
Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818 809

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

k -Dimensional hashing scheme for hard disk integrity

verification in computer forensics∗

Zoe Lin JIANG†§1,2, Jun-bin FANG†‡§2, Lucas Chi Kwong HUI2, Siu Ming YIU2,
Kam Pui CHOW2, Meng-meng SHENG2

(1School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School,

Shenzhen 518055, China)

(2Department of Computer Science, The University of Hong Kong, Hong Kong, China)
†E-mail: {zoeljiang, junbinfang}@gmail.com

Received Dec. 11, 2010; Revision accepted Mar. 29, 2011; Crosschecked Sept. 1, 2011

Abstract: Verifying the integrity of a hard disk is an important concern in computer forensics, as the law
enforcement party needs to confirm that the data inside the hard disk have not been modified during the investigation.
A typical approach is to compute a single chained hash value of all sectors in a specific order. However, this technique
loses the integrity of all other sectors even if only one of the sectors becomes a bad sector occasionally or is modified
intentionally. In this paper we propose a k-dimensional hashing scheme, kD for short, to distribute sectors into a
kD space, and to calculate multiple hash values for sectors in k dimensions as integrity evidence. Since the integrity
of the sectors can be verified depending on any hash value calculated using the sectors, the probability to verify
the integrity of unchanged sectors can be high even with bad/modified sectors in the hard disk. We show how to
efficiently implement this kD hashing scheme such that the storage of hash values can be reduced while increasing
the chance of an unaffected sector to be verified successfully. Experimental results of a 3D scheme show that both
the time for computing the hash values and the storage for the hash values are reasonable.

Key words: Computer forensics, Digital evidence, Hard disk integrity, k-Dimensional hashing
doi:10.1631/jzus.C1000425 Document code: A CLC number: TP309

1 Introduction

With the rapid development of Internet technol-
ogy (Comito et al., 2007) and electronic commerce
(Hussain et al., 2010), digital forensics has become
more and more important in a perpetual race with
criminals in the application of digital technologies.
Nowadays, it is very common to have evidence exist-
ing in digital forms such as a deleted file in a hard
disk of a suspect’s computer. Due to the nature of

‡ Corresponding author
§

The two authors contributed equally to this work
* Project supported by the Research Grants Council of Hong Kong
SAR, China (No. RGC GRF HKU 713009E), the NSFC/RGC
Joint Research Scheme (No. N_HKU 722/09), and HKU
Seed Fundings for Basic Research (Nos. 200811159155 and
200911159149)
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

digital information, which is easy to change, one of
the biggest problems is how to effectively verify the
integrity of evidence from the hard disk. Consider
the following procedure: When a suspicious hard
disk is seized by the police, it is investigated by the
forensic expert to search for relevant evidence. Since
the investigation process is always lengthy, the sus-
pect (the hard disk owner) may challenge the validity
of the evidence collected by the police. To argue that
the evidence in the hard disk is valid (or invalid), a
formal procedure is needed to provide integrity proof
of the evidence, even after a long period. Therefore,
an effective integrity verification method for a hard
disk is required for both parties.

A simple solution, used in many digital forensics
tools (e.g., EnCase (Garber, 2001) and DESK (Chow

810 Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818

et al., 2005)), is to calculate one single chained one-
way hash value for all sectors in a hard disk and
store it securely for later verification. However, this
method suffers from the risk that even one-bit change
will collapse the integrity of the whole hard disk; i.e.,
it can provide only a yes-or-no answer about the in-
tegrity of the whole hard disk and is not accurate
enough for the sectors. In some cases, we need more
information beyond the yes-or-no answer, especially
when the answer is NO. It may be necessary to know
how many sectors are modified and where they are.
In fact, even if the sectors are not modified inten-
tionally, some of the sectors may become bad sectors
(Schroeder and Gibson, 2007) during the investiga-
tion period (say, a few months to several years later).
In addition, under some circumstances, the suspect
is allowed to modify or even delete some sectors on
his/her own, e.g., files classified as legal professional
privilege data (Law et al., 2008). If this occurs, the
new hash value calculated will not equal the stored
one. Therefore, it is desired to design a scheme that
can identify which sectors affect the integrity, such
that the integrity of the evidence on the hard disk
can still be verified if the changed sectors are not
related to the evidence.

The other extreme solution is to compute a hash
value for each sector, and then sign and store all
these signed hash values for later comparison. This
approach is quite straightforward, but it needs to
store too many hash values. For a hard disk with a
capacity of 250 GB (488 392 065 sectors), it needs
to store 488 392 065 hash values and requires about
7 GB storage if each hash value has 128 bits. Further-
more, if a wicked computer forensics expert modifies
the content of one disk sector, he/she needs only to
modify one hash value to fake the integrity proof.
This leaves a vulnerability in the digital investiga-
tion tools.

In this paper, we propose a hashing scheme,
called the kD scheme, which is a balance between the
above two solutions. Roughly speaking, we use mul-
tiple hash chains and each sector is assigned to more
than one chain so as to increase the chance of being
verified successfully even if there are bad/modified
sectors. Depending on the number of chains used,
the number of hash values to be stored can be a lot
smaller than that of the approach of using one hash
value for every sector. Particularly, if k is designed
as 1 or N (N is the number of sectors), the two spe-

cial cases, 1D and ND schemes, are exactly the two
solutions we described above.

Our scheme mainly includes three algorithms:
the sector distribution algorithm that allocates sec-
tors into chains so that each chain has more or less
the same length; the one-pass algorithm that reads
the whole hard disk once (to avoid extensive IO) and
computes all required hash values; and the integrity
check algorithm that verifies the integrity of a certain
sector or a whole hard disk. We then give, in theoret-
ical terms, the analysis and evaluation of the general
kD scheme by tuning different parameters to meet
various applications in practice. The storage of hash
values and the probability of a sector that we may
wrongly judge the integrity are two important crite-
ria to measure the scheme, and these can be affected
by the capacity of the hard disk, the probability for
a sector being bad after some time, etc. Finally, we
implement the scheme for k = 3 and evaluate our
scheme using two hard disks of 60 GB and 250 GB,
respectively.

2 Related work

In computer forensic area, examiners often need
to understand and analyze a large amount of data
that seem arbitrary to them. Cryptographic hash
functions are often used by forensic examiners for
data integrity checks. The National Software Refer-
ence Library (NSRL) was provided to identify known
files by comparing several kinds of hash algorithms,
based on two fundamental properties—collision re-
sistance and being a one-way function (NIST, 2004).
The first, being collision resistant, means that two
different messages should not hash to the same value.
The second property that good hash algorithms have
is that they are pre-image resistant; i.e., it is compu-
tationally infeasible for a message to be constructed
that matches a given hash. As a result, both MD5
and SHA-1 passed the examination as the crypto-
graphic hash algorithms. Although MD5 and SHA-
1 hash functions have been challenged in terms of
their security due to collision attacks (Gauravaram
et al., 2006), the National Institute of Standards and
Technology (NIST) also plans to add additional file
signatures generated by other hash algorithms in the
future, including those identified in FIPS (Federal In-
formation Processing Standards) PUB 180-2 (SHA-
256, SHA-384, SHA-512) (Mead, 2006).

Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818 811

Currently, there are several existing digital
forensics tools (Garber, 2001; Chow et al., 2005),
among which EnCase is the most popular in
computer forensic investigation. It provides in-
tuitive graphical user interface (GUI), enhanced
email/Internet support, and a powerful scripting en-
gine. DESK is another tool which focuses more on
Chinese language encoding. Both systems, together
with many others, use the straightforward approach
of one single chained hash value to verify the integrity
of a hard disk. All existing tools face the same chal-
lenge that even a one-bit change to a data item (such
as a known file or a disk) occurs, the integrity of the
whole hard disk cannot be verified.

Harbour (2002) designed the piecewise hashing
scheme which uses an arbitrary hashing algorithm to
create many checksums, instead of just one, for a file.
It was developed to mitigate errors during forensic
imaging because an error can affect only one of the
piecewise hashes. The remainder of the piecewise
hashes can still be used to check the integrity of the
remainder of the data. Kornblum (2006) improved
the piecewise hashing scheme, called context trig-
gered piecewise hash (CTPH), to identify known files
that have had data inserted, modified, or deleted, in
combination with rolling hash. Although they are
originally designed for files, they can also be adopted
to a hard disk (for a sector becoming bad can be con-
sidered as a part of a file being modified). However,
they are not efficient enough to be used in real ap-
plications. For example, the CTPH scheme requires
an O(n log n) running time where n is the data size,
which is a very huge overhead when it is applied to
a hard disk with a reasonable size such as 250 GB.

Jiang et al. (2007) proposed a cylinder-head-
sector hashing scheme, CHS for short, to compute
multiple hash values based on the mechanical struc-
ture of a hard disk. However, due to the large
capacities of modern hard disks and the diversity
of technologies employed (Chen et al., 2006), it is
not always possible to obtain information about the
physical structure of the hard disk. For example,
a USB thumb drive that uses solid state technology
requires an integrity checking scheme that does not
involve physical drive characteristics.

3 k -Dimensional hashing scheme

In this section, we describe how to design the
kD scheme in detail. For a better understanding and

visualization, we use a specific case of k = 3 as an
example to illustrate the concept of our scheme.

3.1 Sector distribution algorithm

First, we design a sector distribution algorithm
that sequentially maps all the sectors into a kD hy-
percube to help our scheme achieve the best perfor-
mance. Assume that the hard disk has N sectors
denoted as S = {sj|j = 0, 1, · · · , N − 1}. Our goal is
to rearrange the sectors into a 3D structure (k = 3

here), such that each sector is uniquely mapped to
an ordered 3D array (d3, d2, d1) in D3, D2, and D1

directions respectively, denoted as s(d3,d2,d1).
The mapping from j to (d3, d2, d1) is just like a

mapping from a 1D chain to many 3D nested ‘cubes’
with the same coordinate origin s0. As a result, the
first sector s0 is located in (0, 0, 0); the first eight
sectors s0, s1, · · · , s7 are located in (d3, d2, d1) where
d3, d2, d1 ∈ {0, 1}; the first 27 sectors s0, s1, · · · , s26
are located in (d3, d2, d1) where d3, d2, d1 ∈ {0, 1, 2};
· · · ; the first h3 sectors s0, s1, · · · , sh3−1 are located
in (d3, d2, d1) where d3, d2, d1 ∈ {0, 1, · · · , h − 1}.
Note that when the number of sectors is not ex-
actly h3 for some integer h, we will let the outmost
cube be partially filled and let all inner cubes be
completely filled. Let L =

⌊
j1/3

⌋
. We call L the

‘layer number’ of sector sj . As a special case, s0 is
the smallest cube with L = 0, and is mapped di-
rectly into s(0,0,0). Since the first L3 sectors (i.e.,
sectors s0, s1, · · · , sL3−1) have been distributed in L

nested cubes (with layer numbers 0 to L − 1), the
sector distribution algorithm will place sector sj in
the (L + 1)th cube with layer number L.

Denote the mapping algorithm from the sector
index j to the 3D coordinates (d3, d2, d1) as SDA3.
Obviously SDA3(0) = (0, 0, 0) since the sector s0 is
also denoted as s(0,0,0). Now we want to find the
exact mapping of SDA3.

First of all, consider the difference between the
Lth cube and the (L + 1)th cube. There is a set of
sectors S that can be added outside the Lth cube
to become the (L + 1)th cube. We divide this set
of points S into three extension planes with different
priorities. The plane with a higher priority should
be filled up earlier with sectors. Let P1(L) represent
the first extension plane of layer L in D1 direction
with the highest priority 3, which includes L2 sectors.
Detailedly, sectors in this plane are represented as
s(d3,d2,d1), where d3 is from 0 to L − 1, d2 is from 0

812 Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818

to L − 1, and d1 is fixed to L. Similarly, the second
extension plane P2(L) of layer L in D2 direction with
priority 2, contains L(L + 1) sectors represented as
s(d3,d2,d1), where d3 is from 0 to L− 1, d2 is fixed to
L, and d1 is from 0 to L. Finally, the third extension
plane P3(L) of layer L in D3 direction with the lowest
priority 1, contains (L + 1)2 sectors represented as
s(d3,d2,d1), where d3 is fixed to L, d2 is from 0 to L,
and d1 is from 0 to L.

After defining the three extension planes with
different priorities to be filled up, we need to de-
sign how the sectors should be distributed in each of
the planes as follows: with increasing j, sector sj is
mapped into s(d3,d2,d1) in P1(L) satisfying that the
pair (d3, d2) is such a nested loop that in the inner
loop, d2 increases from 0 to L − 1, and in the outer
loop, d3 increases from 0 to L− 1, with fixed d1 = L.
Similarly, in P2(L), (d3, d2) varies with increasing j

satisfying that d1 increases from 0 to L in the inner
loop and d3 increases from 0 to L − 1 in the outer
loop, with fixed d2 = L. And in P3(L), (d2, d1) varies
with increasing j satisfying that d1 increases from 0

to L in the inner loop and d2 increases from 0 to L

in the outer loop, with fixed d3 = L.
After designing the sector distribution policy in

each extension plane, the last step is to locate the
plane in which the sector sj ∈ S will be placed and
where its exact position is, according to the value of
j. For convenience, i is defined as the index of sj in
the extension plane it locates.

If L3 < j + 1 ≤ L3 + L2, sj should be the
(i + 1)th sector in P1(L) according to the nested
loop with i = j−L3, as is the case described in Line
6 in Algorithm 1.

If L3 + L2 < j + 1 ≤ L3 + L2 + L(L + 1), sj
should be the (i + 1)th sector in P2(L) according to
the nested loop with i = j − L3 − L2, as is the case
described in Line 9 in Algorithm 1.

If L3 + L2 + L(L + 1) < j + 1 ≤ (L + 1)3, sj
should be the (i + 1)th sector in P3(L) according to
the nested loop with i = j − L3 − L2 − L(L+ 1), as
is the case described in Line 12 in Algorithm 1.

Formally, given a sector sj , the mapping algo-
rithm SDA3(j) can be defined as Algorithm 1.
Example 1 Fig. 1 is a simple example for
SDA3(j). For L =

⌊
j1/3

⌋
= 2, suppose the 0th and

1st cubes have been filled up by the first L3 = 8

sectors. We have three cases depending on the
value of j as follows: If 23 < j + 1 ≤ 23 + 22,

Algorithm 1: SDA3, sector distribution al-
gorithm for 3D

input : j
output: (d3, d2, d1)

1 if j=0 then
2 (d3, d2, d1) = (0, 0, 0);
3 Exit;
4 end

5 L =
⌊
j1/3

⌋
;

6 if L3 < j + 1 ≤ L3 + L2 then
7 i = j − L3;
8 (d3, d2, d1) = (i/L, i mod L,L);
9 else if L3 + L2 < j + 1 ≤ L3 + L2 + L(L+ 1)

then
10 i = j − L3 − L2;
11 (d3, d2, d1) = (i/(L+ 1), L, i mod (L+ 1));
12 else if L3 + L2 + L(L+ 1) < j + 1 ≤ (L+ 1)3

then
13 i = j − L3 − L2 − L(L+ 1);
14 (d3, d2, d1) = (L, i/(L+ 1), i mod (L+ 1));
15 end

such as j = 9, let i = j − 23 = 1 where i starts
from 0. Then s9 is the (i + 1 = 2)nd sector in
P1(2). Since pair (d3, d2) starts from (0, 0) and in-
creases according to the nested loop, the second pair
should be (0, 1). And s9 is mapped into s(0,1,2). If
23 + 22 < j + 1 ≤ 23 + 22 + 2(2+ 1), such as j = 15,
let i = j − 23 − 22 = 3. Then s15 is the (i+1 = 4)th

sector in P2(2). Accounting pair (d3, d1) from (0, 0),
we obtain the 4th pair (1, 0) from the former three
pairs (0, 0), (0, 1), and (0, 2). And s15 is mapped into
s(1,2,0). Similarly, if 23 + 22 + 2(2 + 1) < j + 1 ≤ 33,
such as j = 25, let i = j − 23 − 22 − 2(2 + 1) = 7.
s25 should be the (i+1 = 8)th sector in P3(2) and is
mapped into s(2,2,1).

The inverse function of SDA3, defined as
SDA−1

3 (d3, d2, d1) in Algorithm 2, by mapping
(d3, d2, d1) to j, is also useful when one knows the
3D structure of a certain sector and wants to com-
pute its 1D value.

It is straightforward that (d3, d2, d1) ↔ j is a
one-to-one mapping. Thus, we have the following
theorem:
Theorem 1 Function SDA3 is a function from
a set X={j | 0 ≤ j ≤ N − 1} to a set
Y ={(d3, d2, d1) | 0 ≤ d3 ≤ R3, 0 ≤ d2 ≤ R2, 0 ≤
d1 ≤ R1}, where R1, R2, R3 are decided by N , with
the property that, for every (d3, d2, d1) in Y , there is

Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818 813

8-002

9-012

10-102

11-112

12-020 13-021 14-022
15-120 16-121 17-122

18-200 19-201 20-202

21-210 22-211 23-212

24-220 25-221 26-222

D1

D2

D3

Fig. 1 An example for 3D sector distribution with L =

2. Solid circles, triangles, and rectangles represent
sectors in P1(1), P2(1), and P3(1), respectively

Algorithm 2: SDA−1
3 , inverse function of

the sector distribution algorithm for 3D
input : (d3, d2, d1)
output: j

if (d1 = 0, d2 = 0, d3 = 0) then
j = 0;
Exit;

end
L = max{d3, d2, d1};
if (d1 > d2) and (d1 > d3) then

i = d3L+ d2;
j = L3 + i;

else if (d2 ≥ d1) and (d2 > d3) then
i = d3(L+ 1) + d1;
j = L3 + L2 + i;

else if (d3 ≥ d2) and (d3 ≥ d1) then
i = d2(L+ 1) + d1;
j = L3 + L2 + L(L+ 1) + i;

end
.

exactly one j in X such that SDA3(j) = (d3, d2, d1).
Or SDA3 is a bijection.

3.2 One-pass algorithm

Besides the sector distribution algorithm, im-
plementing an efficient kD scheme also requires a
fast hash calculation algorithm for the whole hard
disk. In this subsection, the one-pass algorithm is
presented to calculate all hash values by scanning
the whole hard disk only once, which can greatly
save time.

After running SDA3(j) N times where j =

0, 1, · · · , N − 1 and based on Theorem 1, we obtain
N triples {(d3, d2, d1) | 0 ≤ d3 ≤ R3, 0 ≤ d2 ≤
R2, 0 ≤ d1 ≤ R1}, where R1, R2, R3 depend on N .

Let v_D1[d3, d2] be the hash value of a hash chain
cD1 [d3, d2] from the starting point of the chain, say,
s(d3,d2,0), to the ending point, s(d3,d2,R1), in the first
dimension D1. Let v_D2[d3, d1] be defined similarly
for cD1 [d3, d1] from s(d3,0,d1) to s(d3,R2,d1) in D2. Let
v_D3[d2, d1] be defined similarly for cD1 [d2, d1] from
s(0,d2,d1) to s(R3,d2,d1) in D3. f(· || ·) can be a hash
function provided in NIST (2004) and Mead (2006).
We denote the algorithm as OPA3, shown in Algo-
rithm 3.

Algorithm 3: OPA3, one-pass algorithm for
3D

input : {sj | j = 0, 1, · · · , N − 1}
output: {v_D1[d3, d2], v_D2[d3, d1],

v_D3[d2, d1] | 0 ≤ d3 ≤ R3, 0 ≤ d2 ≤
R2, 0 ≤ d1 ≤ R1}

Set all v_D1[], v_D2[], and v_D3[] to the
initial values;
foreach sector sj where j = 0, 1, · · · , N − 1 do

(d3, d2, d1) = SDA3(j);
v_D1[d3, d2] = f(v_D1[d3, d2] || s(d3,d2,d1));
v_D2[d3, d1] = f(v_D2[d3, d1] || s(d3,d2,d1));
v_D3[d2, d1] = f(v_D3[d2, d1] || s(d3,d2,d1));

end

We execute the OPA3 algorithm where the
whole hard disk is scanned only once from s0 to
sN−1, which is independent of the dimensionality.
{v_D1[d3, d2],v_D2[d3, d1],v_D3[d2, d1] | 0 ≤ d3 ≤
R3, 0 ≤ d2 ≤ R2, 0 ≤ d1 ≤ R1} is stored securely
somewhere for later comparison.

3.3 Integrity check

If the integrity of a whole hard disk needs to
be checked, OPA3 should be run again to calculate
all hash values and compare them with all stored
ones. The mismatched hash values will be picked out.
If there exist hash values satisfying v_D1[d3, d2] �=
v_D1

′[d3, d2], v_D2[d3, d1] �= v_D2
′[d3, d1], and

v_D3[d2, d1] �= v_D3
′[d2, d1], sector s(d3,d2,d1) is

considered to be the modified or bad one. This al-
gorithm is denoted as ICHD3 and is shown in Algo-
rithm 4.

If the integrity of a certain sector sj is un-
der checking, the forensics investigator should first
locate the three hash chains that contain the sec-
tor and re-calculate the corresponding three hash
chain values by scanning the hard disk to read the

814 Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818

Algorithm 4: ICHD3, integrity check of
hard disk for 3D

output: {(d3, d2, d1)}

Call OPA3;
if there exist hash values satisfying
v_D1[d3, d2] �= v_D1

′[d3, d2],
v_D2[d3, d1] �= v_D2

′[d3, d1], or
v_D3[d2, d1] �= v_D3

′[d2, d1] then
return all satisfied {(d3, d2, d1)} ;

else
return ∅;

end

sectors locating in any of the three chains. Any one
of the three matches is a valid proof for the integrity
of the sector. Only if all of the three hash values
do not match the previous ones calculated in Sec-
tion 3.2, can the sector not be proved whether it has
been modified. This algorithm is denoted as ICS3

and is shown in Algorithm 5. For example, for sec-
tor s9 mapped into s(0,1,2), it cannot be identified
whether s9 has been modified when all of the three
newly calculated hash values are unequal to the pre-
viously stored ones, i.e., v_D1[0, 1] �= v_D1

′[0, 1],
v_D2[0, 2] �= v_D2

′[0, 2], v_D3[1, 2] �= v_D3
′[1, 2].

We will discuss the probability, which is negligi-
ble for a sector losing the integrity evidence, in
Section 4.

Although the kD scheme can be extended from
the concrete 3D case easily, we append the general
algorithms SDAk and OPAk for kD (arbitrary k) in
the Appendix.

4 Analysis and observations of the kD
hashing scheme

After designing the above three algorithms to
distribute sectors in k dimensions, we need to eval-
uate the scheme according to two criteria: (1) the
storage of hash values generated as integrity evi-
dence; (2) the probability for a sector losing integrity
evidence.

Since there are N (k−1)/k hash values in each
dimension where N is the number of total sectors
in a hard disk, the total number of hash values in k

dimensions is

Nhash(k) = k ×N (k−1)/k. (1)

To calculate the probability for a sector, which
may be wrongly judged, we must know how often

Algorithm 5: ICS3, integrity check of a sec-
tor for 3D

input : j
output: Yes (integrity is kept) or No

(d3, d2, d1) = SDA3(j);
Set v_D1

′[d3, d2], v_D2
′[d3, d1], and

v_D3
′[d2, d1] to the initial values;

foreach d1 (0 ≤ d1 ≤ R1) do
i = SDA−1

3 (d3, d2, d1);
v_D1

′[d3, d2] = f(v_D1[d3, d2] || si);
end
if v_D1[d3, d2] = v_D1

′[d3, d2] then
return Yes;

else
foreach d2 (0 ≤ d2 ≤ R2) do

i = SDA−1
3 (d3, d2, d1);

v_D2
′[d3, d1] = f(v_D2[d3, d1] || si);

end
if v_D2[d3, d1] = v_D2

′[d3, d1] then
return Yes;

else
foreach d3 (0 ≤ d3 ≤ R3) do

i = SDA−1
3 (d3, d2, d1);

v_D3
′[d2, d1] = f(v_D3[d2, d1] || si);

end
if v_D2[d3, d1] = v_D2

′[d3, d1] then
return Yes;

else
return No;

end
end

end

a sector changes in the real case. Although gener-
ally physical defect is likely to affect more than one
sector, we assume each sector has an independent
probability p of being a bad sector after some time
for discussion. Obviously, p is very small. For the
probability analysis, we define Pf(k) as the proba-
bility for a sector si0,j0,k0 that we fail to judge the
integrity, provided that each sector in the whole hard
disk becomes bad with probability p using the kD
scheme (Jiang et al., 2008):

Pf(k) = [1− (1− p)
N1/k−1

]k(1− p). (2)

Extension to m blocks: Although increasing the
dimensionality k decreases Pf(k), the number of hash
values Nhash(k) also increases. It is therefore neces-
sary to examine how Pf(k) may be reduced while
Nhash(k) is also reduced. One straightforward way
is to divide the N sectors into m blocks (m ≥ 1),

Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818 815

and apply the kD hashing scheme to each individual
block. This strategy is simple and effective. Even in
the 1D case, by setting m to N , the probability Pf(k)

can be reduced to 0 with Nhash(k) set to N !. This
is the absolute minimum value of Pf(k). Therefore,
it is necessary to consider the combined effect of the
dimensionality k and the number of blocks m.

The corresponding number of hash values to be
stored is given by

Nhash(k,m) = mk(N/m)
(k−1)/k

. (3)

Upon substituting m for the number of total
disk sectors N , the failure probability for the kD
hashing scheme is given by

Pf(k,m) = [1− (1− p)(N/m)1/k−1]k(1− p). (4)

4.1 Analysis

Fig. 2 shows the variation of the number of
hash values stored (Nhash(k,m)) versus the number
of blocks divided (m) for dimensions k = 1, 2, 3, 4

using Eq. (3) with a fixed number of sectors (N =

4.88 × 108 for a 250 GB hard disk). Fig. 3 presents
the probability for a sector to be wrongly judged
as bad (Pf(k,m)) with varying m for dimensions
k = 1, 2, 3, 4 using Eq. (4), with N = 4.88× 108 and
a fixed independent probability of being a bad sec-
tor (p = 10−5). Increasing k while keeping m fixed
yields a lower failure probability Pf(k,m). When k

is increased by 1, Pf(k,m) drops exponentially by a
value of approximately p. This fact can be partially
explained by simplifying Eq. (4). Using the fact that
(1−e)x can be approximated by 1−ex when e is very
small and m is an integer larger than 1, we can ap-
proximate Pf(k,m) to p[(N/m)1/k−1]k(1−p). With
further simplification (ignoring the −1), Pf(k,m) is
approximated to pk(N/m)(1 − p). Therefore, when
N and m are kept constant, every increment in k

will result in a reduction roughly by the factor of p
in Pf(k,m).

Also, this leads to the observation that even if
m is being changed (but not with a huge amount), it
is also beneficial to use a higher dimensionality if we
want to lower Pf(k,m). This drop of Pf(k,m) due to
higher k is parameterized by p. If p is a small value, it
will be more favorable to use a higher dimensionality.
Note that in the practical situation, the expected
number of bad sectors in the hard disk should be
small, so p should be very small. For example, when

N = 4.88× 108 and p = 10−5, the expected number
of bad sectors is larger than 4.0× 103. This is a little
overestimated. Fig. 4 presents the result similar to
Fig. 3 with p = 10−10, which is more practical.

10 10 10 10 10 10 10 10 10 10
10

10

10

10

10

10

10

10

10

10

10

 m

N
ha

sh

k=1
k=2
k=3
k=4

(k
, m

)

Fig. 2 Number of hash values versus the number of
blocks with N = 4.88× 108 for a 250 GB hard disk

10 10 10 10 10 10 10 10 10 10
10

10

10

10

10

10

10

10

10

10

m

k=1
k=2
k=3
k=4

P
f (

k,
 m

)

Fig. 3 Failure probability versus the number of blocks
with N = 4.88 × 108 and a fixed independent prob-
ability of being a bad sector p = 10−5 for a 250 GB
hard disk

Then we explore the following problems: Given
a fixed Nhash(k,m), which dimensionality should
be used to achieve a smaller failure probability
Pf(k,m)? Using Fig. 2, given a fixed Nhash(k,m),
we can find the different numbers of blocks (m) for
each dimensionality that will need Nhash(k,m) hash
values. From those m values, we can use Fig. 3, or
Fig. 4, to find the corresponding Pf(k,m) values for
each dimensionality, and decide which dimensional-
ity can offer a lowest Pf(k,m) value.

816 Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818

10 10 10 10 10 10 10 10 10 10
10

10

10

10

10

10

10

10

10

10

m

P
f (

k,
 m

)

k=1
k=2
k=3
k=4

Fig. 4 Failure probability versus the number of blocks
with N = 4.88× 108 and a fixed independent proba-
bility of being a bad sector p = 10−10 for a 250 GB
hard disk

Here is an example: Given a fixedNhash(k,m) =

108, we find the four squares in Fig. 2 having the
same Nhash(k,m), corresponding to k = 4, 3, 2, 1.
Now record the m values of these four squares, move
to Fig. 3, and find four Pf(k,m) values related to
these recorded m values corresponding to k = 4, 3,
2, 1. Now the correspondingPf(k,m) values for these
four squares will be the different Pf(k,m) values for
k = 4, 3, 2, 1, with 108 hash values. Thus, these four
values can be compared.

Upon investigating several different Nhash(k,m)

values (e.g., Nhash(k,m) = 107 or 108), we find that
it is always better to use a higher dimensionality,
provided that Nhash(k,m) is at least the minimum
number of hash values needed by that dimensional-
ity (note that a scheme with a higher dimensionality
will lead to more hash values stored). Two concrete
examples (squares and balls) in Figs. 2–4 illustrate
the effect of increasing the dimensionality. In both
cases, it is obvious that for the given Nhash(k,m)

value, a higher k yields a lower Pf(k,m). Upon com-
paring the two groups of points (squares and balls),
it is apparent that a higher m value can result in a
lower Pf(k,m) for the same k.

4.2 Observations

The analysis indicates that the kD hashing
scheme is very efficient in reducing the probability
Pf(k,m). For example, the failure probability for
m = 10 blocks (with p = 10−10 and N = 4.88× 108)
reduces from 4.87× 10−3 in the 1D scheme of using
one hash value for the entire hard disk to 4.65×10−33

when 4D hashing is used. This is a dramatic decrease
in failure probability. Similar reductions occur for
other parameter settings.

Our findings can be summarized in the follow-
ing recommendations. If the minimization of the
failure probability Pf(k,m) is the principal goal and
Nhash(k,m) values can be stored, where Nhash(k) <

N , then it is best to use the highest possible kD hash-
ing scheme. If Nhash(k,m) is close to or larger than
N , then the 1D hashing scheme with Pf(k,m) = 0 is
the best choice.

Note that these recommendations ignore the
overhead involved in handling large numbers of hash
values, especially when the hash values have to be
digitally signed (as in many digital forensic tools
(Garber, 2001; Chow et al., 2005)). The Merkle
hash tree (Merkle, 1989) is a low-overhead approach
for signing multiple hash values (Wang et al., 2007).
Nevertheless, it is important to investigate the effect
of the overhead involved in digital signing on the
choice of dimensionality.

5 Implementation and evaluation

Two test hard disks, including HD1 with ca-
pacity 250 GB (total number of sectors N =

488 392 065) and speed 5400 r/min and HD2 with
capacity 60 GB (total number of sectors N =

117 210 240) and speed 4200 r/min, are used in the
kD scheme for k = 3 and m = 1. That is, we imple-
ment a 3D scheme without blocking. It is compared
with two trivial solutions mentioned in the introduc-
tion, 1D and ND schemes where N represents the
total number of sectors in the two hard disks. MD5
with 128 bits is chosen as the hash function. The
workstation running experimental tests is configured
with an Intel R© CoreTM 2 CPU (E6750 at 2.66 GHz)
and 1.97 GB of RAM. We mainly evaluate:

1. The storage of the hash values (Shash =

16Nhash(3));
2. The memory overhead during running OPA3

to generate hash values as integrity evidence (M);
3. The time to run OPA3 to generate hash val-

ues as integrity evidence (TOPA);
4. The time to run ICHD3 (TICHD);
5. The time to run ICS3 (TICS).
As shown in Table 1, the storage of 28.40 MB

hash values using the 3D scheme is acceptable com-
pared with 16 bytes using the 1D scheme, and

Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818 817

Table 1 Experimental results for HD1 (250 GB)

Scheme Shash TOPA (s) TICHD (s) TICS (s)

1D 16 bytes 11 493 11 510 11 496
3D 28.40 MB 16 245 16 255 18.14
ND 7.28 GB 13 526 16 036 0.02
∗ N = 488 392 065

Table 2 Experimental results for HD2 (60 GB)

Scheme Shash TOPA (s) TICHD (s) TICS (s)

1D 16 bytes 4119 4159 4139
3D 10.98 MB 5248 5261 4.73
ND 1.7 GB 4661 5141 0.02
∗ N = 117 210 240

is much smaller than the 7.28 GB using the ND
scheme. The memory overhead (M) during running
OPA3 is 28.40 MB, the same as the storage. It is a
small overhead for normal PCs with a standard con-
figuration. The computational time for calculating
hash values in 3D is 16 245 s, which brings a little
more overhead than those in 1D and ND, the ex-
isting solutions mentioned in Section 1. If a certain
sector’s integrity must be checked, our 3D scheme
takes obvious advantage of 18.14 s compared with
1D because the whole hard disk is scanned to calcu-
late the hash value in the 1D scheme. The compari-
son among these three parameters of computational
time shows that our scheme requires little additional
computation overhead. Table 2 shows the similar
result.

In summary, compared with the 1D scheme, our
3D scheme is much practical when a sector’s integrity
must be checked and all other overheads are accept-
able. Compared with the ND scheme which usu-
ally brings great overhead in storage, our 3D scheme
concerns more from the forensics investigators’
viewpoint.

6 Conclusions

The kD hashing scheme is a robust technique
for verifying the integrity of data stored on hard disk
even if some of the sectors suddenly become bad sec-
tors or modified purposely during the investigation
or storage. The scheme computes the hash values for
each sector in k dimensions; thus, when one or more
sectors go bad, it can still verify the integrity of the
data in the unaffected sectors with high probability.
Experiments show that the scheme is efficient and
practical in real situations.

Computer forensics case handling software must
handle the problem of hard disk sector integrity
properly. This is becoming more and more important
as storage size is increasing rapidly. If the computer
forensics software had incorporated the kD scheme
(with k smaller than the number of disk sectors), the
resource requirement of this software will be greatly
reduced, and the probability of losing integrity evi-
dence of a disk sector will be greatly reduced. We
believe that research results in disk sector integrity
checking will greatly benefit the digital investigation.

The deployment of the kD scheme can also dis-
cover the illegal modification of integrity information
by a wicked computer forensics scientist. This is
achieved by providing more than one hash value for
each individual sector. Further research efforts are
needed to analyze this situation in more detail. An-
other obvious direction is to design a better scheme
to deal with the hard disk integrity checking problem.
From a practical point of view, we should consider
how to improve this hashing scheme to the situation
in which normal users may update their hard disks
every day, such that many hash values are needed to
be recomputed in order to track the integrity of the
hard disks due to the changes in sectors. Since the
kD hashing scheme is designed to provide effective
integrity proof of a huge amount of data which are
prone to be changed partly, it may be extended to
other areas to handle similar problems, such as DNA
library screening and error correction in communica-
tion networks.

References
Chen, B.M., Lee, T.H., Peng, K., Venkataramanan, V., 2006.

Hard Disk Drive Servo Systems. Springer, London,
p.3-11.

Chow, K.P., Chong, C.F., Lai, K.Y., Hui, L.C.K., Pun,
K.H., Tsang, W.W., Chan, H.W., 2005. Digital Evi-
dence Search Kit. 1st Int. Workshop on Systematic
Approaches to Digital Forensic Engineering, p.187-194.
[doi:10.1109/SADFE.2005.10]

Comito, C., Patarin, S., Talia, D., 2007. PARIS: a Peer-to-
Peer Architecture for Large-Scale Semantic Data Inte-
gration. Proc. Databases, Information Systems, and
Peer-to-Peer Computing, p.163-170. [doi:10.1007/978-
3-540-71661-7_15]

Garber, L., 2001. Computer forensics: high-tech law en-
forcement. IEEE Comput. Mag., 34(1):22-27. [doi:10.
1109/MC.2001.10008]

Gauravaram, P., McCullagh, A., Dawson, E., 2006. Collision
Attacks on MD5 and SHA-1: Is This the ‘Sword of
Damocles’ for Electronic Commerce? Auscert Asia Pa-
cific Information Technology Security Conf.: Refereed
R&D Stream, p.73-88.

818 Jiang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(10):809-818

Harbour, N., 2002. dcfldd. Defense Computer Forensics Lab.
Available from http://dcfldd.sourceforge.net

Hussain, O.K., Dillon, T.S., Chang, E., Hussain, F., 2010.
Transactional risk-based decision making system in e-
business interactions. Int. J. Comput. Syst. Sci. Eng.,
25(1):15-25.

Jiang, Z.L., Hui, L.C.K., Chow, K.P., Yiu, S.M., Lai,
P.K.Y., 2007. Improving Disk Sector Integrity Using 3-
Dimension Hashing Scheme. Int. Workshop on Foren-
sics for Future Generation Communication, p.141-145.

Jiang, Z.L., Hui, L.C.K., Yiu, S.M., 2008. Improving Disk
Sector Integrity Using k-Dimension Hashing. Advances
in Digital Forensics IV, p.87-98. [doi:10.1007/978-0-
387-84927-0_8]

Kornblum, J., 2006. Identifying almost identical files using
context triggered piecewise hashing. Dig. Invest.,
3(Supplement 1):91-97. [doi:10.1016/j.diin.2006.06.015]

Law, F.Y.W., Lai, P.K.Y., Jiang, Z.L., Ieong, R.S.C., Kwan,
M.Y.K., Chow, K.P., Hui, L.C.K., Yiu, S.M., Chong,
C.F., 2008. Protecting Digital Legal Professional Priv-
ilege (LPP) Data. 3rd Int. Workshop on Systematic
Approaches to Digital Forensic Engineering, p.91-101.
[doi:10.1109/SADFE.2008.19]

Mead, S., 2006. Unique file identification in the National
Software Reference Library. Dig. Invest., 3(3):138-150.
[doi:10.1016/j.diin.2006.08.010]

Merkle, R.C., 1989. A Certified Digital Signature. Advances
in Cryptology, p.218-238.

NIST (National Institute of Standards and Technology),
2004. National Software Reference Library (NSRL).
Available from http://www.nsrl.nist.gov

Schroeder, B., Gibson, G.A., 2007. Disk Failures in the
Real World: What Does an MTTF of 1 000 000 Hours
Mean to You? 5th USENIX Conf. on File and Storage
Technologies, p.1.

Wang, M., Li, L., Yiu, S.M., Hui, L.C.K., Chong, C.F.,
Chow, K.P., Tsang, W.W., Chan, H.W., Pun, K.H.,
2007. A Hybrid Approach for Authenticating MPEG-2
Streaming Data. Int. Conf. on Multimedia Content
Analysis and Mining, p.203-212. [doi:10.1007/978-3-
540-73417-8_27]

Appendix: a general kD scheme

Since a kD scheme can be extended by the spe-
cific 3D case, we just list the sector distribution al-
gorithm SDAk and the one-pass algorithm OPAk in
Algorithms A1 and A2 without detailed description.

Similar to Theorem 1, we have the following
theorem:
Theorem A1 Function SDAk is a function
from a set X={j | 0 ≤ j ≤ N − 1} to a set
Y ={(dk, · · · , d1) | 0 ≤ dk ≤ Rk, · · · , 0 ≤ d1 ≤ R1},
where R1, · · · , Rk are decided by N , with the prop-
erty that, for every (dk, · · · , d1) in Y , there is exactly
one j in X such that SDAk(j) = (dk, · · · , d1). Or
SDAk is a bijection.

Algorithm A1: SDAk, sector distribution
algorithm for kD

input: j. output: (dk, dk−1, · · · , d1).
if j = 0 then

(dk, dk−1, · · · , d1) = (0, 0, · · · , 0); Exit;
end
L =

⌊
j1/k

⌋
;

if Lk < j + 1 ≤ Lk + Lk−1 then
i = j − Lk; d1 = L;
foreach m (2 ≤ m ≤ k) do

dm = i/Lm−2%L;
end

else if
Lk + Lk−1 < j + 1 ≤ Lk + Lk−1 + Lk−2(L+ 1)

then
i = j − (Lk−1 + Lk−2);
d1 = i%(L+ 1); d2 = L;
foreach m (3 ≤ m ≤ k) do

dm = i/(Lm−3(L+ 1))%L;
end

· · ·
else if Lk +

∑t−1
x=1 L

k−x(L+ 1)x−1 < j + 1 ≤∑t
x=1 L

k−x(L+ 1)x−1 then
i = j − Lk −∑t−1

x=1 L
k−x (L+ 1)x−1;

foreach m (1 ≤ m ≤ t− 1) do
dm = i/(L+ 1)m−1%(L+ 1);

end
dt = L;
foreach m (t+ 1 ≤ m ≤ k) do

dm = i/(Lm−t(L+ 1)t−2)%L;
end

· · ·
else if
Lk +

∑k−1
x=1 L

k−x(L+ 1)x−1 < j + 1 ≤ (L+ 1)k

then
i = j − Lk −∑k−1

x=1 L
k−x(L+ 1)x−1;

foreach m (1 ≤ m ≤ k − 1) do
dm = i/(L+ 1)m−1%(L+ 1);

end
dk = L;

end

Algorithm A2: OPAk, one-pass algorithm
for kD

input: {sj | j = 0, 1, · · · , N − 1}
output: {v_Dt[] | t = 1, 2, · · · , k}
Set all {v_Dt[] | t = 1, 2, · · · , k} to the initial
values;
foreach sector sj where j = 0, 1, · · · , N − 1 do

(dk, dk−1, · · · , d1) = SDAk(j);
v_Dt[dk, · · · , dt+1, dt−1, · · · , d1];

end

