
Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 629

A power-aware code-compression design for
RISC/VLIW architecture*

Che-Wei LIN, Chang Hong LIN†‡, Wei Jhih WANG

(Department of Electronic Engineering, National Taiwan University of Science and Technology, Taiwan 106, Taipei)
†E-mail: chlin@mail.ntust.edu.tw

Received Sept. 16, 2010; Revision accepted Mar. 9, 2011; Crosschecked July 6, 2011

Abstract: We studied the architecture of embedded computing systems from the viewpoint of power consumption in memory
systems and used a selective-code-compression (SCC) approach to realize our design. Based on the LZW (Lempel-Ziv-Welch)
compression algorithm, we propose a novel cost effective compression and decompression method. The goal of our study was to
develop a new SCC approach with an extended decision policy based on the prediction of power consumption. Our decompression
method had to be easily implemented in hardware and to collaborate with the embedded processor. The hardware implementation
of our decompression engine uses the TSMC 0.18 μm-2p6m model and its cell-based libraries. To calculate power consumption
more accurately, we used a static analysis method to estimate the power overhead of the decompression engine. We also used
variable sized branch blocks and considered several features of very long instruction word (VLIW) processors for our compression,
including the instruction level parallelism (ILP) technique and the scheduling of instructions. Our code-compression methods are
not limited to VLIW machines, and can be applied to other kinds of reduced instruction set computer (RISC) architecture.

Key words: LZW compression, Cell-based libraries, Instruction level parallelism (ILP), VLIW processors
doi:10.1631/jzus.C1000321 Document code: A CLC number: TP302

1 Introduction

Embedded systems have become more impor-
tant in recent years as almost all electronic devices
contain them. The size of embedded programs tends
to grow as applications become much more complex.
Embedded systems are cost, power, and space sensi-
tive, and memory accounts for a large part of the
system cost in terms of area and power consumption.
Since 1992, code-compression technology has be-
come a new area of research on low-power embed-
ded systems, and much has been done to reduce the
code size for reduced instruction set computer (RISC)
machines (Wolfe and Chanin, 1992; Liao et al., 1995;
Lefurgy et al., 1997; IBM, 1998; Lekatsas and Wolf,

1999). From the point of view of modern system
architecture, a high-bandwidth instruction fetch
structure is necessary. The common system-on-chip
architecture, such as found in VLIW machines, can
supply multiple instructions per cycle. This kind of
architecture can achieve parallel executions in a sin-
gle cycle, but becomes challenging in terms of code-
compression.

The idea of code-compression was first pro-
posed by Wolfe and Chanin (1992), and IBM’s Co-
dePack (IBM, 1998) and ARM’s Thumb (Segars et
al., 1995) are two existing commercial products.
Recent advances in code-compression, such as
variable-to-fixed (V2F) (Xie et al., 2002), the self-
generating table (Lin et al., 2007), and bitmask-based
(Seong and Mishra, 2008), have provided scientists
with a number of ways to realize code-compression.
Previous methods used small and equally sized
blocks as their basic compression units; each block
can be decompressed independently without or with

‡ Corresponding author
* Project (No. 97-2218-E-011-016-) supported by the National Science
Council
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 630

only a small amount of information from other
blocks. The decompression can restart at the new
position with little or no penalty when the execution
flow changes. However, not all instructions can be
the destination of a jump or branch, and all the pos-
sible targets are determined once the program is
compiled. We defined branch blocks as the instruc-
tions between two consecutive possible branch tar-
gets, and used them as our basic compression units.
A branch block may contain several basic blocks in
the control flow graph (CFG) representation. Com-
piler techniques can also be used to increase the
distance between branch targets to enlarge the size of
branch blocks. Since the average size of branch
blocks is much larger than the size of blocks used in
previous models, we have more freedom to design
compression algorithms. Lin et al. (2004) first de-
scribed the concept of using LZW methods for code-
compression. We have refined the definition of their
branch blocks and extended the code-compression
algorithms.

In this article, we introduce branch-block based
code-compression methods and evaluate our meth-
ods using benchmarks for Texas Instrument’s C6000
DSP VLIW processor (TI, 2008a). We also propose a
novel idea to reduce the power consumption of the
decompression procedure for VLIW machines. Our
schemes used Cuppu’s C6000 DSP simulator (Cuppu,
1999) to fetch instruction profiles, including the
instruction execution frequency and execution flow
of the code blocks. After data profiling, we analyzed
the executable files to set the size of code blocks and
instruction pattern characteristics, and combined
them with the profiles in our compression consid-
erations. We used this information to extend the
selective-code-compression (SCC) policy to avoid
producing a much higher power overhead for the
decompression process.

2 Related studies

Wolfe and Chanin (1992) proposed the first
code compression scheme, which uses Huffman
coding to compress MIPS (microprocessor without
interlocked pipeline stages) programs. Their com-
pression scheme uses a line address table (LAT) to
map the compressed block addresses. IBM built a

decompression core, CodePack (IBM, 1998), based
on the same concept. Liao et al. (1995) and Lefurgy
et al. (1997) replaced the frequently used instructions
with dictionary entries, which enables the com-
pressed code to be easily decoded. Lekatsas and Wolf
(1999) proposed SAMC, which is a statistical
scheme based on arithmetic coding and the Markov
model. All these methods target RISC architecture.
Yang et al. (2009) proposed an optimal partition
based code-compression (OPCC) method to select
some bits with better correlation to constitute a
symbol in order to obtain better compression. Netto
et al. (2004) proposed an approach involving mixing
static and dynamic instruction profiling in the dic-
tionary structure to increase the cache hit-ratio, thus
reducing the power consumption. Benini et al. (2004)
proposed code-compression schemes based on the
concepts of static and dynamic profiling trade-off to
achieve superior results for bus traffic and energy
reduction. Xie et al. (2002) proposed V2F compres-
sion, which uses a fixed length codeword to represent
variable length data. They also proposed the concept
of profile-driven code compression (Xie et al., 2003),
which uses program profiles as one of the compres-
sion constraints. Lin et al. (2007) proposed a
code-compression method for VLIW using variable
sized branch blocks with a self-generating table,
which is cleared to ensure correctness when en-
countering a branch target. Seong and Mishra (2008)
proposed a bitmask-based code-compression tech-
nique, which significantly improves compression
efficiency. Bonny and Henkel (2009) proposed the
left-uncompressed instructions compression tech-
nique (LICT), which can be used in conjunction with
any compression algorithm for VLIW processors.

3 Code-compression methodology

To apply code-compression to embedded sys-
tems, source programs are compressed off-line and
stored in the memory systems, in either ROM or
mass storage devices, such as hard drives. The codes
are decompressed in real-time when the compressed
blocks are needed. The coding tables used for our
approaches are self-generated during runtime for
both compression and decompression, and are not
stored in the memory systems. The tables are reset

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 631

when branch targets are met during execution to
ensure the correctness of programs. The decompres-
sion engine can be placed in two possible configura-
tions, pre- or post-cache (Fig. 1). For the pre-cache
structure, the timing overhead for decompression can
be hidden behind the cache miss penalty, while
post-cache architecture has more area and power
savings. When more than one level of caches is used,
the closer is the decompression unit to the processor,
the larger are the power and area savings for the
memory systems. However, it also means that the
decompression core has a more critical impact on the
system performance. Our methods can work with
either pre- or post-cache structures.

We follow the compression method of Lin et al.
(2007) for a VLIW processor using self-generated
coding tables (Fig. 2). Our main idea, SCC, is shown
in Fig. 3.

SCC has the flexibility to enable us to use dif-
ferent compression methods on different blocks. To
do this, we have to maintain the same address table
structure to map the access addresses of branch
blocks for both compression and decompression. Our
SCC scheme also takes into account the predicted
power consumption of decompression hardware. Our
code compression procedure is divided into two parts,
code analysis and compression algorithm design. In
the code analysis procedure, we examine the rela-
tionship between instructions and the execution flow,
to determine the blocks that can be used as the basic
compression units for code-compression algorithms.
We then design a prediction policy to evaluate the
power consumption of decompression hardware. By
using this policy, the decompression frequency can
be reduced for our SCC scheme, and this in turn can
reduce the corresponding dynamic power consump-
tion of the decompression engine.

The compression ratio (CR) is often used as a
metric to measure the efficiency of code compression
schemes, and is defined as

Compression code sizeCR 100%

Original code size
= × . (1)

However, the CR is not the only important consid-
eration in code compression. Sometimes, we are
willing to sacrifice some code size to guarantee a
greater power saving. Our SCC method minimizes
the power consumption caused by the decompression
engine, while maintaining a tolerable CR compared
with existing code compression algorithms.

4 Our approach

4.1 Code analysis

Based on the relationship among instructions as
well as the characteristics of VLIW architecture (TI,
2006), we use four steps to accomplish the code
analysis step. The pseudo code of our program is
shown in Algorithm 1. First, we dissolve the com-
mon object file format (COFF) structure of the ex-
ecutable file (Fig. 4) and extract the ‘.text’ code
block from the executable file. Second, we construct
the CFG representation from the ‘.text’ block, and
each basic block is represented as a node in Fig. 5a.

Fig. 1 The decompression architecture for pre-cache (a)
and post-cache (b) approaches

Memory
(compressed

code)

Decompression
engine

I-cache
(original
code)

Processor
(original
code)

Decoding table

Memory
(compressed

code)

I-cache
(compressed

code)

Decompression
engine

Processor
(original
code)

Decoding table

(a)

(b)

Fig. 3 Flow chart of our selective-code-compression
(SCC) scheme

Source
program

Compression
methods
selection

Compressed
code

Branch block
profiling

Fig. 2 Flow chart of the VLIW code-compression method
(Lin et al., 2007): (a) compression; (b) decompression

Branch
target?

Branch
target?

Reset coding
table

Read coding
table

Output phrase
indicated by
codeword

Update coding
table if

necessary

Reset
coding
table

Read new data

Generate
codeword

output

Read a
codeword

Update coding
table if

necessary

Y

(a) (b)

Y

N

N

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 632

The gray nodes are basic blocks that are destinations
of more than one branch instruction, and have to be
the heads of branch blocks. The white ones are
regular basic blocks that can be merged with the
others. The white ones can still be the heads of
branch blocks when they are moved to different
memory locations. Third, we develop the CFG allo-
cation algorithm, which can then extend basic blocks
to branch blocks.

Algorithm 1 COFF file analysis and branch block
transforming algorithm
Input: COFF format of the execution binary file
Output: CFG(basic blocks), CFG(branch blocks)
1 Set T={label the text block segment of the COFF file},
 S={all the basic blocks in CFG}
2 While (T≠empty)
3 Find basic blocks in T and construct CFG(basic blocks)
4 S=CFG allocation algorithm (CFG(basic blocks))
5 Construct CFG(S)
6 End While

The allocation algorithm can optimize the
memory allocation of basic blocks in CFG to con-
struct larger branch blocks. Fig. 6a shows an example

CFG segment, Fig. 6b shows its original memory
allocation, and Fig. 6c illustrates the optimized
memory allocation using the CFG allocation algo-
rithm. The allocation algorithm first constructs the
basic blocks into nodes in the graph representation.
Continuous block segments are marked with directed
edges in the graph. Then, the algorithm iteratively
combines adjacent blocks with the constraint that the
gray nodes cannot combine with any block that has
an edge into the gray nodes. After transforming all
basic blocks into branch blocks, we can obtain the
CFG representation of branch blocks (Fig. 5b). Fi-
nally, the statistics and profiles of branch blocks are
gathered, and we can then build the power con-
sumption criteria based on the profiles.

4.2 Compression algorithm design

Based on our SCC scheme, the implementation
of compression algorithms consists of two major
phases: decision core and compression engine. The
decision core of the SCC scheme is constructed by
Algorithm 2.

The output of Algorithm 2 is a compressed
program that consists of both compressed and un-
compressed blocks. The block decision is made
based on three related factors of branch blocks: factor
P represents the execution usage statistics, factor S
the size, and factor C the instruction pattern charac-
teristic. We can apply Algorithm 3 to create the
power criteria of our scheme. QP and QS are the av-
erage execution usage and block size, respectively, of

Fig. 4 COFF file structure

.data

.text

.table

Fig. 5 An example control flow graph of basic (a) and
branch (b) blocks for a VLIW computer
The gray nodes are basic blocks that are destinations of more
than one branch instruction, and have to be the heads of
branch blocks. The white ones are regular basic blocks that
can be merged with the others

1

2

3

4

5

(b)

1

7

6

5

4

3

2

(a)

Fig. 6 A control flow graph segmentation example (a)
and the original (b) and optimized (c) memory allocation
for basic blocks
Adjacent basic blocks that can be combined together to be a
single branch block are marked with the same color

R 0
R0

R1

R

3

R6

R7

R2

R5
R4

R8

R 1

R 2

R 3

R 4

R 5

R 6

R 7

R 8

(a)

START

END

(b) (c)

R0

R1

R2

R3

R4

R5

R6

R7

R8

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 633

all the branch blocks, and Ci is the number of re-
peated instruction patterns in block i. Factor P has the
highest priority to decide if a block should be com-
pressed or not; factors S and C are secondary. For
example, if factor P was higher than QP (which
means the block was used more often in the bench-
mark) or factor S was lower than QS or factor C was
equal to zero (which means the block is not suitable
to compress), then this block will not be chosen to be
compressed. Ideally, we want the branch blocks that
execute less frequently and that have more suitable
compression properties to be our compressed blocks.

Algorithm 2 Power effective decision core algo-
rithm of the SCC scheme
Input: instruction profiling data, CFG(branch blocks), and

branch address table
Output: compressed and uncompressed code-blocks
1 Set P={execution usage of all branch blocks in instruction

profiling data}
2 S={block size of all branch blocks in instruction profiling

data}
3 Q: selection criteria QP, QS, {Ci} for branch blocks
4 Q=CSchedule(P, S, CFG(branch blocks))

// Create Q using criteria schedule routine
5 For (i=1 to i=n branch blocks)
6 If (Pi<QP)
7 Compress CFG(branch blocks)i using LZW with

the branch address table
8 Output LZW(CFG(branch blocks)i)
9 Else if (Si>QS or Ci>threshold))
10 Compress CFG(branch blocks)i using LZW with

the branch address table
11 Output LZW(CFG(branch block)i)
12 Else
13 Output CFG(branch blocks)i
14 Refresh the address table
15 End If
16 End For

Algorithm 3 Power criteria schedule routine
Input: P, S from instruction profiling data
Output: the selected criteria QP, QS, {Ci}
1 Set C={Ci|0}
2 QP=average(Pi) // i=1, 2, …, n branch blocks
3 QS=average(Si)
4 For (i=1 to i=n branch blocks) // for every branch block
5 If (a repeated instruction pattern in block i)
6 Ci++
7 End If
8 End For
9 Return QP, QS, and {Ci}

The LZW (Lempel-Ziv-Welch) algorithm is
used to compress our chosen compressed blocks.
LZW-based compression uses previously seen
phrase to compress the incoming ones. The coding
table does not need to be stored with the compressed
code, and the original code phrases can be recreated
during decompression. However, LZW also has the
disadvantages of lacking random access within the
block and having poor performance with small code
blocks. Using branch blocks can overcome these
disadvantages since the instructions will execute
sequentially within a branch block, which is much
larger than a basic block. LZW-based compression is
a V2F method, where fixed length codewords are
used to represent variable length phrases. To apply
LZW to code-compression, we use the byte as the
basic element. Since the compressed output of the
LZW method contains only compressed codewords,
and all the possible elements have to be included in
the entire initial coding table, the codeword length
has to be long enough to contain the initial table. In
LZW code compression, the chosen codeword length
should be at least 9-bit wide to maintain the initial
table.

Fig. 7 illustrates an example using our SCC
method with both compressed and uncompressed
blocks. SCC is used to decide which branch blocks
have to be compressed, and then LZW is used to
compress each of them. During compression, the
LZW engine will reset after each branch block is
compressed to ensure correctness when a branch
target is encountered.

Block 0
Block 0

Block 1
Block 1

Block 3
Block 3

Block 2
Block 2

Block 4
Block 4

Block 5
Block 5

Block 6
Block 6

Block 7
Block 7

Block
8

Block
8 Block 9

Block 9
Block 10

Block 10
Block 11

Block 11

Block 0
Block 0 Block

1 Block 3
Block 3Block 2

Block 4
Block 4

Block 5
Block 5

Block 6
Block 7

Block 7

Block 10
Block 10 Block

11

Block 8
Block 9

Block 9
(b)

(a)

Fig. 7 A selective-code-compression (SCC) example:
(a) original codes; (b) compressed codes
White and gray blocks are un-compressed and compressed
branch blocks, respectively

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 634

4.3 LZW decompression engine

For LZW-based code-compression, the coding
table used for both compression and decompression
engines is determined by the codeword length and
the decompression bandwidth. Suppose a 9-bit LZW
is used and the bandwidth is set as 8-byte wide, the
size of the coding table would be 4 kB. Since the first
256 entries are the basic elements, only combina-
tional logic is needed and they do not need to be
stored in the table. The LZW compression algorithm
creates the dictionary during compression and re-
constructs the dictionary again during decompression.
The dictionary references are contained within the
compressed LZW data stream. Table 1 illustrates an
example of LZW decompression.

Verilog was used to realize our LZW-based
decompression algorithms. We first implemented a
decompression core, which takes 9-bit codewords as
its input, looks up and updates the coding table, and
sends out the phrases stored in the table. A full

Table 1 An example of LZW decompression
Input code New dictionary entry String output

a – a
b 256(a,b) b
c 257(b,c) c
d 258(c,d) d
e 259(d,e) e

258 260(e,c) c,d
e 261(258,e) e

257 262(e,b) b,c

LZW-based decompression engine was then built
based on the decompression core. The engine in-
cludes a decompression core, control logics, a dic-
tionary module, and input and output shift registers.
The register-transfer-level (RTL) view (Fig. 8) was
synthesized with an HDL simulation tool from Syn-
plify (Synplicity, 2005). The decompression engine
operates at 159.26 MHz on Xilinx Spartan-III FPGA.

We also synthesized the modules using the
TSMC 0.18 μm-2p6m technical model and its cell-
based libraries, and the total gate-count was 2452
with 915 different kinds of cells. We used Design-
Compiler (Synopsys, 2007a) and PrimePower
(Synopsys, 2006) from Synopsys to synthesize the
decompression engine and estimate the power con-
sumption. The physical layout (Fig. 9) was synthe-
sized with Astro (Synopsys, 2007b) and APR (Auto-
Place & Route) from Synopsys, and the chip area was
396.6 μm×395.6 μm.

5 Experimental results

We tested our approach on TI’s C6000 DSP
processor using benchmarks from TI and Media-
bench. The benchmarks are general embedded sys-
tem applications with digital signal processing
components, and were compiled using Code Com-
poser Studio IDE from TI (2008b). Fig. 10 presents
the CR for all the benchmarks using our SCC code
compression with 9-bit LZW. The CR ranged from
77% to 88% for different benchmarks.

Fig. 8 Register-transfer-level (RTL) view of the decompression engine

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 635

We used the access times of encoded blocks as
the other metric to measure the decompression cost
of our methods. The number of access times means
the actual number of times the decompression engine
has to be used to decompress the programs
considering the execution frequency of encoded
blocks based on our profiles. The profiling phase is
critical for our approach, since it can help us to
customize the system design issues and verify the
experimental results. A comparison between the
original non-selective scheme (ORG) and our
approach (SCC) is shown in Fig. 11. A huge reduction
can be seen in the number of access times of the
encoded blocks for our SCC approach, which means
we can save more dynamic energy due to the lack of
usage of the decompression engine. The number of
access times was obtained from actual executions of
the benchmarks using Cuppu’s simulator.

The detailed power consumption of the decom-
pression engine is shown in Table 2. The power
consumptions were simulated using Synopsys’
PrimePower (Synopsys, 2006). The decompression
core, LZWDecodeFile, consists of five modules:
DICT, add85, add114, sub84, and lt98. DICT means
the dictionary, and the other modules are other logic
components. The total power of each component is
summarized in Fig. 12. It is clear that the memory
component consumes most of the power.

Since the decompression engine is embedded in
a microprocessor, we compared its power

consumption with the power of a common module in
modern processors, the branch prediction module.

Fig. 9 Physical layout of the decompression engine
The chip area is 396.6 μm×395.6 μm

Fig. 12 A snapshot from PrimePower
DICT: the dictionary; Others: other logic components

Fig. 10 Compression ratio for all the benchmarks using
our selective-code-compression (SCC) with 9-bit LZW

C
R

 (%
)

88

86

84

82

80

78

76

74

72

70

ad
pc

mde
c

ad
pc

men
c

ve
cs

um

vq
_m

se

iir-
filt

er

co
de

bo
ok

-sr
ch

iir-
ca

cs

blo
ck

_m
se

fir-
filt

er idc
t

ke
y

mac
_v

se
lp

max
mina

ve

minm
um

_e
rr

mod
em

mpe
g2

en
c

ve
rte

bi

Benchmark

Fig. 11 A comparison of the number of access times for
the encoded block between the original non-selective
scheme (ORG) and our selective-code-compression (SCC)

5

4

3

2

1

0 N
um

be
r o

f a
cc

es
s

tim
es

 (l
og

)

 ORG SCC

ad
pc

mde
c

ad
pc

men
c

idc
t

ke
y

max
mina

ve

minm
um

_e
rr

mod
em

mpe
g2

en
c

ve
rte

bi

Benchmark

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 636

The power consumption of branch-related compo-
nents operating in different modes was simulated
using SimpleScalar (Burger and Austin, 1994) and
Wattch (Brooks et al., 2000). The results are shown in
Table 3. According to Tables 2 and 3, the power
consumption of our decompression engine is negli-
gible compared to any branch related components.
Table 4 compares our results with some previous
work using the same target architecture. Our de-
compression engine can decompress the instructions
in real time to support the core processors, with little
penalty.

6 Conclusions and future work

We have proposed an SCC code-compression

scheme that uses branch blocks as our basic

compression units and power prediction as our com-
pression decision policy. Compared to previous
models, our approach has a lower decompression
power overhead with a comparable compression
ratio. The compiler techniques can be applied to
generate source programs more suitable for code-
compression in VLIW architecture. We have also
shown that the SCC scheme with profiling can
significantly decrease the dynamic power consump-
tion in the decompression engine. We used Verilog
and APR tools to realize the hardware of the
decompression engine. To calculate power consump-
tion and decompression time more accurately, we
used tools from Synopsys, such as PrimePower,
Astro, and DesignComplier IDE. The results showed
that our decompression engine can decompress the
instructions in real time to support the core
processors, with little penalty.

Table 3 Simplescalar’s branch related component power analysis (in W)
Component Always taken Always not taken Bimod(1024) 2-lev Comb Perfect

Branch predictor 4.523 4.523 4.493 4.452 4.523 4.523
Branch target buffer power 4.168 4.168 4.168 4.168 4.168 4.168
Local predictor power 0.088 0.088 0.088 0.017 0.088 0.088
Global predictor power 0.010 0.010 0.070 0.010 0.010 0.010

Always taken: always predict taken; Always not taken: always predict not taken; Bimod(1024): bimodal predictor, using a branch target buffer
(BTB: 1024 KB) with 2-bit counters; 2-lev: 2-level adaptive predictor; Comb: combined predictor (bimodal and 2-level adaptive); Perfect:
perfect predictor

Table 2 Primepower static analysis results (in W)

Module Total
power

Dynamic
power

Leakage
power

Switch
power

Internal
power

X-tran
power

Glitch
power

LZWDecodeFile 7.387e-4 7.366e-4 2.170e-6 8.044e-5 6.561e-4 1.018e-5 1.046e-6
LZWDecodeFile/DICT 5.097e-4 5.084e-4 1.247e-6 1.967e-5 4.888e-4 7.622e-6 1.392e-7
LZWDecodeFile/lt98 3.915e-7 3.585e-7 3.304e-8 2.520e-7 1.067e-7 0.000e+0 3.237e-9
LZWDecodeFile/sub84 2.118e-7 1.713e-7 4.055e-8 1.141e-7 5.714e-8 1.713e-7 0.000e+0
LZWDecodeFile/add114 1.329e-7 8.839e-8 4.455e-8 6.414e-8 2.425e-8 0.000e+0 0.000e+0
LZWDecodeFile/add85 4.430e-8 3.392e-8 1.038e-8 2.592e-8 7.993e-9 3.392e-8 0.000e+0
Total power=dynamic+leakage; dynamic power=switch+internal; leakage power=reverse-biased junction leakage+subthreshold leakage;
switch power=load capacitance charge or discharge power; internal power=power dissipated within a cell; X-tran power=component of
dynamic power dissipated into X-transitions; glitch power=component of dynamic power dissipated into detectable glitches at the nets

Table 4 Comparison with previous work on code-compression
Reference Target Method Hardware overhead Decompression bandwidth

Xie et al. (2002) TMS 320 C6x V2F
Table

6-48k table+control logic
32k table+control logic

13 bits per iteration
1 instruction (4 bytes) per iteration

Lin et al. (2007) TMS 320 C6x LZW
MCSSC

2-32k table+control logic
30k table+control logic

8 bytes per iteration
8 bytes per iteration

Our approach TMS 320 C6x SSC+LZW 4k table+control logic
Chip area 396.6 μm×395.6 μm

4 bytes per iteration,
159.26 MHz asynchronous logic

Lin et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):629-637 637

For future work, we would like to develop a
power simulator to optimize the CR and power
savings of our methods. Furthermore, existing code-
compression methods compress/decompress only the
code blocks. We intend to apply our method to the
data blocks as well as the code blocks in the source
programs.

References
Benini, L., Menichelli, F., Olivieri, M., 2004. A class of code

compression schemes for reducing power consumption
in embedded microprocessor systems. IEEE Trans.
Comput., 53(4):467-482. [doi:10.1109/TC.2004.1268
405]

Bonny, T., Henkel, J., 2009. LICT: Left-Uncompressed In-
structions Compression Technique to Improve the De-
coding Performance of VLIW Processors. ACM Design
Automation Conf., p.903-906.

Brooks, D., Tiwari, V., Martonosi, M., 2000. Wattch: a
framework for architectural-level power analysis and
optimizations. ACM SIGARCH Comput. Archit. News,
28(2):83-94. [doi:10.1145/342001.339657]

Burger, D., Austin, M., 1994. SimpleScalar User’s Guide: the
SimpleScalar Tool Set, Version 2.0.

Cuppu, V., 1999. Cycle Accurate Simulator for TMS320C62x,
8 Way VLIW DSP Processor. University of Maryland,
College Park.

IBM, 1998. PowerPC Code Compression Utility User’s
Manual, Version 3.0.

Lefurgy, C., Bird, P., Chen, I., Mudge, T., 1997. Improving
Code Density Using Compression Techniques. Proc.
30th Annual Int. Symp. on Microarchitecture, p.194-203.
[doi:10.1109/MICRO.1997.645810]

Lekatsas, H., Wolf, W., 1999. SAMC: a code compression
algorithm for embedded processors. IEEE Trans.
Comput.-Aid. Des. Integr. Circ. Syst., 18(12):1689-1701.
[doi:10.1109/43.811316]

Liao, S., Devadas, S., Keutzer, K., 1995. Code Density Op-
timization for Embedded DSP Processors Using Data
Compression Techniques. Conf. on Advanced Research
in VLSI, p.272-285.

Lin, C.H., Xie, Y., Wolf, W., 2004. LZW-Based Code Com-
pression for VLIW Embedded Systems. Design, Auto-
mation and Test in Europe Conf. and Exposition,
p.76-81.

Lin, C.H., Xie, Y., Wolf, W., 2007. Code compression for
VLIW embedded systems using a self-generating table.
IEEE Trans. VLSI Syst., 15(10):1160-1171. [doi:10.
1109/TVLSI.2007.904097]

Netto, E.W., Azevedo, R., Centoducatte, P., Araujo, G., 2004.
Multi-profile Based Code Compression. ACM Design
Automation Conf., p.244-249.

Segars, S., Clarke, K., Goudge, L., 1995. Embedded control-
problems, Thumb and the ARM7TDMI. IEEE Micro,
15(5):22-30. [doi:10.1109/40.464580]

Seong, S., Mishra, P., 2008. A bitmask-based code compres-
sion technique for embedded systems. IEEE Trans.
Comput., 27(4):673-685.

Synopsys, 2006. PrimePower Manual, Version Y-2006.06.
Synopsys, 2007a. Design Compiler Reference Manual: Con-

straints and Timing, Version A-2007.12.
Synopsys, 2007b. Astro User Guide, Version Z-2007.03.
Synplicity, 2005. Synplicity FPGA Synthesis Synplify, Syn-

plify Pro, Synplify Premier, and Synplify Premier with
Design Planner: User Guide.

TI, 2006. TMS320C62xx CPU and Instruction Set: Reference
Guide, SPRU731.

TI, 2008a. TMS320C64x/C64x+ DSP CPU and Instruction
Set: Reference Guide, SPRU732H.

TI, 2008b. TMS320C6000 Optimizing Compiler v6.1: User’s
Guide, SPRU1870.

Wolfe, A., Chanin, A., 1992. Executing Compressed Pro-
grams on an Embedded RISC Architecture. Int. Symp.
on Microarchitecture, p.81-91.

Xie, Y., Wolf, W., Lekatsas, H., 2002. Code Compression for
VLIW Using Variable-to-Fixed Coding. ACM Int. Symp.
on System Synthesis, p.138-143.

Xie, Y., Wolf, W., Lekatsas, H., 2003. Profile-Driven Selec-
tive Code Compression. Design, Automation and Test in
Europe Conf. and Exposition, p.462-467.

Yang, L., Zhang, T., Wang, D., Hou, C., 2009. Optimal-
Partition Based Code Compression for Embedded Pro-
cessor. IEEE 8th Int. Conf. on ASIC, p.87-90.
[doi:10.1109/ASICON.2009.5351601]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

