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Abstract: We improve inverse reinforcement learning (IRL) by applying dimension reduction methods to automatically extract
abstract features from human-demonstrated policies, to deal with the cases where features are either unknown or numerous. The
importance rating of each abstract feature is incorporated into the reward function. Simulation is performed on a task of driving in
a five-lane highway, where the controlled car has the largest fixed speed among all the cars. Performance is almost 10.6% better on

average with than without importance ratings.

Key words: Importance rating, Abstract feature, Feature extraction, Inverse reinforcement learning (IRL), Markov decision

process (MDP)

doi:10.1631/jzus.C0910486 Document code: A

1 Introduction

Given the reward function, there exist a number
of standard algorithms for finding an optimal or
near-optimal policy in Markov decision process
(MDP) formalism (Puterman, 1994), such as the
Q-learning method (Mitchell, 1997) in reinforcement
learning (Sutton and Barto, 1998). When the reward
function is unknown, which is often the case in prac-
tice, parameters need to be manually adjusted until
the best model emerges (Ng et al., 1999). To over-
come this difficulty, Ng and Russell put forward a
method called inverse reinforcement learning (IRL)
(Russell, 1998; Ng and Russell, 2000). Assuming that
the reward function was a linear combination of a
limited number of known features, they derived the
constraints of the so-called feature functions.

IRL is a kind of imitation learning. Most of the
imitation learning methods attempt to directly mimic
the demonstration, including those described by Po-
merleau (1989), Sammut et al. (1992), Hayes and
Demiris (1994), Kuniyoshi et al. (1994), and Amit
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and Mataric (2002). One notable exception is given
by Atkeson and Schaal (1997). They considered the
problem of having a robot arm follow a demonstrated
trajectory, and used a reward function that quadrati-
cally penalizes deviation from the desired trajectory.
Inspired by their work, Abbeel and Ng (2004; 2005)
turned the reward function learning problem into a
quadratic programming formulation, with the as-
sumption that any single-step deviation from expert’s
policy should be penalized as costly as possible.

IRL has had many successful applications, such
as aerobatic demonstrations of helicopters (Abbeel and
Ng, 2005; Coates et al., 2009), quadruped locomotion
over rough terrain (Rebula et al., 2007; Kolter et al.,
2008a; 2008b), and motion planning in parking lot
navigation (Abbeel et al., 2008). One weak point in all
these applications is the artificial selection of appro-
priate features for the reward function. Not only is the
quality of the features important to the special appli-
cations, but also the quantity. The number of the fea-
tures should not be too small to exclude major features,
while it should not be too large to make it incomput-
able. Usually, it takes time to choose the most signifi-
cant features, and further it is possible that not all of
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them can be completely discovered. In our method,
IRL is improved by applying dimension reduction
methods to automatically extract abstract features from
human-demonstrated policies, with the consideration
of the importance rating of these abstract features.

2 Preliminaries

A (finite-state) MDP is a tuple (S, A, T, 7, R),
where S is a finite set of states, A is a finite set of
actions, T: SxAxS > [0, 1] is the state transition
probability function, y<[0, 1) is the discount factor,

and R: S— R is the reward function.

A stationary stochastic policy has a mapping z":
SxA + [0, 1]. For any seS, aecA, the policy
z(s)=argmax=’'(s,a). Thus, a stationary policy

acA
(*policy’ for short), stochastic or non-stochastic, is a
mapping z: S+ A. The value function of policy = is:

V7™(s) =R(s) + ;/ZT(s,n(s), SW7(s).

The IRL’s objective is to find an appropriate
reward function that maximizes the difference be-
tween the value function of human-demonstrated
policy 7' and the optimal policy « generated by the
reinforcement learning (RL) method (Sutton and
Barto, 1998), starting from the state sq. At the begin-
ning of the algorithm, the reward function is ran-
domly chosen, and the first corresponding policy =
is obtained by RL. When the reward function is ad-
justed as follows, the second #™® can also be obtained.
If there are k different policies, 2%, 2, ..., z%,
available up to now, the objective is changed to first
select one of the policies that has the minimum dif-
ference from 7', and second to maximize that differ-
ence. The formal definition could be given by

max min
R jef01,2,-- k-

= RV
LT vIs) @
If the number of selected features is d, then the
number of corresponding feature functions is d as
well. The reward function is a linear combination of
the feature functions, which is the assumption of IRL:

R(S) = @ (S) + @, (S) +... + W, 4, (S) = ®" #(S), Where
¢ S [0, 1]% is the vector of feature functions over

states, and weR’, ||@||<1 is the coefficient vector.
The value function of policy z can be rewritten as

V7(s,)=o'E {Z y'é(s)| n} =o' u(x), (2
t=0
where u(x) is the so-called “feature expectation’:

()= E[i y‘¢<st)|n} R @

In the finite horizon case, the feature expectation
can be approximated to a vector of feature appearance
frequency. Thus, the feature expectation of optimal
policy 7 can be easily calculated.

From Egs. (1)—(3), the problem’s formulation
turns into a quadratic program (QP):

i * ()
T je{OTZ!-n,k—l}(wT () - p(="! ))) @
st e, <1.

Both the max-margin method and the projection
method can solve this QP. When a new reward func-
tion is determined, the new optimal policy 2 is ob-
tained accordingly. Then policy z% is put back into
Eg. (4), and the algorithm iteratively generates poli-
cies until the guaranteed convergence is reached.

The features could be picked in state-action pair
space, but the number of these features is too large. It
is wiser to extract abstract features from the hu-
man-demonstrated policies.

3 Algorithm

The policy features of complicated MDPs usu-
ally have high dimensions. It is reasonable to assume
that there exists a subspace which suffices to express
the characteristics of human-demonstrated policies,
because these policies constitute a very small part of
the whole policy space. The algorithm extracts new
dimensions from this subspace by principal compo-
nent analysis (PCA), and uses these dimensions as
new features.

Because the state space is finite, let |[S|=N, which
means there are N different states. Likewise, let |A|=M,
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which means there are M different actions. Our goal is
to find some abstract features (suppose the number is
d) to calculate the feature expectation g’ for any
policy =, such that

M = E{iw(%ﬂ(s))lﬂ} eR". (5)

Abstract features can be extracted from
state-action pairs. State-action pairs are good features
for IRL, but there will be NxM= initial features at
the maximum. Denoting @: SxA - [0, 1]° as the
vector of feature functions over a state-action pair,

and g“f as the feature expectation, their relation is
clear:

—E {i S (s, 7 (s, ))|7z} cR?.  (6)

t=0

Given 7 (zeN) human-demonstrated policies 7,

7, ..., T, the feature expectation matrix is 4‘9:
[Cﬁ{,{j{f] Using PCA, eigenvectors of

symmetric matrix ¢ must be calculated first. Eigen-
vectors are sorted by eigenvalues in descending order.
Those with large eigenvalues are chosen as the ab-
stract features. Experimentally, those constitute more
than 99.9% of the sum of eigenvalues are selected.
The number of abstract features is denoted as d.

Although these features are abstract, the feature
expectation is computable. For policy #’, the feature
expectation is

Wo=lene, e ] €2 -C7), ()

where ey, ey, ..., eq are d eigenvectors, and ¢ is the

mean vector of the feature expectation of ¢ human-
demonstrated policies:

_Q%ZE[ZM( ,,<st))|7r,,}. ®)

From Egs. (5)—(7), the vector of abstract feature
functions is

ps.n(s) =[e,, &, 8] Ba(S),  (9)
where the codomain of feature functions is extended:
¢ S [-1, 1]° Negative values stand for absence of
the corresponding feature, which can be regarded in
the reward function as negative reinforcement.

Different abstract features have different im-
portance ratings. By coincidence, those eigenvalues
are the natural indicators of importance. An eigen-
value is in essence the square of standard deviation
that implies the importance of extracted space di-
mension. So, the larger the eigenvalue, the more im-
portant the corresponding abstract feature. For this
reason, the new reward function is defined as

R(s,7(5)) = iy (5, () v, + @y, (5, m(5)\fev,

10
ot @y, (5,7(3)) eV, (10

where evy, ev,, ..., evq are d eigenvalues.

The modification of the reward function favors
the more important abstract features, and ignores the
less important. Abstract features with small eigen-
values are in fact omitted. This form of reward func-
tion explains why those eigenvectors can be deleted.
The unimportant abstract feature has negligible items
to be added in the reward function.

The algorithm continues with the projection
method until the guaranteed convergence is reached.

4 Experiments

The car driving simulation has the same user
interface as Abbeel’s, for an easier comparison
(Fig. 1). The car is driving on a highway at a fixed
speed, faster than all the other cars. Other cars are
driving in left, middle, and right lanes. This MDP has

9 8 7 6 5 4 3 2 1 0

| |
o rIN|lw b

Fig. 1 Highway driving simulation interface with 5 lanes
and 10 grids distance in lanes 1, 2, and 3
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five different actions, three of which cause the car to
steer smoothly to one of the lanes, and two of which
cause it to drive off (but parallel to) the road, on either
the left or the right side. Because the speed is fixed, it
is sometimes necessary to drive off the road if one
wants to avoid hitting other cars. So there are alto-
gether 5 lanes, including 2 off-road lanes, marked 0, 1,
2, 3, and 4 respectively. To describe a state, one needs
to know which lane the car is in, and the distances of
the closest car in each lane (no other cars in the two
off-road lanes). The distance to the car is discretized
uniformly into 10 grids (Fig. 1).

The number of total states is 5x10x10x10=5000.
If all the state-action pairs are considered as features,
the number is obviously very large (5000x5=25000).
Abstract features must be extracted.

The simulation was run at 10 Hz, and the feature
expectations were estimated from a single trajectory
of 1200 time steps (corresponding to 2 min of driving

time), standing for the finite horizon of the MDP.

A variety of driving styles were demonstrated so
as to see whether the algorithm could mimic the same
‘style’ in every instance. There were 19 different
driving styles generated by lab colleagues, as shown
in Table 1.

Some of the driving styles were selected to form
the space of human-demonstrated policies, and the
others were left as test sets. The experiment shown
here is a worst case with relatively complicated
driving styles (LM3 and RM3) chosen as test sets, and
17 others forming the demonstration space. Those
that constituted more than 99.9% of the sum of ei-
genvalues were selected. Thus, in this experiment, 11
eigenvectors (Fig. 2) were extracted as abstract fea-
tures. Note that there were four particularly large
eigenvalues, indicating the lane feature information.
It makes sense because four dimensions are enough to
express five lanes.

Table 1 Nineteen different driving styles generated by lab colleagues

No. Driving style Description
1 LN Drive mainly in the left lane, and avoid hitting cars. If nowhere to go, go off-road
2 MN Drive mainly in the middle lane, and avoid hitting cars. If nowhere to go, go off-road
3 RN Drive mainly in the right lane, and avoid hitting cars. If nowhere to go, go off-road
4 LA Always drive in the left lane, regardless of hitting cars
5 MA Always drive in the middle lane, regardless of hitting cars
6 RA Always drive in the right lane, regardless of hitting cars
7 LOA Always drive in the left off-road way
8 ROA Always drive in the right off-road way
9 LM1 Drive mainly in the left lane, and drive to the left off-road to avoid hitting cars from a close
distance. Then back to the left lane
10 LM2 Drive mainly in the left lane, and drive to the left off-road to avoid hitting cars from a far dis-
tance. Then back to the left lane
11 LM3 Drive mainly in the left lane, and avoid hitting cars. When overtaking, the middle lane is pre-
ferred. If the middle lane is dangerous (there will be a collision), go left off-road. If the left
lane is safe, go back to the left lane
12 MM1 Drive mainly in the middle lane, and avoid hitting cars. When overtaking, the left lane is pre-
ferred. Secondly, go left off-road. Thirdly, go to the right lane. Fourthly, go right off-road. If
the middle lane is safe, go back to the middle lane
13 MM2 Drive mainly in the middle lane, and avoid hitting cars. When overtaking, the right lane is
preferred. Secondly, go right off-road. Thirdly, go to the left lane. Fourthly, go left off-road. If
the middle lane is safe, go back to the middle lane
14 RM1 Drive mainly in the right lane, and drive to right off-road to avoid hitting cars from a close
distance. Then go back to the right lane
15 RM2 Drive mainly in the right lane, and drive to right off-road to avoid hitting cars from a far distance.
Then go back to the right lane
16 RM3 Drive mainly in the right lane, and avoid hitting cars. When overtaking, the middle lane is
preferred. Secondly, go right off-road. If the right lane is safe, go back to the right lane
17 LOB Drive mainly in the left off-road lane and hit as many left lane cars as possible
18 MB Drive mainly in the middle lane and hit as many other cars as possible
19 ROB Drive mainly in the right off-road lane and hit as many right lane cars as possible
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Fig. 2 The 11 eigenvalues for abstract features
Note that there were four particularly large eigenvalues,
indicating the lane feature information

The following two cases were compared by pol-
icy similarity in the 19 driving styles: (1) the original
algorithm without importance rating; (2) the modified
algorithm with importance rating.

Policy similarity is a measure of how well the
learned policy imitates the human-demonstrated pol-
icy. It equals the number of the same state-action pairs
in both policies divided by the total number of the
state-action pairs. The comparison results are shown
in Table 2 and Fig. 3.
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= Original |

Similarity
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Driving style index

Fig. 3 Similarities of learned policies for the 19 driving

styles (Table 1) in two learning cases, with the original

algorithm and with the modified algorithm

The modified algorithm was almost 10.6% better on average.

In learning complicated styles, the similarity was improving

Notice that the policy similarities of two test sets,
LM3 (No. 11) and RM3 (No. 16), were improving. As
well, other complex styles such as LN (No. 1), MN
(No. 2), MM1 (No. 12), MM2 (No. 13), RM1 (No.
14), and MB (No. 18) were also improving. The mean
performance of the modified algorithm was almost
10.6% better than that of the original.

Table 2 Comparison of the original algorithm and the
modified one between 11 abstract features

Driving Style similarity (%)
style Original algorithm  Modified algorithm

LN 67.50 88.50
MN 62.93 77.56
RN 73.91 70.05
LA 75.13 91.53
MA 73.40 75.00
RA 82.01 94.71
LOA 96.83 99.47
ROA 99.48 99.48
LM1 77.25 84.13
LM2 61.65 66.50
LM3" 73.68 85.26
MM1 72.25 80.38
MM2 66.17 86.57
RM1 58.67 72.96
RM2 83.01 86.47
RM3" 59.80 61.31
LOB 90.69 88.24
MB 78.82 93.10
ROB 89.85 94.42
Mean 75.95 83.98

“LM3 and RM3 were chosen as the test sets, while the others formed
the driving style subspace

Although the policy similarity cannot exactly
describe the closeness of two policies, the learning
results looked significantly better in our videos.

5 Conclusions

Our algorithm assumed that the reward function
is expressible as a linear function of some abstract
features that can be extracted from human-
demonstrated policies. It is worth incorporating the
importance rating of each abstract feature into the
form of the reward function.

Direct policy learning is inclined to lead one to
do the most frequent actions in a certain state. This
method, on the other hand, is not as short-sighted.
Despite the fact that the visited state-action pair re-
inforced in the reward function is favored in the cor-
responding generated policy, the algorithm empha-
sizes the long run effect, due to the use of the value
function. Another advantage is that although the
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number of used features is greatly reduced, the most
important information is still maintained.

Future work should examine whether there is a
better form of reward function than the linear one, and
how to make it rapid enough to learn policy online.
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