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Abstract: A novel sifting method based on the concept of the ‘local centroids’ of a signal is developed for empirical
mode decomposition (EMD), with the aim of reducing the mode-mixing effect and decomposing those modes whose
frequencies are within an octave. Instead of directly averaging the upper and lower envelopes, as suggested by the
original EMD method, the proposed technique computes the local mean curve of a signal by interpolating a set of
‘local centroids’, which are integral averages over local segments between successive extrema of the signal. With the
‘centroid’-based sifting, EMD is capable of separating intrinsic modes of oscillatory components with their frequency
ratio ν even up to 0.8, thus greatly mitigating the effect of mode mixing and enhancing the frequency resolving
power. Inspection is also made to show that the integral property of the ‘centroid’-based sifting can make the
decomposition more stable against noise interference.
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1 Introduction

Time frequency analysis has been one of the
major topics in modern signal processing, and has
become an indispensable tool. Among the various
techniques for time-frequency analysis are the spec-
trogram and the Wigner distribution (Cohen, 1989;
Hlawatsch and Boudreaux-Bartels, 1992), both of
which have been intensively studied and most widely
applied in diverse areas of engineering science in re-
cent decades. The prerequisites for applications of
these techniques are the linearity and, at least short
time, stationarity for signals to be analyzed, which
confines the applicability in many real situations. In
fact, a vast number of deterministic systems and as-
sociated signals are intrinsically nonlinear or even
exhibit chaoticity, implying the impertinence of the
mathematical view of expanding them as the linear
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superposition of a series of a priori orthogonal base
functions. On the other side, the complexity of real
systems and the unpredictability of external distur-
bances and fluctuations usually render the generated
signals highly nonstationary, at least on some long
time scales. A typical example is the human voicing
system and the produced speech, which manifests
high stochasticity, e.g., between transitions of suc-
cessive syllables. All these necessitate some concep-
tually new time-frequency techniques devised specif-
ically for processing signals that are both nonlinear
and nonstationary. The recently developed Hilbert-
Huang transform (HHT) (Huang et al., 1998) seems
sufficient for the purpose.

The essence of HHT is the empirical mode de-
composition (EMD) by means of a process called
sifting. With EMD, any signal, whether linear or
nonlinear, is disintegrated into a sequence of the
so-called intrinsic mode functions (IMF) that char-
acterize the underlying dynamics and evolution of
the system generating the signal. Acting as base
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functions in decomposition, IMFs seem to be the
counterpart of a predefined set of orthogonal func-
tions like those used in Fourier analysis, but it can
well reflect local temporal variations, and are fully
data or signal specific. These features further make
HHT not only capable of coping with nonstationary
signals, but also highly adaptive in general signal
processing (Huang and Wu, 2007). Although still in
its developing state, HHT has already demonstrated
its remarkable power in a number of applications
(Huang et al., 2001; Liang et al., 2000; Schlurmann
et al., 2001; Messina, 2009).

However, aside from the lack of a perfect mathe-
matical foundation, the HHT methodology also faces
a number of problems to be resolved in algorithm im-
plementation and application.

One of the major problems is mode mixing or
scale mixing, by which a decomposed IMF may con-
tain more than one intrinsically different oscillation
of distinct time scales, directly violating the belief
that an IMF characterizes the unique dynamic be-
haviors on a particular time scale. The mode mixing
due to intermittent interference of considerably high
frequency can easily be handled, say, by introducing
an additional criterion in sifting, as was discussed by
Huang et al. (1999). The more difficult to handle is
the mixing between oscillatory modes, with their fre-
quency ratios ν greater than 0.6 and less than 1/0.6
(Datig and Schlurmann, 2004; Rilling and Flandrin,
2008). To break through this limitation, a number
of approaches have been undertaken, for example,
the use of the alternate extrema for the envelopes
(Huang et al., 1999), the bandwidth criterion for
IMF (Xuan et al., 2007), the masking signal (Deering
and Kaiser, 2005; Deering, 2006; Senroy et al., 2007;
Laila et al., 2009; Messina, 2009), the heuristic search
optimization approach (Kopsinis and McLaughlin,
2008a), and doubly-iterative sifting (Kopsinis and
McLaughlin, 2008b), all showing their advantages in
alleviating the effect. However, some of these ap-
proaches need to assume a set of a priori operations
before decomposition, which would spoil the adap-
tivity that the original EMD method features. Also,
the limited improvement of these approaches some-
times does not satisfy practical applications.

Another non-trivial problem is relevant to the
robustness of the EMD algorithm against noise dis-
turbance, originated from either computation or
some external sources. The currently available sift-

ing methods depend highly on the detection of char-
acteristic points of a signal in order to estimate the
local mean curve, which is actually the signal con-
stituents that vary on some longer time scales. This
might cause serious problems like susceptivity to the
error of detection, the low ability of noise resistance,
etc., leading to instability of sifting iterations, and
thus, resulting in incorrect decomposition or even
creating spurious IMFs or totally meaningless IMFs.

In an attempt to reduce the mode-mixing ef-
fect and construct a stable decomposition, here we
propose an alternative sifting method for EMD by
introducing the concept of ‘local centroids’ of a sig-
nal and employing the ‘local centroids’ for estimating
the local mean curve.

2 Problem

EMD is based on the reconstruction of the local
mean x̄(t) of a signal x(t), a concept that is highly
relevant to characteristic time scales implicated in
the signal. A truly local mean x̄(t) should contain
only those components of x(t) that vary on longer
time scales than the IMF just being extracted. Then
there raises a critical issue: how to obtain an ade-
quate x̄(t) in practice?

In the original EMD (Huang et al., 1998), the
sifting retains the component of x(t) with time scale
of the order of time lapses between successive ex-
trema of x(t), while the curve of x̄(t) was assumed
to be the arithmetic average of the lower and upper
envelopes which are computed by interpolating min-
ima and maxima of x(t), respectively. Estimating
x̄(t) in this way may cause problems like undershoot,
overshoot, instabilities to noise, and error of detec-
tion of extrema. In particular, the sifting would ren-
der it impossible to decompose intrinsically different
modes whose frequencies fall in an octave.

To illustrate this, we take a classic nonlinear
model, the Duffing equation, as an example:

d2x

dt2
+ x+ εx3 = γ cos(ωf t), (1)

where ε is a nonlinear parameter, and γ and ωf are
the driving amplitude and angular frequency, respec-
tively. By integrating Eq. (1) with the standard
Runge-Kutta algorithm, the numeric solution can be
easily obtained. Here we set ε = −1.1, γ = 0.02, and
ωf = 0.45, so that the oscillator that is subject to a
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nonlinear restoration by a soft spring not only is of
high nonlinearity, but also is strongly forced. Fig. 1
shows the time waveform evolving from x(0) = 0.9

and x′(0) = 0, and its FFT spectrum X(ω). From
the spectrum one can read that the nonlinear eigen-
frequency ω0 ≈ 0.64, considerably smaller than the
linear one at ω = 1, indicating that the forced motion
of the oscillator is highly nonlinear.
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Fig. 1 Response of the Duffing oscillator (a) and its
fast Fourier tranform (FFT) spectrum (b)

Undoubtedly, the two dominant spectral peaks
of comparable strengths are distinct oscillatory
modes, one being the eigenmode of the nonlinear
oscillator of frequency ω = ω0, and the other the
forced oscillation of frequency ω = ωf . One perhaps
needs to separate them from each other for further
analysis. Nevertheless, as shown in Fig. 2, EMD
fails to do so. The first decomposed, IMF1, is al-
most identical to the original x(t), both in waveform
and spectrum (omitted here). The second, IMF2,
much smaller in amplitude, has the spectrum dom-
inated neither by the ω0 nor by the ωf mode. An
FFT analysis turns out that the dominant spectral
peak of IMF2 is located at ω = 2ωf − ω0 = 0.26, a
subharmonic induced by nonlinear coupling between
the 2ωf superharmonic and the ω0 eigenmode. The
third, IMF3, with even lower frequency, is actually
negligible.

For this example, the frequency ratio of the two
dominant components ν = ωf/ω0 ≈ 0.7031, which is
within an octave. In fact, in EMD x(t) is regarded as
a single IMF which is almost indecomposable. This
not only limits the frequency resolving power of the
decomposition, but also induces ambiguity in uncov-
ering the associated physics. It shows the necessity
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Fig. 2 Decomposition of the Duffing signal by the
original empirical mode decomposition (EMD)

of an improved or alternative EMD method to reduce
the mode-mixing effect.

3 Local centroids and sifting

The key step for the IMF decomposition is the
estimation of the local mean curve x̄(t) of a signal
x(t). The concept of ‘local mean’ is somewhat bewil-
dering. Mathematically it should exist at any time
t, reflecting the temporal fluctuation of the varying
background on which the fast oscillation rides. On
the other hand, it is relevant to a time scale τ that
is being considered and analyzed; that is, it should
vary much more slowly such that it nearly keeps con-
stant on the time scale τ on the order of the period
of fast oscillation. Bearing in mind this subtlety, we
realize that x̄(t) could be formulated in such a way
as to assume a kind of average over the time scale τ .
Then it is quite natural and seems more reasonable
for x̄(t) to be estimated by the local ‘centroid’ of the
curve of x(t) within the time scale τ .

Let (tk, xk) denote the kth local extremum
of x(t), with · · · < tk−1 < tk < tk+1 < · · ·
(k = 0, 1, 2, · · · ). The sequence, (tk, xk), consists
of interlaced minima and maxima, for instance, the
minima with odd k and the maxima with even k.
Accordingly, x(t) is divided into a sequence of signal
segments Ck, t ∈ (tk, tk+1), for k = 0, 1, 2, · · · , each
being monotonically increasing or decreasing in time.
Then, for each Ck, we can define its ‘mass center’ or
‘centroid’, (t̄k, x̄k), a concept directly borrowed from
classic mechanics:

(t̄k, x̄k) =
1

lk

∫
Ck

(t, x)ds, lk =

∫
Ck

ds, (2)
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as if the segment Ck of length lk, from a minimum
(maximum) (tk, xk) to the nearest neighboring max-
imum (minimum) (tk+1, xk+1) on the (t, x) plane,
were mass-bearing, with uniform mass density in the
2D space. Explicitly, Eq. (2) can be expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̄k =
1

lk

∫ tk+1

tk

x(t)
√

1 + x′(t)2dt,

t̄k =
1

lk

∫ tk+1

tk

t
√
1 + x′(t)2dt,

(3)

with

lk =

∫ tk+1

tk

√
1 + x′(t)2dt.

We thus obtain a sequence of local ‘centroids’,
(t̄k, x̄k), k = 0, 1, 2, · · · , for x(t). Obviously the ‘cen-
troids’ (t̄k, x̄k) thus defined should locally reflect the
mean values of monotonically changing segments Ck

of x(t). By interpolating the discrete set of data,
e.g., by the cubic spline, we obtain a well-behaved
smooth curve which is taken as the local mean curve
x̄(t). The remaining work for sifting is exactly the
same as originally developed by Huang. We thus
refer readers to Huang et al. (1998) for details.

Note that, for a discrete signal, after a search
for extrema (minima and maxima), we can use the
numerical methods such as the trapezoid rule to cal-
culate Eq. (3) easily, with the involved derivative
x′(t) being numerically evaluated simply by, say, the
mid-point formula.

To illustrate, let us return to the signal x(t) that
is produced from the Duffing equation (1), as has just
been addressed in the preceding section. The local
‘centroids’ calculated through Eq. (3) are shown in
Fig. 3. Also presented in the figure are the local mean
curves obtained by interpolating the ‘centroids’ and
by averaging the lower and upper envelopes of x(t),
respectively. The cubic spline is used for all inter-
polations. With the envelope averaging method, we
obtain a local mean curve that almost vanishes in
the whole time span, showing the high symmetry of
the lower and upper envelopes. With the ‘centroid’-
based method, however, we obtain a local mean
curve x̄(t) that fluctuates at the forcing frequency
ωf . Hence, the local ‘centroids’ can reflect more sub-
tly the local variation of the highly nonlinear signal.
A closer look at the figure shows that centroids may
even not lie on, but deviate slightly from, the signal
curve, reflecting the barely detectable asymmetry of

the Duffing oscillation that is induced by the nonlin-
ear coupling of two distinct oscillatory modes. This
fine structure of asymmetry, however, cannot be cap-
tured by envelope averaging, since the lower and up-
per envelopes are almost symmetric with respect to
x = 0. For signals of higher non-symmetry, centroids
may deviate more observably from the signal curve.
We therefore anticipate better decomposition with
the ‘centroid’-based sifting technique.
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Fig. 3 Local ‘centroids’ of the Duffing signal x(t) and
the interpolated local mean curve. The dotted line
is the local mean curve resulting from averaging the
upper and lower envelopes of the signal

In contrast to the results shown in Fig. 2, we
present in Fig. 4 the decomposition via ‘centroid’-
based sifting. We now see that IMF1 is almost the
intrinsic mode of the Duffing oscillator, albeit it con-
tains minor components of higher frequencies result-
ing from nonlinear coupling. IMF2 now turns out the
pure forced oscillation of frequency ω = ωf = 0.45,
with an amplitude comparable to that of IMF1, much
consistent with the spectrum as displayed in Fig. 1.
As to IMF3, we find it to be the subharmonic of fre-
quency 2ωf − ω0, which is induced by the nonlinear
interaction between the superharmonics of frequency
2ωf and the eigenmode of frequency ω0. The primary
success in decomposing the nonlinear signal is just a
first indication of the superiority of ‘centroid’-based
sifting over that based on the average of the lower
and upper envelopes.

4 Performance verification and com-
parison

To see how the centroid-based sifting method
reduces the mode-mixing effect and improves the fre-
quency resolution, let us investigate the decomposi-
tion of the simplest model consisting of a two-tone
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Fig. 4 Decomposition of the Duffing signal using the
centroid-based method

harmonic given by

x(t) = x1(t)+x2(t) = sin(2πt)+a sin(2πνt+ψ). (4)

When ν ∈ [0, 1] and a ∈ [0.1, 100], the term sin(2πt)

is the higher frequency component and a sin(2πνt+
ψ) is the lower frequency one. To measure the qual-
ity of decomposition, we use the cross-correlation
coefficients as defined by

ri =
C(xi, IMFi)√
σ(xi)σ(IMFi)

, i = 1, 2, (5)

where C(X,Y ) is the covariance between X and
Y , and σ(X) is the variance of X . Only if both
r1 > 0.95 and r2 > 0.95 do we regard the decompo-
sition as being successful. By varying ν ∈ [0, 1] and
a ∈ [0.1, 100], with a ferret-like survey, we finally ob-
tain in the (a, ν)-plane a diagram as shown in Fig. 5,
which gives the (a, ν)-region (the white area) within
which the decomposition is successful. Also indi-
cated in the diagram is the critical cutoff frequency
ratio, ν ≈ 0.6 (for a ≈ 1), above which the origi-
nal EMD fails to separate two harmonics. As can
be seen, the centroid-based sifting breaks through
the limit and extends the cutoff up to ν ≈ 0.8 for
a = O(1). Note that in constructing the mean
curve x̄(t) here and below, cubic spline is always
adopted for interpolating discrete data, not only for
our centroid-based method, but also for the original
EMD.

Then we consider a slight extension to the above
example, the decomposition of a three-tune signal,
x(t) = x1(t)+x2(t)+x3(t), with x1 = 0.9 sin(0.13t),
x2 = 0.8 sin(0.08t), x3 = sin(0.05t), t ∈ [0, 3000]. To
avoid the possible boundary effect, we perform the
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Fig. 5 Performance measure of two-component sig-
nal decomposition using the centroid-based method.
The white region stands for the well-separated do-
main. Also depicted is the dashed-dotted line below
which the decomposition is successful by the original
EMD

decomposition in a longer time span (t ∈ [0, 3000])
than displayed in Figs. 6 and 7. In Fig. 6, the results
by the original EMD are disappointing. Mode mix-
ing between x1 and x2 (ν = 0.62) and between x2 and
x3 (ν = 0.63) appear so much severe that IMF1 �=
x1(t), IMF2 �= x2(t), and IMF3 �= x3(t), and the re-
sult is totally unacceptable. Fig. 7 presents the IMFs
decomposed by the ‘centroid’-based method and by
the refined EMD (R-EMD) (Laila et al., 2009). Al-
though the intrinsic frequencies of IMFs by R-EMD
were consistent with xi(t) (i = 1, 2, 3), there exist
the amplitude leakage of IMF1 and IMF2. By con-
trast, the results from the ‘centroid’-based method
in Fig. 7, IMF1 ≈ x1(t), IMF2 ≈ x2(t), and IMF3 ≈
x3(t), show the remarkable success of the centroid-
based sifting.
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Lastly, we consider a more complex signal x(t)
(Fig. 8a) that consists of a simple harmonic x1(t)
of constant frequency f1 and amplitude a1, x1(t) =
a1 cos(2πf1t), and a sinusoid x2(t) of constant fre-
quency f2 = 0.5f1 but with a linearly increasing
amplitude a2(t), x2 = a2(t) cos(2πf2t) , with a1 = 1,
f1 = 2f2 = 1/25, a2(t) = 0.5 + (14.5/30 000)t. This
example demonstrates the ability of the ‘centroid’-
based method in extracting the faster oscillatory sig-
nal x1(t) in the presence of a drifting background of
lower frequency (Kopsinis and McLaughlin, 2008b).
For comparison, we also show the results by the origi-
nal EMD and R-EMD. The performance can be mea-
sured by the maximal amplitude ratio, a2/a1, up to
which the decomposition fails. The extractions by
the three methods are shown in Figs. 8b–8d. We ob-
serve that the ratio for the new method is about 5,
almost doubling the values of about 3 by the R-EMD
and 3.5 by the original EMD.

5 Noise resistance

We expect that the integral property of the
‘centroid’-based sifting can better endure noise in-
terference than the original EMD. We demonstrate
this also by decomposing a noise-contaminated signal
that consists of two simple harmonics plus a Gaus-
sian white noise, i.e.,

x(t) = x1(t) + x2(t) + ε(t), t ∈ [0, 3000], (6)

with

x1(t) = sin(0.15t), x2(t) = sin(0.07t), (7)
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Fig. 8 Extraction of the fast oscillatory component
x1(t) from x(t): (a) Parametric plots of x1 and x2

(the linearly growing one); (b) IMF1 extracted by the
original EMD; (c) IMF1 by the R-EMD; (d) IMF1 by
the ‘centroid’-based method

and ε(t) an additive Gaussian white noise. In the
case of ε(t) = 0, since the frequency ratio ν of the two
harmonics takes the value of 0.47, both original EMD
and ‘centroid’-based one can decompose x(t) per-
fectly into two IMFs, here IMF1 and IMF2, which ap-
proximate well to x1(t) and x2(t), respectively. With
the introduction of additive noise, the performances
of both methods are quite different. To measure this,
we calculate the cross-correlation coefficients ri, as
defined in Eq. (5), between xi (i = 1, 2) and the cor-
responding IMF. As the IMFs that approximate x1
and x2 are no longer IMF1 and IMF2 for the noisy
signal, but shift to the higher order IMFs, IMFj with
indices j > 2, we must first pick up those that best
approximate x1 and x2 before calculating ri. Fig. 9
shows how r1 (Fig. 9a) and r2 (Fig. 9b) vary as
the signal-to-noise ratio (SNR) decreases from 20 dB
(low noise level) to 0 dB (high noise level). We find
that, for high SNR, say, SNR>10 dB, both methods
can achieve essentially the same results. Neverthe-
less, for SNR<10 dB, the performance of the original
EMD degrades drastically, while the ‘centroid’-based
method can achieve acceptable decomposition, even
for SNR as low as 5 dB, considerably enhancing the
ability of resisting against noise interference. Note
that here and afterwards, since the R-EMD is sen-
sitive to noise disturbance, the performance of this
method is excluded in this section.
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Fig. 9 Performance comparison of noise resistance.
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the corresponding one

For the similar signal x(t) as given in Eq. (6)
but with

x1(t) = sin(0.1t), x2(t) = sin(0.07t), (8)

since ν = 0.7, the original EMD cannot decompose
x1 or x2 out of the composite x, even if ε = 0. How-
ever, the ‘centroid’-based method is still able to ac-
complish this. We have also calculated the cross-
correlation coefficients ri versus SNR (Fig. 10). The
results show that the decomposition is acceptable
(ri ≈ 0.95), even if SNR is as low as 5 dB or so.
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Fig. 10 Cross-correlation coefficients between x i
and the corresponding IMFs decomposed using the
centroid-based sifting method

6 Remark

In most real applications, where t and x repre-
sent data of the same kind with the same units, the
algorithm formulated by Eq. (3) can be applied di-
rectly. Occasionally, one might deal with dilations of
dependent variable x and independent variable t in
such a form as x → αx, and t → βt, where α and
β are magnifications for x and t, respectively. We
note that, by directly using the ‘centroids’ described
above, the decomposition may be non-covariant un-
der the transformation. In mechanics, there is no
problem, since the dilation is always isotropic both
in the t - and x -directions (i.e., α = β), and thus,
the slope x′(t) in Eq. (3) is invariant. For a signal,
the situation may be different, since α �= β in gen-
eral, say, β = 1 but α �= 1. Let IMFi[x] denote the
ith IMF extracted from the signal x. Then we have
IMFi[αx] �= α · IMFi[x].

Under this circumstance, the algorithm can be
remedied by replacing the slope x′(t) in Eq. (3) with

ξ′(t), where ξ(t) = x(t)/
√∫

x2(t)dt, the normalized
x(t), so that covariance is preserved, i.e., x̄k → αx̄k.
To illustrate this, Fig. 11a shows the ‘centroids’ of
the following highly non-symmetrical signal:

x(t) = exp
(
cos(2πt) + cos(2π

10

3
t)
)
, (9)
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Fig. 11 (a) Local ‘centroids’ of the non-symmetric
signal x(t) as given in Eq. (9); (b) Local ‘centroids’ of
the signal 10x(t)
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and Fig. 11b shows those of the signal that is 10
times amplified. The former are calculated directly
from Eq. (3), while the latter are obtained via the
preprocessing just described. The dotted lines are
the local mean curves interpolating the centroids
by the cubic spline. Evidently, we exactly have
x̄(t) → 10x̄(t) by the amplification, and therefore,
IMFi[10x] = 10IMFi[x].

7 Conclusions

In summary, we present a novel sifting method
based on local ‘centroids’ for empirical decomposi-
tion of intrinsic mode functions. A local ‘centroid’
is the integral center of a local signal segment be-
tween a pair of local extrema of a signal x(t). It
should represent the local mean value more reason-
ably, and thus the centroids-connected smooth curve
should better estimate the local mean curve x̄(t).
Indeed, we have shown that the ‘centroid’-based sift-
ing greatly mitigates the effect of mode mixing, and
is capable of decomposing the intrinsic oscillations
with a frequency ratio even up to 0.8, significantly
enhancing the frequency resolving power.

An added benefit is the robustness of the new
sifting method in processing noisy signals. As given
by Eq. (3), local centroids are calculated through
local integrations. Therefore, the sifting can resist,
to a certain degree, against the noise disturbance by
canceling out noises in local signal segments, thus
making the sifting process more stable.
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