
Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2011 12(8):629-637 629

 
 
 
 

A power-aware code-compression design for  
RISC/VLIW architecture* 

 
Che-Wei LIN, Chang Hong LIN†‡, Wei Jhih WANG 

(Department of Electronic Engineering, National Taiwan University of Science and Technology, Taiwan 106, Taipei) 
†E-mail: chlin@mail.ntust.edu.tw 

Received Sept. 16, 2010;  Revision accepted Mar. 9, 2011;  Crosschecked July 6, 2011 

 

Abstract:    We studied the architecture of embedded computing systems from the viewpoint of power consumption in memory 
systems and used a selective-code-compression (SCC) approach to realize our design. Based on the LZW (Lempel-Ziv-Welch) 
compression algorithm, we propose a novel cost effective compression and decompression method. The goal of our study was to 
develop a new SCC approach with an extended decision policy based on the prediction of power consumption. Our decompression 
method had to be easily implemented in hardware and to collaborate with the embedded processor. The hardware implementation 
of our decompression engine uses the TSMC 0.18 μm-2p6m model and its cell-based libraries. To calculate power consumption 
more accurately, we used a static analysis method to estimate the power overhead of the decompression engine. We also used 
variable sized branch blocks and considered several features of very long instruction word (VLIW) processors for our compression, 
including the instruction level parallelism (ILP) technique and the scheduling of instructions. Our code-compression methods are 
not limited to VLIW machines, and can be applied to other kinds of reduced instruction set computer (RISC) architecture. 
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1  Introduction 
 

Embedded systems have become more impor-
tant in recent years as almost all electronic devices 
contain them. The size of embedded programs tends 
to grow as applications become much more complex. 
Embedded systems are cost, power, and space sensi-
tive, and memory accounts for a large part of the 
system cost in terms of area and power consumption. 
Since 1992, code-compression technology has be-
come a new area of research on low-power embed-
ded systems, and much has been done to reduce the 
code size for reduced instruction set computer (RISC) 
machines (Wolfe and Chanin, 1992; Liao et al., 1995; 
Lefurgy et al., 1997; IBM, 1998; Lekatsas and Wolf, 

1999). From the point of view of modern system 
architecture, a high-bandwidth instruction fetch 
structure is necessary. The common system-on-chip 
architecture, such as found in VLIW machines, can 
supply multiple instructions per cycle. This kind of 
architecture can achieve parallel executions in a sin-
gle cycle, but becomes challenging in terms of code- 
compression. 

The idea of code-compression was first pro-
posed by Wolfe and Chanin (1992), and IBM’s Co-
dePack (IBM, 1998) and ARM’s Thumb (Segars et 
al., 1995) are two existing commercial products. 
Recent advances in code-compression, such as  
variable-to-fixed (V2F) (Xie et al., 2002), the self-  
generating table (Lin et al., 2007), and bitmask-based 
(Seong and Mishra, 2008), have provided scientists 
with a number of ways to realize code-compression. 
Previous methods used small and equally sized 
blocks as their basic compression units; each block 
can be decompressed independently without or with 
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only a small amount of information from other 
blocks. The decompression can restart at the new 
position with little or no penalty when the execution 
flow changes. However, not all instructions can be 
the destination of a jump or branch, and all the pos-
sible targets are determined once the program is 
compiled. We defined branch blocks as the instruc-
tions between two consecutive possible branch tar-
gets, and used them as our basic compression units. 
A branch block may contain several basic blocks in 
the control flow graph (CFG) representation. Com-
piler techniques can also be used to increase the 
distance between branch targets to enlarge the size of 
branch blocks. Since the average size of branch 
blocks is much larger than the size of blocks used in 
previous models, we have more freedom to design 
compression algorithms. Lin et al. (2004) first de-
scribed the concept of using LZW methods for code-  
compression. We have refined the definition of their 
branch blocks and extended the code-compression 
algorithms. 

In this article, we introduce branch-block based 
code-compression methods and evaluate our meth-
ods using benchmarks for Texas Instrument’s C6000 
DSP VLIW processor (TI, 2008a). We also propose a 
novel idea to reduce the power consumption of the 
decompression procedure for VLIW machines. Our 
schemes used Cuppu’s C6000 DSP simulator (Cuppu, 
1999) to fetch instruction profiles, including the 
instruction execution frequency and execution flow 
of the code blocks. After data profiling, we analyzed 
the executable files to set the size of code blocks and 
instruction pattern characteristics, and combined 
them with the profiles in our compression consid-
erations. We used this information to extend the 
selective-code-compression (SCC) policy to avoid 
producing a much higher power overhead for the 
decompression process.  

 
 

2  Related studies 
 

Wolfe and Chanin (1992) proposed the first 
code compression scheme, which uses Huffman 
coding to compress MIPS (microprocessor without 
interlocked pipeline stages) programs. Their com-
pression scheme uses a line address table (LAT) to 
map the compressed block addresses. IBM built a 

decompression core, CodePack (IBM, 1998), based 
on the same concept. Liao et al. (1995) and Lefurgy 
et al. (1997) replaced the frequently used instructions 
with dictionary entries, which enables the com-
pressed code to be easily decoded. Lekatsas and Wolf 
(1999) proposed SAMC, which is a statistical 
scheme based on arithmetic coding and the Markov 
model. All these methods target RISC architecture. 
Yang et al. (2009) proposed an optimal partition 
based code-compression (OPCC) method to select 
some bits with better correlation to constitute a 
symbol in order to obtain better compression. Netto 
et al. (2004) proposed an approach involving mixing 
static and dynamic instruction profiling in the dic-
tionary structure to increase the cache hit-ratio, thus 
reducing the power consumption. Benini et al. (2004) 
proposed code-compression schemes based on the 
concepts of static and dynamic profiling trade-off to 
achieve superior results for bus traffic and energy 
reduction. Xie et al. (2002) proposed V2F compres-
sion, which uses a fixed length codeword to represent 
variable length data. They also proposed the concept 
of profile-driven code compression (Xie et al., 2003), 
which uses program profiles as one of the compres-
sion constraints. Lin et al. (2007) proposed a 
code-compression method for VLIW using variable 
sized branch blocks with a self-generating table, 
which is cleared to ensure correctness when en-
countering a branch target. Seong and Mishra (2008) 
proposed a bitmask-based code-compression tech-
nique, which significantly improves compression 
efficiency. Bonny and Henkel (2009) proposed the 
left-uncompressed instructions compression tech-
nique (LICT), which can be used in conjunction with 
any compression algorithm for VLIW processors. 

 
 

3  Code-compression methodology 
 

To apply code-compression to embedded sys-
tems, source programs are compressed off-line and 
stored in the memory systems, in either ROM or 
mass storage devices, such as hard drives. The codes 
are decompressed in real-time when the compressed 
blocks are needed. The coding tables used for our 
approaches are self-generated during runtime for 
both compression and decompression, and are not 
stored in the memory systems. The tables are reset 
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when branch targets are met during execution to 
ensure the correctness of programs. The decompres-
sion engine can be placed in two possible configura-
tions, pre- or post-cache (Fig. 1). For the pre-cache 
structure, the timing overhead for decompression can 
be hidden behind the cache miss penalty, while 
post-cache architecture has more area and power 
savings. When more than one level of caches is used, 
the closer is the decompression unit to the processor, 
the larger are the power and area savings for the 
memory systems. However, it also means that the 
decompression core has a more critical impact on the 
system performance. Our methods can work with 
either pre- or post-cache structures. 

We follow the compression method of Lin et al. 
(2007) for a VLIW processor using self-generated 
coding tables (Fig. 2). Our main idea, SCC, is shown 
in Fig. 3. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

SCC has the flexibility to enable us to use dif-
ferent compression methods on different blocks. To 
do this, we have to maintain the same address table 
structure to map the access addresses of branch 
blocks for both compression and decompression. Our 
SCC scheme also takes into account the predicted 
power consumption of decompression hardware. Our 
code compression procedure is divided into two parts, 
code analysis and compression algorithm design. In 
the code analysis procedure, we examine the rela-
tionship between instructions and the execution flow, 
to determine the blocks that can be used as the basic 
compression units for code-compression algorithms. 
We then design a prediction policy to evaluate the 
power consumption of decompression hardware. By 
using this policy, the decompression frequency can 
be reduced for our SCC scheme, and this in turn can 
reduce the corresponding dynamic power consump-
tion of the decompression engine. 

The compression ratio (CR) is often used as a 
metric to measure the efficiency of code compression 
schemes, and is defined as 

 
Compression code sizeCR 100%

Original code size
= × .       (1) 

 
However, the CR is not the only important consid-
eration in code compression. Sometimes, we are 
willing to sacrifice some code size to guarantee a 
greater power saving. Our SCC method minimizes 
the power consumption caused by the decompression 
engine, while maintaining a tolerable CR compared 
with existing code compression algorithms. 

4  Our approach 

4.1  Code analysis  

Based on the relationship among instructions as 
well as the characteristics of VLIW architecture (TI, 
2006), we use four steps to accomplish the code 
analysis step. The pseudo code of our program is 
shown in Algorithm 1. First, we dissolve the com-
mon object file format (COFF) structure of the ex-
ecutable file (Fig. 4) and extract the ‘.text’ code 
block from the executable file. Second, we construct 
the CFG representation from the ‘.text’ block, and 
each basic block is represented as a node in Fig. 5a. 

Fig. 1  The decompression architecture for pre-cache (a) 
and post-cache (b) approaches 
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The gray nodes are basic blocks that are destinations 
of more than one branch instruction, and have to be 
the heads of branch blocks. The white ones are 
regular basic blocks that can be merged with the 
others. The white ones can still be the heads of 
branch blocks when they are moved to different 
memory locations. Third, we develop the CFG allo-
cation algorithm, which can then extend basic blocks 
to branch blocks. 

 
Algorithm 1    COFF file analysis and branch block 
transforming algorithm 
Input: COFF format of the execution binary file 
Output: CFG(basic blocks), CFG(branch blocks) 
1   Set T={label the text block segment of the COFF file}, 
        S={all the basic blocks in CFG} 
2   While (T≠empty) 
3      Find basic blocks in T and construct CFG(basic blocks) 
4      S=CFG allocation algorithm (CFG(basic blocks)) 
5      Construct CFG(S) 
6   End While 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The allocation algorithm can optimize the 
memory allocation of basic blocks in CFG to con-
struct larger branch blocks. Fig. 6a shows an example 

CFG segment, Fig. 6b shows its original memory 
allocation, and Fig. 6c illustrates the optimized 
memory allocation using the CFG allocation algo-
rithm. The allocation algorithm first constructs the 
basic blocks into nodes in the graph representation. 
Continuous block segments are marked with directed 
edges in the graph. Then, the algorithm iteratively 
combines adjacent blocks with the constraint that the 
gray nodes cannot combine with any block that has 
an edge into the gray nodes. After transforming all 
basic blocks into branch blocks, we can obtain the 
CFG representation of branch blocks (Fig. 5b). Fi-
nally, the statistics and profiles of branch blocks are 
gathered, and we can then build the power con-
sumption criteria based on the profiles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Compression algorithm design 

Based on our SCC scheme, the implementation 
of compression algorithms consists of two major 
phases: decision core and compression engine. The 
decision core of the SCC scheme is constructed by 
Algorithm 2. 

The output of Algorithm 2 is a compressed 
program that consists of both compressed and un-
compressed blocks. The block decision is made 
based on three related factors of branch blocks: factor 
P represents the execution usage statistics, factor S 
the size, and factor C the instruction pattern charac-
teristic. We can apply Algorithm 3 to create the 
power criteria of our scheme. QP and QS are the av-
erage execution usage and block size, respectively, of 

Fig. 4  COFF file structure 
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Fig. 5  An example control flow graph of basic (a) and 
branch (b) blocks for a VLIW computer 
The gray nodes are basic blocks that are destinations of more 
than one branch instruction, and have to be the heads of 
branch blocks. The white ones are regular basic blocks that 
can be merged with the others 
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all the branch blocks, and Ci is the number of re-
peated instruction patterns in block i. Factor P has the 
highest priority to decide if a block should be com-
pressed or not; factors S and C are secondary. For 
example, if factor P was higher than QP (which 
means the block was used more often in the bench-
mark) or factor S was lower than QS or factor C was 
equal to zero (which means the block is not suitable 
to compress), then this block will not be chosen to be 
compressed. Ideally, we want the branch blocks that 
execute less frequently and that have more suitable 
compression properties to be our compressed blocks. 
 
Algorithm 2    Power effective decision core algo-
rithm of the SCC scheme 
Input: instruction profiling data, CFG(branch blocks), and 

branch address table 
Output: compressed and uncompressed code-blocks 
1   Set P={execution usage of all branch blocks in instruction 

profiling data} 
2   S={block size of all branch blocks in instruction profiling 

data} 
3   Q: selection criteria QP, QS, {Ci} for branch blocks 
4   Q=CSchedule(P, S, CFG(branch blocks))  

//  Create Q using criteria schedule routine 
5   For (i=1 to i=n branch blocks) 
6      If (Pi<QP) 
7         Compress CFG(branch blocks)i using LZW with  

the branch address table 
8         Output LZW(CFG(branch blocks)i) 
9      Else if (Si>QS or Ci>threshold)) 
10       Compress CFG(branch blocks)i using LZW with  

the branch address table 
11       Output LZW(CFG(branch block)i) 
12    Else 
13       Output CFG(branch blocks)i 
14       Refresh the address table 
15    End If 
16  End For 

 
Algorithm 3    Power criteria schedule routine 
Input: P, S from instruction profiling data 
Output: the selected criteria QP, QS, {Ci} 
1   Set C={Ci|0} 
2   QP=average(Pi)  // i=1, 2, …, n branch blocks 
3   QS=average(Si) 
4   For (i=1 to i=n branch blocks)  // for every branch block 
5      If (a repeated instruction pattern in block i) 
6         Ci++ 
7      End If 
8   End For 
9   Return QP, QS, and {Ci} 

The LZW (Lempel-Ziv-Welch) algorithm is 
used to compress our chosen compressed blocks. 
LZW-based compression uses previously seen 
phrase to compress the incoming ones. The coding 
table does not need to be stored with the compressed 
code, and the original code phrases can be recreated 
during decompression. However, LZW also has the 
disadvantages of lacking random access within the 
block and having poor performance with small code 
blocks. Using branch blocks can overcome these 
disadvantages since the instructions will execute 
sequentially within a branch block, which is much 
larger than a basic block. LZW-based compression is 
a V2F method, where fixed length codewords are 
used to represent variable length phrases. To apply 
LZW to code-compression, we use the byte as the 
basic element. Since the compressed output of the 
LZW method contains only compressed codewords, 
and all the possible elements have to be included in 
the entire initial coding table, the codeword length 
has to be long enough to contain the initial table. In 
LZW code compression, the chosen codeword length 
should be at least 9-bit wide to maintain the initial 
table. 

Fig. 7 illustrates an example using our SCC 
method with both compressed and uncompressed 
blocks. SCC is used to decide which branch blocks 
have to be compressed, and then LZW is used to 
compress each of them. During compression, the 
LZW engine will reset after each branch block is 
compressed to ensure correctness when a branch 
target is encountered. 
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4.3  LZW decompression engine 

For LZW-based code-compression, the coding 
table used for both compression and decompression 
engines is determined by the codeword length and 
the decompression bandwidth. Suppose a 9-bit LZW 
is used and the bandwidth is set as 8-byte wide, the 
size of the coding table would be 4 kB. Since the first 
256 entries are the basic elements, only combina-
tional logic is needed and they do not need to be 
stored in the table. The LZW compression algorithm 
creates the dictionary during compression and re-
constructs the dictionary again during decompression. 
The dictionary references are contained within the 
compressed LZW data stream. Table 1 illustrates an 
example of LZW decompression. 

Verilog was used to realize our LZW-based 
decompression algorithms. We first implemented a 
decompression core, which takes 9-bit codewords as 
its input, looks up and updates the coding table, and 
sends out the phrases stored in the table. A full  
 

Table 1  An example of LZW decompression 
Input code New dictionary entry String output

a – a 
b 256(a,b) b 
c 257(b,c) c 
d 258(c,d) d 
e 259(d,e) e 

258 260(e,c) c,d 
e 261(258,e) e 

257 262(e,b) b,c 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LZW-based decompression engine was then built 
based on the decompression core. The engine in-
cludes a decompression core, control logics, a dic-
tionary module, and input and output shift registers. 
The register-transfer-level (RTL) view (Fig. 8) was 
synthesized with an HDL simulation tool from Syn-
plify (Synplicity, 2005). The decompression engine 
operates at 159.26 MHz on Xilinx Spartan-III FPGA. 

We also synthesized the modules using the 
TSMC 0.18 μm-2p6m technical model and its cell- 
based libraries, and the total gate-count was 2452 
with 915 different kinds of cells. We used Design-
Compiler (Synopsys, 2007a) and PrimePower 
(Synopsys, 2006) from Synopsys to synthesize the 
decompression engine and estimate the power con-
sumption. The physical layout (Fig. 9) was synthe-
sized with Astro (Synopsys, 2007b) and APR (Auto- 
Place & Route) from Synopsys, and the chip area was 
396.6 μm×395.6 μm. 

5  Experimental results 

We tested our approach on TI’s C6000 DSP 
processor using benchmarks from TI and Media-
bench. The benchmarks are general embedded sys-
tem applications with digital signal processing 
components, and were compiled using Code Com-
poser Studio IDE from TI (2008b). Fig. 10 presents 
the CR for all the benchmarks using our SCC code 
compression with 9-bit LZW. The CR ranged from 
77% to 88% for different benchmarks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Register-transfer-level (RTL) view of the decompression engine 
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We used the access times of encoded blocks as 
the other metric to measure the decompression cost 
of our methods. The number of access times means 
the actual number of times the decompression engine 
has to be used to decompress the programs 
considering the execution frequency of encoded 
blocks based on our profiles. The profiling phase is 
critical for our approach, since it can help us to 
customize the system design issues and verify the 
experimental results. A comparison between the 
original non-selective scheme (ORG) and our 
approach (SCC) is shown in Fig. 11. A huge reduction 
can be seen in the number of access times of the 
encoded blocks for our SCC approach, which means 
we can save more dynamic energy due to the lack of 
usage of the decompression engine. The number of 
access times was obtained from actual executions of 
the benchmarks using Cuppu’s simulator. 

The detailed power consumption of the decom- 
pression engine is shown in Table 2. The power 
consumptions were simulated using Synopsys’ 
PrimePower (Synopsys, 2006). The decompression 
core, LZWDecodeFile, consists of five modules: 
DICT, add85, add114, sub84, and lt98. DICT means 
the dictionary, and the other modules are other logic 
components. The total power of each component is 
summarized in Fig. 12. It is clear that the memory 
component consumes most of the power. 

Since the decompression engine is embedded in 
a microprocessor, we compared its power 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

consumption with the power of a common module in 
modern processors, the branch prediction module. 

Fig. 9  Physical layout of the decompression engine 
The chip area is 396.6 μm×395.6 μm 

Fig. 12  A snapshot from PrimePower 
DICT: the dictionary; Others: other logic components 

Fig. 10  Compression ratio for all the benchmarks using 
our selective-code-compression (SCC) with 9-bit LZW 
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Fig. 11  A comparison of the number of access times for 
the encoded block between the original non-selective 
scheme (ORG) and our selective-code-compression (SCC) 
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The power consumption of branch-related compo-
nents operating in different modes was simulated 
using SimpleScalar (Burger and Austin, 1994) and 
Wattch (Brooks et al., 2000). The results are shown in 
Table 3. According to Tables 2 and 3, the power 
consumption of our decompression engine is negli-
gible compared to any branch related components. 
Table 4 compares our results with some previous 
work using the same target architecture. Our de-
compression engine can decompress the instructions 
in real time to support the core processors, with little 
penalty. 
 
 
6  Conclusions and future work 

 
We have proposed an SCC code-compression 

scheme that uses branch blocks as our basic 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

compression units and power prediction as our com-
pression decision policy. Compared to previous 
models, our approach has a lower decompression 
power overhead with a comparable compression 
ratio. The compiler techniques can be applied to 
generate source programs more suitable for code- 
compression in VLIW architecture. We have also 
shown that the SCC scheme with profiling can 
significantly decrease the dynamic power consump- 
tion in the decompression engine. We used Verilog 
and APR tools to realize the hardware of the 
decompression engine. To calculate power consump- 
tion and decompression time more accurately, we 
used tools from Synopsys, such as PrimePower, 
Astro, and DesignComplier IDE. The results showed 
that our decompression engine can decompress the 
instructions in real time to support the core 
processors, with little penalty. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Simplescalar’s branch related component power analysis (in W) 
Component Always taken Always not taken Bimod(1024) 2-lev Comb Perfect 

Branch predictor 4.523 4.523 4.493 4.452 4.523 4.523 
Branch target buffer power 4.168 4.168 4.168 4.168 4.168 4.168 
Local predictor power 0.088 0.088 0.088 0.017 0.088 0.088 
Global predictor power 0.010 0.010 0.070 0.010 0.010 0.010 

Always taken: always predict taken; Always not taken: always predict not taken; Bimod(1024): bimodal predictor, using a branch target buffer 
(BTB: 1024 KB) with 2-bit counters; 2-lev: 2-level adaptive predictor; Comb: combined predictor (bimodal and 2-level adaptive); Perfect: 
perfect predictor 

Table 2  Primepower static analysis results (in W) 

Module Total 
power 

Dynamic 
power 

Leakage 
power 

Switch 
power 

Internal 
power 

X-tran 
power 

Glitch 
power 

LZWDecodeFile 7.387e-4 7.366e-4 2.170e-6 8.044e-5 6.561e-4 1.018e-5 1.046e-6 
LZWDecodeFile/DICT 5.097e-4 5.084e-4 1.247e-6 1.967e-5 4.888e-4 7.622e-6 1.392e-7 
LZWDecodeFile/lt98 3.915e-7 3.585e-7 3.304e-8 2.520e-7 1.067e-7 0.000e+0 3.237e-9 
LZWDecodeFile/sub84 2.118e-7 1.713e-7 4.055e-8 1.141e-7 5.714e-8 1.713e-7 0.000e+0
LZWDecodeFile/add114 1.329e-7 8.839e-8 4.455e-8 6.414e-8 2.425e-8 0.000e+0 0.000e+0
LZWDecodeFile/add85 4.430e-8 3.392e-8 1.038e-8 2.592e-8 7.993e-9 3.392e-8 0.000e+0
Total power=dynamic+leakage; dynamic power=switch+internal; leakage power=reverse-biased junction leakage+subthreshold leakage; 
switch power=load capacitance charge or discharge power; internal power=power dissipated within a cell; X-tran power=component of 
dynamic power dissipated into X-transitions; glitch power=component of dynamic power dissipated into detectable glitches at the nets 

Table 4  Comparison with previous work on code-compression 
Reference Target Method Hardware overhead Decompression bandwidth 

Xie et al. (2002) TMS 320 C6x V2F 
Table 

6-48k table+control logic 
32k table+control logic 

13 bits per iteration 
1 instruction (4 bytes) per iteration

Lin et al. (2007) TMS 320 C6x LZW 
MCSSC 

2-32k table+control logic 
30k table+control logic 

8 bytes per iteration 
8 bytes per iteration 

Our approach TMS 320 C6x SSC+LZW 4k table+control logic 
Chip area 396.6 μm×395.6 μm

4 bytes per iteration, 
159.26 MHz asynchronous logic
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For future work, we would like to develop a 
power simulator to optimize the CR and power 
savings of our methods. Furthermore, existing code- 
compression methods compress/decompress only the 
code blocks. We intend to apply our method to the 
data blocks as well as the code blocks in the source 
programs. 
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