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Abstract:    Unsupervised anomaly detection can detect attacks without the need for clean or labeled training data. This paper 
studies the application of clustering to unsupervised anomaly detection (ACUAD). Data records are mapped to a feature space. 
Anomalies are detected by determining which points lie in the sparse regions of the feature space. A critical element for this 
method to be effective is the definition of the distance function between data records. We propose a unified normalization distance 
framework for records with numeric and nominal features mixed data. A heuristic method that computes the distance for nominal 
features is proposed, taking advantage of an important characteristic of nominal features—their probability distribution. Then, 
robust methods are proposed for mapping numeric features and computing their distance, these being able to tolerate the impact of 
the value difference in scale and diversification among features, and outliers introduced by intrusions. Empirical experiments with 
the KDD 1999 dataset showed that ACUAD can detect intrusions with relatively low false alarm rates compared with other  
approaches. 
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1  Introduction 
 

There are two kinds of intrusion detection sys-
tem (IDS): the misuse intrusion detection system 
(MIDS) and the anomaly intrusion detection system 
(AIDS). MIDS models the behavior of known attacks, 
and compares the object’s current behavior with these 
models. If there is a match, there is an attack. One 
main shortcoming of MIDS is that it can detect only 
known attacks. With the potential of detecting pre-
viously unknown attacks, AIDS is another important 
part of IDS and a necessary complement to MIDS.  

Traditional AIDS, also called supervised AIDS, 
models normal behavior of objects, and compares 
current behavior with these models. If there is a sig-

nificant deviation, there is an attack. Supervised 
AIDS needs to be trained with clean or labeled data. 
This greatly restricts its availability. In reality, there 
are neither clean nor labeled data. Classifying data 
manually is, however, very slow, expensive, and  
error-prone.  

To reduce the cost of deploying AIDS and to 
extend the availability of anomaly detection, the study 
of a new anomaly detection method, unsupervised 
anomaly detection, is becoming of interest. Unsu-
pervised anomaly detection can detect attacks without 
the need for clean or labeled training data.  

The application of clustering to unsupervised 
anomaly detection (ACUAD) is studied in this paper. 
A key element for unsupervised anomaly detection 
with a clustering method is the definition of the dis-
tance function between data records. The main 
shortcomings of current distance functions are: (1) 
some functions can calculate only the distance of 
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numeric features or nominal features, not both; (2) 
some functions compute the distance for both nu-
meric and nominal features, but in an unbalanced way; 
and, (3) distance functions have not considered the 
impacts of outliers introduced by attacks in unlabelled 
data. This paper deals with a distance framework for 
records with mixed numeric and nominal feature data. 
A heuristic method that computes the distance for 
nominal features is proposed, taking advantage of an 
important characteristic of nominal features, i.e., the 
probability distribution. Robust methods for mapping 
numeric features and computing their distance are 
proposed, these being able to tolerate the impact of 
the difference of feature values in scale, diversifica-
tion, and outliers introduced by intrusions. Empirical 
experiments with the KDD 1999 dataset (http://kdd. 
ics.uci.edu/databases/kddcup99/task.html) showed that 
ACUAD can detect intrusions with relatively low 
false alarm rates compared with other detection 
methods. 

 
 

2  Related works 
 

Leung and Leckie (2005) studied several 
methods of clustering for unsupervised anomaly in-
trusion detection. Principal component analysis (PCA) 
for data reduction and fuzzy adaptive resonance the-
ory (fuzzy ART) for the classifier were used for un-
supervised anomaly intrusion detection (Ismail et al., 
2008). Eskin (2000) presented a statistical mixture 
model for unsupervised anomaly detection. Eskin et 
al. (2002) also proposed two feature maps for map-
ping system call traces and network connection re-
cords to a feature space. Three algorithms, cluster, 
k-nearest neighbor (k-NN), and support vector ma-
chine (SVM), were used for detecting anomaly points 
in the feature space. Cansado and Soto (2008) used 
Bayesian networks for unsupervised anomaly detec-
tion. Kwitt and Hofmann (2007) employed PCA to 
detect anomalies in the measurements of certain net-
work traffic parameters. 

 
 

3  Fixed-width clustering algorithm 
 

There are two assumptions for unsupervised 
anomaly detection (Eskin et al., 2002). The first as-
sumption is that data records generated by normal 

activities are vastly outnumbered data records gener-
ated by attacks. The second assumption is that attack 
data records are qualitatively different form normal 
data records. If data records are mapped to a feature 
space, according to the second assumption, points of 
normal records and attack records will be in different 
areas of the feature space. With the first assumption, 
the areas of points of normal records will be dense, 
whereas the areas of points of attack records will be 
sparse. So, clustering algorithms can be used to de-
termine the sparse areas in the feature space. Data 
records with points in these areas are attacks. 

A fixed-width clustering algorithm partitions 
data records to clusters according to a distance 
threshold w, which is also called the ‘cluster radius’. 

The fixed-width clustering algorithm is as fol-
lows (Eskin et al., 2002). The first point is the center 
of the first cluster. For every subsequent point, if its 
distance to an existing cluster center is less than the 
cluster width w, it is added to that cluster. Otherwise, 
it is the center of a new cluster. The computing com-
plexity of the fixed-width clustering algorithm is 
O(kN), where k is the number of clusters, and N is the 
number of data records.  
 
 
4  Definition of the distance function 
 

The criterion of clustering is the distance be-
tween data records and clusters. Distance between a 
data record and a cluster is the distance between the 
data record and the center record of the cluster, so the 
definition of the distance function between data re-
cords is critical.  

Suppose data record set E={E1, E2, …, EN}. 
Every record in E is described by p numeric feature 
(X1, X2, …, Xp). Ei=(xi1, xi2, …, xip) and Ej=(xj1, xj2, …, 
xjp) are two records of E. Then in the feature space 
with straightforward mapping, the distance between 
Ei and Ej is 

2

1

( , ) ( )
p

i j ik jk
k

d x x
=

= −∑E E .              (1) 

 
Eq. (1) is the method of calculating the distance 

between two points in the Euclidean space, also called 
the ‘Euclidean distance function’. But it cannot be 
used to calculate the distance between data records in 
unsupervised anomaly detection. First, Eq. (1) can 
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deal only with records with numeric features. In un-
supervised anomaly detection, data records (such as 
network connections) have both numeric features 
(such as bytes transferred and duration of connection) 
and nominal features (such as the application layer 
protocol, flag, etc.). Second, Eq. (1) does not consider 
the difference of values in scale, diversification 
among features, and outliers introduced by intrusions. 

It is clear from the above discussion that the 
Euclidean distance function cannot be used directly in 
unsupervised anomaly detection. A distance function 
suitable for unsupervised anomaly detection should 
have the following characteristics. First, it should 
have a framework to calculate distances for both 
numeric features and nominal features, and do so in a 
balanced manner. Second, there should be a dis-
criminative method that computes the distance for 
nominal features. Third, there is a need for robust 
methods for mapping numeric features to the feature 
space and calculating their distance while at the same 
time being able to tolerate the impact of the difference 
of feature values in scale, diversification, and outliers 
introduced by intrusions.  

4.1  Distance framework for data records 

Suppose data record set E={E1, E2, …, EN}.  
(X, Y)=(X1, X2, …, Xp, Y1, Y2, …, Ym) represents a 
data record with p numeric features and m nominal 
features. For a data record, numeric feature Xk (k∈{1, 
2, …, p}) has a real value. Every nominal feature Yk 
(k∈{1, 2, …, m}) has a domain of category values 
DOM(YK). Records Ei and Ej can be represented as 

 

1 2 1 2( , , , , , , , )i i i ip i i imx x x y y y= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅E , 

 1 2 1 2( , , , , , , , )j j j jp j j jmx x x y y y= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅E . 
 
Similar to the format of the Euclidean distance, 

the distance between data records Ei and Ej is defined 
as 

2 2

1 1
( , ) ,

p m

i j ik jk ik jk
k k

d x x y y
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= − + −∑ ∑E E     (2) 

 

where 2
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−∑  is the quadratic sum of dis-

tances of all numeric features, and 2

1
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m

ik jk
k

y y
=

−∑  is 

the quadratic sum of distances of all nominal features. 

Eq. (2) is a distance function framework between 
two data records with numeric and nominal feature 
mixed data. The distance of numeric and nominal 
features will be discussed in the following sections.  

4.2  Distance of numeric features 

With straightforward mapping, the contribution 
of numeric features to the squared distance between 
two records Ei and Ej is 

 

∑∑
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In view of the difference of values in scale and 

diversification among attributes, with straightforward 
mapping, contributions of some features are signifi-
cantly larger than those of other features. This will 
result in using features in an unbalanced way. To 
balance the impact of different features on the dis-
tance between records, a feature mapping method 
instead of straightforward mapping, should be used. 

One possible mapping method is normalization. 
Finding the maximum value of a feature, all values of 
this feature are normalized to this maximum value. 
By doing so, all feature values will be mapped to 
interval [0, 1]. But normalization has drawbacks 
when used in unsupervised anomaly detection. If 
there is a large value introduced by mistake or attacks, 
most values will be mapped to a very narrow interval. 
In unsupervised anomaly detection, it is not infre-
quent to have large outliers. So normalization map-
ping is not suitable for unsupervised anomaly  
detection. 

Another feature mapping method is ‘standardi-
zation’. In this method, for a feature, all values are 
will be normalized to the number of standard devia-
tion away from the mean. Suppose dataset E={E1, 
E2, …, EN} has N records. Values of feature Xk in E 
form a dataset {x1k, x2k, …, xNk}. uk and σk are the 
mean and standard deviation of Xk, respectively. Then 
value xik (i∈{1, 2, …, N}), after standardization, is 

 

ik k

k

x u
σ
−

.                             (4) 

 
For a dataset, the mean is a location estimator, 

and the standard deviation is a scatter estimator. The 
mean and standard deviation can be used to describe 
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an approximately normal dataset, since 99.7% of data 
are within the distance of three times standard devia-
tion from the mean. The mean and standard deviation 
are more robust than the extremum. Mapping a fea-
ture based on its mean and standard deviation is more 
reasonable than based on its extremum.  

Although the mean and standard deviation can 
be good estimators for a normal dataset, they are not 
robust estimators for unsupervised anomaly detection 
because their values can change dramatically in the 
presence of outliers introduced by attacks. 

The median is a more robust location estimator 
of a dataset than the mean. Sorting a dataset {x1k, 
x2k, …, xNk} from smallest to largest, the one in the 
middle is the median. Note that at least 50% of the 
observations in the dataset would have to be con-
taminants before the median would become arbitrar-
ily large or small. Conversely, a single outlier intro-
duced by attacks can significantly affect the mean.  

Shorth, standing for the ‘shortest half’, is a 
scatter estimator more robust than the standard de-
viation. shorth is computed as follows (Knorr, 2002). 

Step 1: Sort dataset {x1k, x2k, …, xNk} from 
smallest to largest, and obtain dataset {x(1}k, x(2)k, …, 
x(N)k}, where x(1)k is the smallest, and x(N)k is the  
largest. 

Step 2: For j=1 to N/2, compute Dj=x(j+N/2)k−x(j)k.  
Step 3: Select the minimum value from Dj (j∈{1, 

2, …, N/2}), Dm for example. 
Step 4: shorthk=0.75×Dm. 
Similarly, at least 50% of the observations in the 

dataset would have to be contaminants before shorth 
would become arbitrarily large or small. Thus, in 
unsupervised anomaly detection, shorth is a more 
robust scatter estimator than the standard deviation 
when there are outliers introduced by attacks. 

Suppose the median and shorth of feature Xk are 
mediank and shorthk, respectively. Then value xik, after 
standardization based on median and shorth, is 

 
median

shorth
ik k

k

x −
.                          (5) 

 
After being standardized with expression (5), the 

contribution of all numeric features to the squared 
distance between data records Ei and Ej is 

2
2

1 1
.
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4.3  Distance of nominal features 

In Eq. (2), the contribution of nominal features to 
the squared distance between records Ei and Ej is 

 

∑
=

−
m
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jkik yy

1

2
.                       (7) 

 
According to the definition of a data record, each 

nominal feature Yk (k∈{1, 2, …, m}) has a category 
that belongs to DOM(Yk). Assuming there are nk 
categories in DOM(Yk), i.e., 
 

,1 ,2 ,DOM( ) { , ,..., },
kk k k k ny y yY =            (8) 

 
we can map the value of feature Yk of a record to an 
nk-dimensional space kn . If the category of feature 
Yk of the record is yk,j (j∈{1, 2, …, nk}), then it has a 
coordinate of 1 in the jth dimension in space ,kn  all 
other coordinates being 0. For example, assuming the 
category of feature Yk of record Ei is yik=yk,2, its co-
ordinate in space kn  is (0, 1, 0, ⋅⋅⋅, 0). Similarly, 
assuming the category of feature Yk of record Ej is 
yjk=yk,2, its coordinate in space kn  is also (0, 1, 0, ⋅⋅⋅, 
0). Then, the distance between yik and yjk is 

 

2 2 2 2(0 0) (1 1) (0 0) ... (0 0) 0.

ik jky y−

= − + − + − + + − =
 

 
If yjk≠yk,2, for example, yjk=yk,3, its coordinate in 

space kn  is (0, 0, 1, 0, ⋅⋅⋅, 0). Then the distance be-
tween yik and yjk is 

 

2 2 2 2 2(0 0) (1 0) (0 1) (0 0) ... (0 0)

2.

ik jky y−

= − + − + − + − + + −

=
 

From the above discussion, we have  
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Eq. (9) does not consider the relative frequency 
of categories of a nominal feature. Category distribu-
tion is an important characteristic for a nominal fea-
ture. Since for unsupervised anomaly detection, 
normal data records vastly outnumber attack records, 
categories of low frequency should be introduced by 
attack records, or conversely, categories of high fre-
quency should be introduced by normal records. To 
partition normal records and attack records in the 
feature space, Eq. (9) should be multiplied by a coef-
ficient α, which is related to the category distribution 
of a nominal feature. 

The coefficient α should make two records with 
high frequency categories of nominal features closer, 
and two records with low frequency categories further. 
Suppose there are two record pairs {Ei, Ej} and {El, 
Em}. Their categories of nominal feature Yk are yik, yjk, 
ylk, and ymk. The numbers of occurrences of these 
categories in record set E are , , , and ,

ik jk lk mky y y yn n n n  

respectively. Then, 
 

ik jk lk mky y y y ijk lmkn + n > n + n α < α .⇒        (10) 

 
The times of occurrence of categories yik and yjk 

in record set E is ,
ik jky yn n+  and the probability hav-

ing these categories is ( ) / ,
ik jky yn n N+  where N is the 

number of records in E. The distance between yik and 
yjk should be an inverse ratio of their occurrence 
probability, so α is defined as 

 

.
ik jk

ijk
y y

Nα
n n

=
+

                       (11) 

 
Combining Eqs. (9) and (11), the contribution of 

nominal features to the squared distance between 
records Ei and Ej is 

 

2
0,                ,

2 , .
ik jk

ik jk

ik jk
ik jk

y y

y y
Ny y y y
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       (12) 

 
Now we can analyze the relative scale of dis-

tances for numeric and nominal features.  
For numeric features, the standardization 

method used is (x−median)/shorth. Since there are no 

existing methods for analyzing its value, we can 
analyze distance scale mapping with (x−u)/σ instead. 
For random variables with a normal or approximately 
normal distribution, these two methods have similar 
value scales.  

Suppose the values of numeric feature X obey a 
normal distribution. Then 68.3% of values satisfy 
|x−u|<σ, and 95.4% values conform to |x−u|<2σ. Af-
ter standardization with (x−u)/σ, there are 68.3% of 
values in interval (−1, 1), and 95.4% of values in 
interval (−2, 2). Thus, there are 46.6% of distance for 
numeric features in interval (0, 2), and 91% of dis-
tance in interval (0, 4). 

For a nominal feature, according to Eq. (12), 
when values are different, the distance is 

2 ( )
ik jky yN n n+ , which is a value larger than 2.  

From the above discussion, we can see that nu-
meric and nominal features have roughly the same 
distance scale.  

 
 

5  Experimental results and analysis 
 
The KDD (1999) dataset is a widely used 

benchmark for IDS evaluation. The dataset contains 
4 898 431 network connection records. The propor-
tion of attack records to normal ones in the dataset is 
very large. We generated the experimental dataset 
from the KDD data with the records whose feature 
‘logged in’ is ‘1’ (connections logged in successfully). 
The resulting dataset contains totally 703 066 records, 
among which 3377 records are attacks. 

Each record is described with 34 numeric fea-
tures and 7 nominal features. Numeric features are 
duration, src_bytes, etc. Nominal features are proto-
col_type, service, etc. The KDD 1999 dataset has 
both normal data records and attacks. There are 24 
attack types, falling into four main categories: DoS 
(denial of service), R2L (remote to local), U2R (user 
to root), and PROBE. 

We used 7 numeric features and 2 nominal 
features among the whole 41 features for intrusion 
detection. The 7 numeric features are duration, 
src_bytes, dst_bytes, count, srv_count, dst_host_ 
count, and dst_host_srv_count. The 2 nominal fea-
tures are service and flag. Within the 9 features used, 
duration, src_bytes, dst_byte, service, and flag are 
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basic features of network connections, and count, 
srv_count, dst_host_count, and dst_host_srv_count 
are traffic features computed using a 2-s time window. 

Table 1 is the test results in Eskin et al. (2002) 
and of our method ACUAD. Eskin et al. (2002) pre-
sented three unsupervised detection algorithms: 
cluster, k-NN, and SVM. ACUAD was tested with 
clustering threshold w=450 and w=500, respectively. 
Fig. 1 is the ROC (receiver operating characteristic) 
curves of these algorithms. Since ACUAD with 
w=450 and w=500 had almost the same test results, 
they were overlapped with each other to form a single 
curve. Fig. 1 shows that ACUAD had higher detection 
rates and lower false alarm rates than the algorithms 
described in Eskin et al. (2002).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Anomaly intrusion detection will be affected by 
the attack rate in the data as a whole. This is because 
one main assumption of anomaly intrusion detection 
is that data records generated by normal activities 
vastly outnumber data records generated by attacks. 
We still need to make sure ACUAD is robust with 
respect to the attack rate. Four sets of experiments 
were conducted with attack rates of 0.48%, 2.4%, 
4.6%, and 8.8%. The test results are shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Test results of the algorithms proposed in Eskin 
et al. (2002) and our proposed ACUAP* 

Algorithm Detection rate & false alarm rate (%)**

Cluster (93, 10), (66, 2), (47, 1), (28, 0.5) 
k-NN (91, 8), (23, 6), (11, 4), (5, 2) 
SVM (98, 10), (91, 6), (67, 4), (5, 3) 
ACUAD, w=450 (93, 6.9), (80.9, 3.3), (68.6, 0.9),  

(60, 0.8), (12.8, 0.6), (5, 0.4) 
ACUAD, w=500 (94.6, 7.6), (82, 3.3), (68.6, 0.8),  

(62.2, 0.7), (15.5, 0.5) 
* Data for Cluster, k-NN, and SVM are adopted from Eskin et al. 
(2002). ** In (a, b), a is the detection rate (%) and b is the corre-
sponding false alarm rate (%). k-NN: k-nearest neighbour; SVM: 
support vector machine; ACUAD: application of clustering to un-
supervised anomaly detection. w is the clustering threshold 

Table 2  Test results of ACUAD with different attack rates (r1–r9)

Detection rate & false alarm rate (%)* Cluster 
width r1=0.48% r2=2.4% r3=4.6% r4=8.8% r5=12.6% r6=16.2% r7=27.9% r8=43.6% r9=60.7%

   (93, 6.9) (94.1, 7.2) (95.6, 8.5) (91.7, 9.8)    (93, 9.5)   (81.5, 17.2) (99.6, 21.3)  (99.3, 23.0) (53.5, 22.3)

(80.9, 3.3) (82.2, 3.2) (84.9, 4.1) (68.6, 1.0) (68.6, 1.0) (77.9, 8.4) (53.5, 21.3)  (52.9, 23.0) (21.1, 15.5)

(68.6, 0.9) (68.4, 0.8) (68.6, 0.9) (22.7, 1.0) (21.2, 0.8) (32.7, 2.6) (31.2, 17.4) (31.2, 19.2) (19.7, 15.2)

   (60, 0.8) (21.8, 0.8) (22.1, 0.8) (20.2, 0.8) (15.2, 0.7) (23.4, 0.8)  (24, 1.9) (15.5, 10.7) (8.9, 6.7)

(12.8, 0.6) (16.1, 0.7) (14.6, 0.8) (14.9, 0.7)      

w=450 

     (5, 0.4)   (6.3, 0.6)   (8.6, 0.8)  (9.2, 0.7)      

(94.6, 7.6) (94.8, 7.9) (95.6, 8.4) (91.5, 5.1) (92.9, 5.9)   (73.4, 15.8) (99.6, 21.3) (54.4, 21.8) (53.5, 22.3)

   (82, 3.3) (83.6, 3.5) (84.9, 3.8) (68.5, 0.9) (68.6, 0.7) (68.5, 0.8) (54.4, 21.3) (28.8, 16.4) (18.6, 15.1)

(68.6, 0.8) (68.6, 0.9) (68.6, 0.8) (21.6, 0.8) (21.5, 0.7) (21.8, 0.8) (47.1, 14.5)   (12.7, 9.5) (7.8, 6.7)

(62.2, 0.7)    (22, 0.9) (21.3, 0.7) (14.1, 0.7) (10.6, 0.6) (10.8, 0.7) (14.5, 14.5)  (11.7, 11.7) (3.7, 0.5)

w=500 

(15.5, 0.5) (16.3, 0.8) (17.9, 0.7) (10.7, 0.7)      
* In (a, b), a is the detection rate (%) and b is the corresponding false alarm rate (%). ACUAD: application of clustering to unsupervised 
anomaly detection. w is the clustering threshold. For r1–r9, the numbers of attacks are all 3377, and the numbers of the total records are 703 066, 
143 315, 73 346, 38 361, 26 700, 20 869, 12 123, 7750, and 5563, respectively 

Fig. 1  Receiver operating characteristic (ROC) curves 
of the different algorithms 
k-NN: k-nearest neighbour; SVM: support vector machine; 
ACUAD: application of clustering to unsupervised anomaly 
detection 
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Table 2 shows that when the attack rate was not 
larger than 12.6%, the false alarm rate changed little 
as the attack rate changed. This means that ACUAD is 
robust enough with respect to the attack rate. At the 
same time, there were some circumstances in which 
the performance of ACUAD worsened. For example, 
when the attack rate increased from 12.6% to 16.2%, 
the detection rate decreased from 93% to 81.5%, and 
the false alarm rate increased from 9.5% to 17.2%. 
Also, when the attack rate increased from 43.6% to 
60.7%, the detection rate decreased from 99.3% to 
53.5%, although the false alarm rate changed little, 
with 23.0% and 22.3%, respectively. This is resulted 
from the characteristics of cluster algorithms. When 
the attack rate reaches a certain level, clusters with 
attacks cannot be differentiated from clusters of 
normal data. 

 
 

6  Conclusions 
 
We study ACUAD, an application of clustering 

to unsupervised anomaly detection. With ACUAD, 
data records are mapped to a feature space. Anoma-
lies are detected by determining which points lie in 
the sparse regions of the feature space. Key elements 
for this method to be effective are feature mapping 
approaches and the definition of a distance function. 
We propose a unified normalized distance function 
framework for records with numeric and nominal 
feature mixed data, and use these two kinds of feature 
in a balanced manner. A heuristic method that com-
putes the distance for nominal features is proposed. 
This method takes advantage of an important char-
acteristic of nominal features, their probability dis-
tribution. Robust methods for mapping numeric fea-
tures and computing their distance are proposed,  
 

 
 
 
 
 
 
 
 
 
 

and these can tolerate the impact of the difference of 
values in scale, diversification among features, and 
outliers introduced by intrusions. Empirical experi-
ments with the KDD 1999 dataset showed that 
ACUAD can detect intrusions at relatively low false 
alarm rates compared with other approaches. 

Future work includes on-line intrusion detection 
with clusters formed by ACUAD as the detection 
models, and methods that can find the clustering 
threshold automatically. 
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