in NTP form may not have an 
evaluation algorithm with low computational com-
plexity; whereas a parametric curve with low com-
putational complexity may not be shape preserving. 
The Bézier and the Wang-Ball curves, respectively, 
are examples of the above two curves. Their time 
complexities for evaluation are quadratic and linear of 
the degree of the curve respectively (Phien and De-
jdumrong, 2000), but only the Bézier curve is shape- 
preserving (Delgado and Peña, 2006). Therefore, 
designers have long been searching for a parametric 
curve which has both predominant properties, i.e., 
low computational cost for evaluation in algebra, as 
well as shape preservation in geometry. Confronting 
this challenge, Delgado and Peña (2003) constructed 
a new kind of parametric curve later named the DP 
curve by Jiang and Wang (2005). It is formed by NTP 
basis, and also has linear complexity for evaluation. 
Hence, it will suit a variety of applications in com-
puter-aided design and manufacturing (CAD/CAM) 
systems. Jiang and Wang (2005) also studied the 
transformation relationship between DP basis and 
Bernstein basis, and presented the corresponding 
transformation matrices. With these matrices, they not 
only derived the subdivision formulae for DP surface, 
but also reduced the time complexity for evaluation 
from cubic (quadratic) to quadratic (linear), of the 
degree of the surface (curve) in Bernstein form. 

Considering the valuable properties of DP basis, 
researchers have focused their research on the prop-
erties and applications of DP curves and surfaces 
(Aphirukmatakun and Dejdumrong, 2008; Delgado 

and Peña, 2008; Itsariyawanich and Dejdumrong, 
2008). It is hoped that the application of DP curves 
may be extended to represent conics that are com-
monly used in shape design. Naturally, they should be 
generalized to rational form. Dejdumrong (2006) 
introduced the definition of a rational DP curve. This 
raised the question of how rational low degree DP 
conics could be constructed. That is, when a conic 
section is represented in rational low degree DP form, 
how can the control points and weights be determined? 
The significance of this problem lies in constructing a 
curve model to express conics with low computa-
tional cost and shape preservation. 

To solve this problem, this paper concentrates on 
the necessary and sufficient conditions for conics 
represented by rational cubic or quartic DP curves. 
The idea is based on the necessary and sufficient 
conditions for rational low degree Bézier representa-
tion of conics (Wang and Wang, 1992; Hu and Wang, 
2007) and the transformation matrices between DP 
basis and Bernstein basis (Jiang and Wang, 2005). We 
analyze, in great detail, the positions of the control 
points and values of the weights of conics in rational 
quartic DP form in different cases. Also, two algo-
rithms are provided to judge whether a rational quar-
tic DP curve is a conic section, and to express a given 
conic section in rational quartic DP form. Finally 
numerical examples are presented to confirm the 
effectiveness of the method. 
 
 
2  Rational DP curves of low degree 
 

Rational cubic Bézier and DP curves are defined 
by (Farin, 2001; Dejdumrong, 2006) respectively as  
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t B t B tα α=∑ ∑u U           (1) 

3 3
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t C t C tβ β=∑ ∑v V            (2) 

 
where αi and βi (i=0, 1, 2, 3) are the associated 
weights, and Ui and Vi (i=0, 1, 2, 3) are the associated 
control points. The cubic Bernstein basis functions 
Bi

3(t) and DP basis functions Ci
3(t) are (1-t)3, 3(1-t)2t, 

3(1-t)t2, t3, and (1-t)3, t(1-t)(2-t), t(1-t)(1+t), t3, re-
spectively. Rational quartic Bézier and DP curves are 
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also defined by (Farin, 2001; Aphirukmatakun and 
Dejdumrong, 2008) respectively as 
 

4 4
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where ωi, φi (i=0, 1, …, 4) are the associated weights, 
and Pi, Qi (i=0, 1, …, 4) are the associated control 
points. The quartic Bernstein basis functions Bi

4(t) 
and DP basis functions Ci

4(t) are (1-t)4, 4(1-t)3t, 
6(1-t)2t2, 4(1-t)t3, t4 and (1-t)4, (1-t)3t, 3(1-t)t, (1-t)t3, 
t4, respectively. To preserve the convex property of 
the curves, herein we prescribe that all the weights are 
positive. 

 
 

3  Transferring rational DP curves to stan-
dard form 

 
A rational Bézier curve is shape-invariable under 

a special linear parameter transformation (Farin, 
2001). That is, there exists a fractional linear pa-
rameter transformation such that an arbitrary rational 
Bézier curve can be represented in two forms, i.e., the 
same control points with different weights. Therefore, 
without loss of generality, we discuss only a standard 
rational DP curve, i.e., where the two end weights are 
both equal to 1. As for its nonstandard form, we can 
first convert it to rational Bézier form by the trans-
formation relationship from DP basis to Bernstein 
basis. Then, applying a special fractional linear pa-
rameter transformation, the latter is expressed in 
standard form. Finally, by the transformation rela-
tionship from Bernstein basis to DP basis, the stan-
dard rational DP curve is obtained. This process is 
demonstrated in formulae as follows: 

DP basis and Bernstein basis satisfy (Jiang and 
Wang, 2005) 
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When n=3 or 4, we have  
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Then the rational quartic DP curve is converted to the 
rational quartic Bézier curve written as Eq. (3), and 
the associated control points and weights satisfy 
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According to the shape-invariability of the ra-

tional Bézier curve (Farin, 2001), making a fractional 
linear parameter transformation 
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to the curve written as Eq. (3), we obtain the curve in 
standard form with associated weights 
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Finally, according to Eq. (6), the rational quartic DP 
curve in Eq. (4) is converted to the standard form with 
associated control points and weights as follows: 
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As for a rational cubic DP curve, its standard 

form is obtained in a similar fashion. Based on the 
above discussion, this paper studies only the curves in 
standard form, i.e., when their two end weights ex-
pressed as Eqs. (1)–(4) are all equal to 1. 

 
 

4  Rational cubic DP conics 
 
By the transformation Eq. (5) from cubic DP 

basis to Bernstein basis, the rational cubic DP curve in 
Eq. (2) is converted to the rational cubic Bézier curve 
in Eq. (1), in which the weights and control points 
meet the following expressions: 
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Lemma 1    For two triangles with an equal height, 
the ratio of their areas is equal to the ratio of their 
corresponding edge lengths. For two triangles with an 
equal edge length, the ratio of their areas is equal to 
the ratio of their corresponding heights. 
Theorem 1    A rational cubic DP curve in Eq. (2) is a 
conic section if, and only if, the following three con-
ditions hold simultaneously: 

1. Vi (i=0, 1, 2, 3) compose a planar quadrilateral, 
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where Ti (i=0, 1, 2, 3) are the directed areas of 
ΔV1V2V3, ΔV0V2V3, ΔV0V1V3, and ΔV0V1V2, respec-
tively (Fig. 1). 

Proof    According to Wang and Wang (1992), the 
necessary and sufficient conditions for rational cubic 
Bézier representation of conics are related only to the 
weights αi and areas Si (i=0, 1, 2, 3). Here Si (i=0, 1, 2, 
3) are the directed areas of ΔU1U2U3, ΔU0U2U3, 
ΔU0U1U3, and ΔU0U1U2, respectively (Fig. 1). Eq. (7) 
gives the relationship of the weights of the curves in 
Eqs. (1) and (2). Next, we define the relationship 
between Si and Ti (i=0, 1, 2, 3). 
 
 
 
 
 
 
 
 
 

By Eq. (7), it follows that 
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Then we have 
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Observing Fig. 1, according to Lemma 1 and by 
Eq. (8), it gives 
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Following a similar reasoning, the two equations 
 

 1 2 1 1 1 1

1 2 1 2 1 2 1 2

2
and

2 2
T S T S
T T T T

β β
β β β β

− −
= =

− + − +
 

 
hold. Therefore, S1 and S2 can be expressed by T1 and 
T2 as  

2 1 1 2 2 1 1 2
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respectively. Substituting the above formulae, Eq. (7) 
and Eq. (8) into Theorem 2 in Wang and Wang (1992), 
and eliminating αi, Si (i=0, 1, 2, 3), Theorem 1 is 
proven. 

Fig. 1  Directed areas of Si and Ti (i=0, 1, 2, 3) 
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5  Rational quartic DP conics 

5.1  Necessary and sufficient conditions for ra-
tional quartic Bézier representation of conics 

To deduce the necessary and sufficient condi-
tions for rational quartic DP representation of conics, 
we first introduce the conditions for rational quartic 
Bézier representation of conics. Hu and Wang (2007) 
conducted a thorough study of degree-reducible and 
improperly parameterized cases. They distinguished 
five cases according to the control polygon and the 
weights, as shown in Lemma 2. This is the funda-
mental theoretical basis for deriving the necessary 
and sufficient conditions for the rational quartic DP 
case. 
Lemma 2    Suppose a rational quartic Bézier curve is 
expressed as Eq. (3), and Q is the intersection point of 
the lines P0P1 and P3P4. Then, if one of the following 
five conditions holds, the rational quartic Bézier 
curve represents a conic (Hu and Wang, 2007). 

1. (1a) The five points Pi (i=0, 1, …, 4) are  
coplanar. 

(1b) Pi (i=0, 1, …, 4) are different to each other 
and the positions of P1, P2, and P3 are determined by 
one of the following three conditions: 

(1b1) P1 and P3 are internal points of division of 
the line segments P0Q and P4Q, respectively, and P2 is 
inside the triangle ΔP0QP4 (Fig. 2a); 

(1b2) P1 and P3 are on the extension lines of the 
oriented line segments QP0 and QP4, respectively, 
and P2 is in the domain determined by the extension 
lines of the oriented line segments QP0, QP4, and the 
line segment P0P4 (Fig. 2b); 

(1b3) P1 and P3 are on the extension lines of the 
oriented line segments P0Q and P4Q, respectively, 
and P2 is in the domain determined by the extension 
lines of the oriented line segments QP0, QP4, and the 
line segment P0P4 (Fig. 2c). 
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2. (2a), (2b) are the same as (1a) and (1b),  
respectively; 
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3. (3a) is the same as (1a); 
(3b) P1 and P3 both coincide with Q, and P2 is an 

internal point of division of the line segment P0P4 
(Fig. 2d); 

(3c) ( )2 3 1 1 3
1 / / ;
6

D D D Dω = +   

(3d) 1 3 3 1/ / .D Dω ω =  
 
4. (4a) is the same as (1a); 
(4b) P1, P3 coincide with P0, Q, respectively, and 

P2 is an internal point of division of the line segment 
P1P3 (Fig. 2e);  

Fig. 2  The control points and control polygons of a 
rational quartic Bézier conic section in six different 
forms 
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5. (5a) is the same as (1a); 
(5b) P1, P3 coincide with Q, P4, respectively, and 

P2 is an internal point of division of the line segment 
P1P3 (Fig. 2f);  

(5c) 2 1 2
2 3
3 3 3

3 1 .
2 2

B
D

ω ω
ω ω

− = =  Herein, Bi is the di-

rected area of ΔP0PiP4 (i=1, 2, 3), and Di (i=0, 1, 2, 3) 
are directed areas of ΔP1P3P4, ΔP2P3P4, ΔP0P1P3, and 
ΔP0P1P2, respectively (Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 1    For conditions 1 and 3, the rational 
quartic Bézier curve is degree-reducible; for condi-
tions 2, 4 and 5, the curve is improperly  
reparameterized. 

5.2  Rational quartic DP representation for conics 
by basis transformation 

According to the relationship (Eq. (6)) between 
the rational quartic DP curve and the Bézier curve, it 
is easy to see that P1 and P3 are internal points of 
division of the line segments Q1Q2 and Q2Q3 respec-
tively, and Pi=Qi (i=0, 2, 4). Therefore, for the trian-

gles which are composed of the control points of the 
rational quartic Bézier curve (Eq. (3)) and those of the 
rational quartic DP curve (Eq. (4)), we first deduce the 
relationship of their magnitude. We then convert 
various formulae relating to the rational quartic Bé-
zier curve into those relating to the rational quartic DP 
curve. Hence, the necessary and sufficient conditions 
for representing conics by the curve in Eq. (4) are 
obtained. 

In Fig. 3, Ai is the directed area of ΔQ0QiQ4 (i=1, 
2, 3) respectively, Ci (i=0, 1, 2, 3) are directed areas of 
ΔQ1Q3Q4, ΔQ2Q3Q4, ΔQ0Q1Q3, and ΔQ0Q1Q2 re-
spectively, A0 and B0 are directed areas of ΔQ1Q2Q3 
and ΔP1P2P3 respectively, and Bi (i=1, 2, 3) and Di 
(i=0, 1, 2, 3) are defined in Lemma 2. 
Theorem 2    Suppose a rational quartic DP curve is 
expressed as Eq. (4). Then, if one of the following 
five conditions holds, the rational quartic DP curve in 
Eq. (4) represents a conic. 

1. (a1) The five points Qi (i=0, 1, …, 4) are  
coplanar. 

(b1) Qi (i=0, 1, …, 4) are different to each other, 
and the position of Q2 is determined by one of the 
following two conditions: 

(b*) Q2 is on the same side of the line Q0Q4 as the 
curve in Eq. (4); 

(b**) Q2 is on the other side of the line Q0Q4 from 
the curve in Eq. (4). 
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Fig. 3  The directed areas Ai (i=0, 1, …, 5), Bi, Ci and Di 
(i=0, 1, 2, 3) 
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2. (a2)–(b2) are the same as (a1)–(b1),  
respectively; 

(c2) 
2

0 2 0
2 2

1 2 2 3 2 2 3 3 3 1

0 22 2 1 1
2

2 2 3 3 1 3

24
( 3 ) (3 ) (3 )

3 .
(3 )

D
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D DA A
A A C

ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ

=
+ + +

+
=

+

 

(d2)  
1 2 2 3

2
2

2
1 3 2 1 3

2 2 3 3 2 2 1 1 0 2

1 3 1 3

2 1 2 3 0 2

( 3 )(3 )
72

(3 )(3 )
2

.
(3 )(3 )

A C C
A A A A D D

C C
D D

ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ ϕ

+ +

=
+ +

−
+ +

 

(e2) 
2

2 4 2
2 2

2 3 2 1 2 2 1 1 1 3

2 2 3 3 0 2
2

2 2 1 1 3 1

24
(3 ) (3 ) (3 )

3
.

(3 )

D
A A C
A A D D
A A C

ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ

=
+ + +

+
=

+

 

 
In (c2)–(e2), D0 and D2 are shown as in Eqs. (9) and 
(10) respectively. 

3. (a3) is the same as (a1); 
(b3) Q2 is an internal point of division of the line 

segment Q0Q4, and is located on the line segment 
Q1Q3 or the extension line Q3Q1; 

 
(c3)  

1 2 3 3 3 2 1 1
2

3 2 1 1 1 2 3 3

(3 ) (3 )
6 ;

(3 ) (3 )
C C
C C

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
+ +

= +
+ +

 

(d3) 
3

1 2 3 1
3

33 2 1

(3 )
;

(3 )
C
C

ϕ ϕ ϕ
ϕ ϕ ϕ

+
=

+
 

(e3) 3 2 1 1

1 2 3 3

(3 )
.

(3 )
A
A

ϕ ϕ ϕ
ϕ ϕ ϕ

+
=

+
 

 
4. (a4) is the same as (a1); 
(b4) Qi (i=0, 1, 2, 3) are collinear, and the se-

quence is Q1, Q0, Q2, Q3; 
(c4) 

3 32 2
2 3

2 3 12 1 2 1

824
1 ;

3 (3 ) (3 )
A
C

ϕ ϕϕ
ϕ ϕ ϕ ϕ ϕ ϕ

⎛ ⎞
− = =⎜ ⎟+ + +⎝ ⎠

 

(d4) 2 1 1 23 / = / .A Aϕ ϕ −  

5. (a5) is the same as (a1); 
(b5) Qi (i=1, 2, 3, 4) are collinear, and the se-

quence is Q3, Q4, Q2, Q1; 
(c5)  

1 2 1 2
2 3

2 1 2 3 2 3 3

24 81 ;
3 (3 ) (3 )

A
C

ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

⎛ ⎞
− = =⎜ ⎟+ + +⎝ ⎠

 

(d5) 2 3 3 23 / = / .A Aϕ ϕ −  
 

Proof    At first, when the rational quartic Bézier 
curve in Eq. (3) is converted to the rational quartic DP 
curve, condition (1a) in Lemma 2 is equivalent in that 
the five control points Qi (i=0, 1, …, 4) of the curve in 
Eq. (4) are coplanar; i.e., condition (a1) holds. Also, 
by Eq. (6), Qi coincides with Pi (i=0, 2, 4) respectively, 
and then 
 

B2=A2.                               (11) 
 
As for the non-degenerate triangles ΔP0P1P2, 

ΔP0Q1P2, ΔP2P3P4, and ΔP2Q3P4 (Fig. 3a), according 
to Lemma 1 and Eq. (6), we have 

 

0 1 3

0 2 1 2 3

3 31 1

3 2 1 1 2 3

, 
(3 )(3 )

, .
3 3

B
A
D D
C C

ϕ ϕ
ϕ ϕ ϕ ϕ

ϕϕ
ϕ ϕ ϕ ϕ

⎧ =⎪ + +⎪
⎨
⎪ = =⎪ + +⎩

          (12) 

 
Next, we discuss the representation of condition 

3 in Lemma 2 when the curve in Eq. (3) is trans-
formed to the curve in Eq. (4). As shown in Fig. 2d, 
by Eqs. (6) and (12), conditions (3c) and (3d) in 
Lemma 2 are equivalent to conditions (c3) and (d3), 
respectively. To meet (3b) in Lemma 2, Q2 should be 
an internal point of division of the line segment Q0Q4. 
As P1 coincides with P3 and by Eq. (6), the condition 
that Q2 is on the line segment Q1Q3 or the extension of 
the line segment Q3Q1 is equivalent to condition (b3). 
As shown in Fig. 4b, by Eq. (6) and Lemma 1, we 
have 

 

2 1 2 1 2 131 1

2 1 2 1 2 3 2 3 2 3 3

, , .
3 3

A
A

ϕϕ
ϕ ϕ ϕ ϕ

= = =
+ +

P P P P P Q
P Q P Q P Q

 

 
Inserting the first two terms into the third term of the 
above formulae yields condition (e3) in Theorem 2. 
Therefore condition 3 in Lemma 2 is equivalent to 
condition 3 in Theorem 2. 



Hu et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2010 11(4):278-289 285

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Thirdly, we discuss the representation of condi-
tion 4 in Lemma 2 when the curve in Eq. (3) is trans-
formed to the curve in Eq. (4). As shown in Fig. 4c, as 
ΔP2P3P4 and ΔP2Q3P4 are non-degenerate, we sub-
stitute Eqs. (6), (11) and the second term of Eq. (12) 
into (4c) in Lemma 2, and replace ωi (i=1, 2, 3), B2 
and D1 by φi (i=1, 2, 3), A2 and C1 respectively, then 
obtain (c4) in Theorem 2. To meet (4b) in Lemma 2, 
Eq. (6) implies Qi (i=0, 1, 2, 3) are collinear, and the 
sequence is Q1, Q0, Q2, Q3; i.e., condition (b4) holds. 
Also, as P0 coincides with P1, (d4) in Theorem 2 holds 
by Eq. (6). Then condition 4 in Lemma 2 is equivalent 
to condition 4 in Theorem 2. 

To discuss the representation of condition 5 in 
Lemma 2 when the curve in Eq. (3) is converted to the 
curve in Eq. (4), we first observe Figs. 4c and 4d. It is 
easy to detect that the sequence of the control points 
in condition 4 in Lemma 2 is symmetric to the control 
points in condition 5 about the point P2. Therefore, by 
the equivalent condition 4 in Lemma 2, we deduce the 
corresponding equivalent condition 5 in Lemma 2. 
Specifically, the equivalent condition, condition 5 in 
Theorem 2, is obtained by replacing the subscripts 0 
and 1 by 4 and 3 respectively in condition 4 in Theo-

rem 2. 
As for conditions 1 and 2 in Lemma 2, whatever 

is the distribution of the control points of the rational 
quartic Bézier curve in Eq. (3) (Figs. 2a, 2b or 2c), 
according to Fig. 3a and Fig.4a, they all satisfy 
 

1 2 40 0 1 .D B D SΔ+ = + P P P                   (13) 

 
Also, by Eq. (6) and Lemma 1, we have 
 

1 2 4 1 2 4

1 3 2 11

2 1 2 1

( )
.

3 3
C A A

S S
ϕϕ

ϕ ϕ ϕ ϕΔ Δ

+ −
= =

+ +P P P Q Q Q  

 
Substituting the above formula, the first, and 

third terms of Eq. (12) into Eq. (13), and eliminating 
B0, D1, and 

1 2 4
SΔ ，P P P  we have the representation of D0 

in Eq. (9) by C1, C2, and Ai (i=0, 1, 2). Then, D2 is 
handled in a similar fashion to obtain Eq. (10). 

As for the condition (1b) about control points, 
we analyze the relationship between P1, P2, P3 and Q1, 
Q3 in Eq. (6). It is easy to convert (1b1) and (1b2) to 
the condition that Q2 is on the same side of the line 
Q0Q4 as the curve in Eq. (4), i.e., (b*); and convert 
(1b3) to the condition that Q2 is on the other side of the 
line Q0Q4 from the curve in Eq. (4), i.e., (b**). 

Finally, substituting Eqs. (9)–(13) to (1c)–(1e) or 
(2c)–(2e) in Lemma 2, we can obtain the conditions 
(c1)–(e1) and (c2)–(e2). Then conditions 1 and 2 hold. 

To sum up, the five cases above show that the 
theorem is proven. 

 
 

6  Algorithms for modeling conics in DP form 
 
For conciseness, we discuss the algorithms in the 

quartic case only.  
Algorithm 1 (Judge whether a rational quartic DP 
curve is a conic section)    A rational quartic DP curve 
with control points Qi and weights φi (i=0, 1, …, 4). 

Step 1: If Qi (i=0, 1, …, 4) satisfy (a1), then go to 
Step 2; else return ‘No’. 

Step 2: If Q2 is located on the line segment Q0Q4, 
then judge whether the control points and the weights 
satisfy (c3)–(e3). If so, return ‘Yes’; else go to Step 3. 

Step 3: If Qi (i=0, 1, 2, 3) are collinear and the 
sequence is Q1, Q0, Q2, Q3, judge whether the control 
points and the weights satisfy (c4)–(d4). If so, return 

Fig. 4  Relationship of the control points of curves in 
Eqs. (3) and (4) in the case of Figs. 1c–1f 

(c)                                           (d) 
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P2(Q2)
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‘Yes’; else go to Step 4. 
Step 4: If Qi (i=1, 2, 3, 4) are collinear and the 

sequence is Q3, Q4, Q2, Q1, judge whether the control 
points and the weights satisfy (c5)–(d5). If so, return 
‘Yes’; else go to Step 5. 

Step 5: If Q2 is on the same side of the line Q0Q4 
as the curve in Eq. (4), judge whether the control 
points and the weights satisfy (c1)–(e1) or (c2)–(e2). If 
so, return ‘Yes’; else go to Step 6. 

Step 6: If Q2 is on the other side of the line Q0Q4 
from the curve in Eq. (4), judge whether the control 
points, the weights satisfy (c1)–(e1) or (c2)–(e2). If so, 
return ‘Yes’; else return ‘No’.  

By Theorem 2, Algorithm 2 provides the rational 
quartic DP form of a given conic section. 
Algorithm 2    (Designing a given conic section in 
rational quartic DP form) 

Step 1: If the two end tangent lines are not par-
allel, calculate the corresponding control points Ri 
(i=0, 1, 2) and weights 1, u1, and u2 in rational quad-
ratic DP form. Considering the curve in Eq. (4) being 
in standard form, there are Q0=R0, Q4=R2, φ0=φ4=1, 
and go to Step 2; else go to Step 5. 

Step 2: Input the kind of the control points we 
need: conditions 1–5. If condition 1 or 3, go to Step 3; 
else go to Step 4. 

Step 3: Set 
2 2
2 1 2 2 1

2 1 2 2 1

1 4 1 4, ,
4 (1 ) 4 ( )

u u u u u
u u u u u

α β
+ − + −

= =
− −

 

2
1 2 2

2 2 2 2
1 2

12, (1 ) 2, .
4

uu u u u
u u

ξ η ψ− +
= + = + = −  

 
1. Condition 1, when u1>0, we choose a1>0 so 

that the positions of the control points are as (b*), if a1 
satisfies one of the following three situations: 

(1) If u1<min{1, u2}, then a1>max{α, β}; 
(2) If u1>max{1, u2}, then a1<min{α, β}; 
(3) If min{1, u2}<u1<max{1, u2}, then min{α, β} 

<a1<max{α, β}.  
We choose a1<0 so that the positions of the 

control points are as (b**), if a1 satisfies one of the 
following four situations: 

(1) If max{ξ2, u2
−1η2}<u1<min{1, u2}, then 

max{α, β, ψ}<a1<0; 
(2) If u1>max{1, u2, ξ, η}, then ψ<a1<min{α, β, 

0}; 

(3) If ( ){ }1 2
2 2 2 1max 1, , , 1 2 2u u u uη ξ− + − < <  

( ){ }2 2 2min , 1 2 2 ,u u u+ +  then max{β, ψ}<a1<α; 

(4) If ( ){ }2
2 2 2 1max , , , 1 2 2u u u uη ξ + − < <  

( ){ }2 2min 1, 1 2 2 ,u u+ +  then max{α, ψ}<a1<β. 

When −min{ξ, η}<u1<0, we choose a1 satisfying 
max{α, β}<a1<ψ, so that the positions of the control 
points are as (b*). 

The control points and weights are obtained us-
ing the following formulae: 

 

( )

1
1 2 0 1 1 1 2 2

1 1
1 2 1 1 2

2
0 1 1 2 1 2 2

2 2
1 1 2 2

2
0 1 1 2 1 2 1 2

3 2
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2
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(4 ) 4 (1 )
,

4 4 (1 )

4
,

1 4

4 ( 1) (4 1)
,

1 4 ( 1) (4 1)

4( ) ( ) 2,

(1 4 )/(6 ),

a u u a u
a u u a u

a u u u
a u u u

u a u u a
u a u u a

a u a u u u

a u u u u

ϕ

ϕ
ϕ

−

−

−

− + − −
=

− + − −

+ +
=

+ +

+ − − −
=

+ − − −

= + − − +

= + +

R R R
Q

R R R
Q

R R R
Q

2 2
3 1 1 2 1 1 2 2 2(4 4 4 1)/2 .u a u a u u u u

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ = + − − −⎩

     (14) 

 
2. Condition (3), if u1>max{ξ2, u2

−1η2}, then the 
positions of the control points are as (b3), and hence 
the weights and control points are obtained as  
follows: 

 

2
1 1 2 2 2

2
2 2 2

2
3 1 2 2

1 1
1 2 0 1 1 2 2 2 1 2

2 2
2 0 2 2 2

2 2
3 0 1 1 2 2 1 2

(4 1 )/(2 ),

(1 )/(6 ),

(4 1 )/(2 ),

( 4 )/( 4 ),

( )/(1 ),

( 4 )/(1 4 ).

u u u u

u u

u u u

u u u u u u

u u

u u u u

ϕ

ϕ

ϕ
− −

⎧ = − −
⎪

= +⎪
⎪ = − −⎪
⎨

= − + − +⎪
⎪ = + +⎪
⎪ = − + − +⎩

Q R R R

Q R R

Q R R R

 

 
Step 4: Convert the weights {1, u1, u2} to 

1 2{1, ,1}u u  by a linear parameter transformation t= 

( )2 (1 ) .s s u s+ −  Denote the new middle weight as 

u1. 
1. Condition 2, when u1>0, we choose a1>0 and 

b1≠0 satisfying 
 

0<2b1
2+2a1

2+(4a1b1+1)u1<4min{(b1+a1u1),(a1+b1u1)}. 
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Then the positions of the control points are as (bi), and 
the weights and control points are 
 

( )
( )

( )

2 2
1 0 1 1 1 1 1 1 1 0 1

2 2
2 1 1 1 1 0 1

2 2
3 1 1 1 1 1 1 1 0 1

2
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⎪
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⎪
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⎪
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Q

(15) 

where b0=1. 
If we choose a1<0 and b1 satisfying 0<2b1

2+ 
2a1

2+(4a1b1−1)u1<4min{−(b1+a1u1), (a1+b1u1)}, then 
the positions of the control points are as (b**), and the 
weights and control points are as Eq. (15), where 
b0=−1. 

When −1<u1<0, we choose a1>0 and b1 satisfy-
ing 0<2b1

2+2a1
2+(4a1b1+1)u1<4min{(b1+a1u1), (a1+ 

b1u1)}. Then the positions of the control points are as 
(b*), and the weights and control points are as Eq. (15), 
where b0=1. 

2. Condition 4, choose a1>0 satisfying 2a1
2+u1< 

4a1min{1, u1}. Then the positions of the control 
points are as (b4), and the weights and control points 
are 
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3. Condition 5, choose a1>0 satisfying 2a1
2+u1< 

4a1min{1, u1}. Then the positions of the control points 
are as (b5), and the weights and control points are 

( )

( )

2
2 21 1

1 1 1 1 1 2 3 1 1 1

2 2
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Step 5: Under these conditions, the curve is a 
semi-circle or semi-ellipse. Suppose the curve is ex-
pressed as x2/a2+y2/b2=1, with end parameter angles 
of θ, π+θ respectively. Input the kind of the curve we 
need: case 1 or case 2. Obviously the two control 

endpoints are 
cos cos

, .
sin sin

a a
b b

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

Case 1: Choose a1>ξ2min{1, u2
−1}, and then the 

weights are 1, 2a1−2ξ2, 2ξ2/3, 2a1u2−2ξ2, 1; and the 
other three middle control points are 
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1 2 2 2 1
1 1

1 2 2 1 2 2 2 1
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Case 2: Choose a1, and b1>0 satisfying 

max{(a1−1)2+b1
2, (b1−1)2+a1

2}<1, and then the 
weights are 1, 2(2b1−a1

2−b1
2), 2(a1

2+b1
2)/3, 

2(2a1−a1
2−b1

2), 1; and the other three middle control 
points are 
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7  Numerical experiments 
 
Example 1    Given a rational cubic/quartic DP curve, 
judge whether it is a conic section. 

1. The control points: (−1, 0), (−1.8759, 0.2190), 
(0.3861, 0.8911), (1.6752, −0.1911), and (1, 0); the 
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weights: 1, 0.9133, 0.6733, 1.0467, and 1. 
2. The control points: (−1, 0), (−3.1667, 

−0.8333), (−0.6176, 0.1471), (2.5286, 1.3571), and 
(1, 0); the weights: 1, 0.72, 1.36, 1.68, and 1. 

3. The control points: (−1, 0), (−0.4222, 1.0667), 
(0.9333, 0.8), and (1, 0); the weights: 1, 1.5, 2, and 
1.5. 

For case 1, according to Algorithm 1, as Q2 is on 
the same side of the line segment Q0Q4 as the curve, 
we check whether the control points and weights 
satisfy conditions (c1)–(e1) or (c2)–(e2). The directed 
areas needing to be calculated are 

 
A0=1.6572, A1=0.2190, A2=0.8911, A3=−0.1911, 

C1=0.2422, C3=0.5420. 
 

Obviously, conditions (c2)–(e2) hold. Thus, this curve 
is a conic section (Fig. 5a). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For case 2, according to Algorithm 1, as Qi (i=0, 

1, 2, 3) are collinear, and the sequence is Q1, Q0, Q2, 
and Q3, we check whether the control points and 
weights satisfy (c4)–(d4). The directed areas needing 
to be calculated are  

 
A1=−0.8333, A2=0.1471, C1=1.2101. 

 

Obviously, conditions (c4)–(d4) hold. Thus, this curve 
is a conic section (Fig. 5b). 

For case 3, according to Theorem 1, this curve 
satisfies case 1. To check whether it satisfies cases 2 
and 3, we calculate the following directed areas: 

 
T0=0.5333,  T1=0.8,  T2=1.0667,  T3=0.8. 

 
Obviously, for this curve, cases 2 and 3 hold. Thus, it 
is a conic section (Fig. 5c). 
Example 2    A semi-ellipse satisfies x2/25+y2/9=1 
and its two end parameter angles are π/4, 5π/4 re-
spectively. We will represent its rational quartic DP 
form. 

By Algorithm 2, we go directly to Step 5. 
Choose the kind of the curve as condition 2, and 
a1=1/3, b1=1/2, and then the control points are 
(3.5355, 2.1213), (5.6876, 2.3058), (−6.7991, 5.7112), 
(−11.2494, −4.4355), and (−3.5355, −2.1213), and the 
weights are 1, 1.2778, 0.2407, 0.6111, and 1 (Fig. 6). 

 
 
 
 
 
 
 
 
 
 
 
Example 3    Given a rational quadratic DP curve 
whose control points are (−1, 0), (0.2, 0.8), and (1, 0) 
and weights are 1, 1.5, and 0.5, we will represent it in 
rational quartic DP form. 

By Algorithm 2, if the curve belongs to condi-
tion 1, set a1=0.5, and then its weights are 1, 1.25, 
0.9167, 3.75, and 1, and control points are (−1, 0), 
(0.04, 0.96), (−0.1636, 0.4364), (0.5733, 0.96), and (1, 
0) (Fig. 7a). If the curve belongs to condition 2, set 
a1=−0.1, and then its weights are 1, 1.85, 0.3167, 4.95, 
and 1, and control points are (−1, 0), (0.8703, 1.4270), 
(−0.8526, −0.2526), (0.3859, 1.0182), and (1, 0) (Fig. 
7c). If the curve belongs to condition 5, then its 
weights are 1, 1.75, 0.4167, 4.75, 1, and the control 
points are (−1, 0), (0.7714, 1.3714), (−0.6, 0), (0.4105, 
1.0105), and (1, 0) (Fig. 7b). 
 

(a) 

(b) 

(c) 

Fig. 5  A rational quartic DP representation for a conic
section 

Fig. 6  A rational quartic DP representation for a 
semi-ellipse 
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