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Abstract:    Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration 
and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpo-
lations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Rie-
mannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, 
they all result in a ‘fixed’ interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, 
we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The 
profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation ex-
periment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction 
errors with the determinant error, Euclidean norm, and Riemannian norm. 
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1  Introduction 
 

Diffusion tensor imaging (DTI), as a modality of 
magnetic resonance imaging (MRI), is the unique 
water diffusion imaging technique for reconstructing 
white matter organization in the brain (Basser et al., 
1994; Filley, 2001; Schonberg et al., 2006; Hoptman 
et al., 2008; Roosendaal et al., 2009). The registration 
(Alexander et al., 2001; Zhang et al., 2006) and 
tractography (Jones et al., 1999; Snook et al., 2007; 
Zhou et al., 2008) of DTI plays an important role in 
clinical applications, and they all require tensor in-
terpolation. Simple interpolation, based on Euclidean 
geometry, has been used in clinical applications re-
cently (Pajevic and Basser, 2003; Peng et al., 2009). 
However, this interpolation does not take into account 

the important properties of diffusion physics such as 
positive definiteness and invariance, which are 
guaranteed by a monotonic interpolation profile 
(Kindlmann et al., 2007). Thus, some Riemannian 
schemes with different metrics, including the affine 
invariant metric (Batchelor et al., 2005; Pennec et al., 
2006), Log-Euclidean metric (Arsigny et al., 2006), 
and Riemannian symmetric space metric (Fletcher 
and Sarang, 2007), were proposed for tensor opera-
tion. Although the Riemannian schemes use different 
metrics, they all result in a ‘fixed’ interpolation pro-
file that cannot adapt to a variety of diffusion patterns 
in biological tissues. The term ‘interpolation profile’ 
in this context indicates the generalization of inter-
polation curve (1D), surface (2D), and hyper-surface 
(larger than 3D) based on the same mathematical 
concept across space dimensionality. For example, 
we will use only the term ‘linear profile’, instead of 
two terms ‘linear curve’ and ‘linear surface’, for the 
interpolation of two tensors and the diffusion tensor 
(DT) image, respectively, in this context. 
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There are two ways to assess the interpolation 
quality. The first is to use the qualitative constraints, 
including the positive definiteness (Batchelor et al., 
2005) and the invariance of the clinical indices, such 
as the tensor determinant (Arsigny et al., 2006; 
Pennec et al., 2006; Fletcher and Sarang, 2007), trace, 
and fractional anisotropy (FA) (Kindlmann et al., 
2007). The second is to use the quantitative indices, 
such as the distance and determinant difference 
between the original DT image and the interpolated 
DT image (Arsigny et al., 2006). 

In this paper, we propose a Riemannian inter- 
polation scheme to control the interpolation profile 
with respect to the tensor determinant. This scheme 
preserves the positive definiteness and determinant 
invariance. The control of the interpolation profile 
depends on the non-uniform motion on the Rieman-
nian geodesic. Then the previous Riemannian inter- 
polation schemes belong to the uniform motion class.  

 
 

2  Theory and methodology 

2.1  DT interpolation schemes 

The diffusion tensor is represented as a 3×3 
positive definite matrix D=(dij), i, j{1, 2, 3}. First, 
let us consider several interpolation schemes for two 
tensors D1 at time 0 and D2 at time 1. 

1. Euclidean linear interpolation. A tensor D is 
mapped to a six-dimensional vector v=(d11, d22, d33, 
d12, d13, d23), and the tensor interpolated at time 
t[0, 1] is computed as 

 

1 2( ) (1 ) ,    [0,  1].t t t t   v v v  
 

The Euclidian distance between two tensors D1 
and D2 is given by 

 

2
1 2 1 2dist( , ) tr ( ) . D D D D  

 

2. Riemannian symmetric space scheme (RSS) 
(Fletcher and Sarang, 2007). A geodesic γRSS(t) from 
tensor D1=γ(0) to tensor D2=γ(1) defines the inter- 
polated tensor D(t) at time t[0, 1]: 

 
T

RSS ( ) ( ) ( )exp( )( ) ,t t t γ D gv Σ gv  
 

where g, v, and Σ are Lie-group action symmetric 
matrices derived from D1 and D2. For details, see 

Fletcher and Sarang (2007).  
The Riemannian distance between two tensors is 

written as 
 

2
1 2dist( , ) tr (log ) .D D Σ  

 

3. Log-Euclidean scheme (LE) (Arsigny et al., 
2006). The geodesic γLE(t) is a computationally 
efficient close approximation of the Riemannian 
scheme: 
 

LE 1 2( ) exp[(1 )log log ].t t t  γ D D         (1) 
 

The LE distance between two tensors is computed by 
 

2
1 2 1 2dist( , ) tr (log log ) . D D D D  

 
Fig. 1 shows the interpolation results in t[0, 1] 

for two synthetic tensors D1=γ(0) and D2=γ(1) using 
different schemes. Here the synthetic tensors were 
produced as in Alexander and Barker (2005). The 
diffusion ellipsoids γ(t) with t=0.2, 0.4, 0.6, 0.8 
interpolated by the Euclidian scheme are larger than 
those at the same time points interpolated by the two 
Riemannian schemes (Fig. 1a). In the interpolation 
curves of the tensor determinant (Fig. 1b), the 
interpolation profiles of LE and RSS schemes are 
monotonic and entirely the same. That is to say, the 
different Riemannian schemes always result in a  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  The diffusion ellipsoids of interpolated tensors (a) 
and the interpolation curves of the tensor determinant (b) 
using Euclidian, RSS, and LE schemes  
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‘fixed’ interpolation profile of the tensor determinant. 
On the other hand, the interpolation curve from the 
Euclidean scheme is non-monotonic (Fig. 1b), 
resulting in the swelling effect (Chefd’Hotel et al., 
2004): a part of interpolated tensors have larger 
determinants than both of the two original tensors D1 
and D2, which violates the diffusion physics in 
biological tissues. 

2.2  Interpolation profile control 

In mathematical interpolation between two 
scalars, we can select various interpolation profiles 
such as linear, spline, or polynomial expression. 
Unfortunately, in the tensor interpolation using 
Riemannian schemes, there was only one unique 
profile of power function det D(t)=a1−tbt, where 
a=det D1, b=det D2 (Fig. 1 and Eq. (3)). Therefore, the 
schemes could not adapt to a variety of diffusion 
patterns in biological tissues. In this subsection we 
explore an alternative scheme. In this scheme, the 
fixed interpolation profile is exchanged with an 
arbitrary monotonic profile. Since Riemannian 
schemes have the same interpolation curves, i.e., 
det(γRSS(t))≡det(γLE(t)), we refer both of them to an 
expression det(γRi(t)).  

When normalizing the length of a Riemannian 
geodesic between two tensors as a unit, the tensor set 
on the geodesic can be written as γ(s), s[0, 1]. Let us 
consider the Riemannian interpolation kinetically. 
Definition 1 (Riemannian based kinetic tensor 
interpolation)    Provided that the interpolation moves 
from the start point s=0 to the end point s=1 on the 

geodesic, let the velocity be 
d ( )

( ) .
d

f t
v t

t
  The 

interpolation after any time t[0, 1] arrives at 

0
( ) ( )d .

t
f t v t u   The one-to-one mapping relation 

γ(s=f(t)) between the time space (i.e., interpolation 
space) t[0, 1] and the tensor set γ(s), s[0, 1] is 
called ‘Riemannian based kinetic tensor interpolation’ 
(simply, ‘Riemannian tensor interpolation’ or ‘tensor 
interpolation’ below). 
Definition 2 (Uniform velocity and non-uniform 
velocity interpolations)    If v(t) is constant, the tensor 
interpolation is called a ‘uniform velocity interpola-
tion’; if v(t) is not constant, the tensor interpolation is 
a ‘non-uniform velocity interpolation’. 

First, note that the previous interpolations using 
the Riemannian scheme can be regarded as the 

interpolation with uniform velocity v(t)=1, so that 
f(t)=t. If the interpolation adopts non-uniform 

velocity 
d ( )

( ) ,
d

f t
v t

t
  f(0)=0, f(1)=1, t[0, 1], the 

original Riemannian interpolation geodesic γRi(t) is 
rewritten as γRi(f(t)). Then the interpolation profile of 
tensor determinant det(γRi(t)) is deformed to 
det(γRi(f(t))). Although the interpolation profile is 
deformed, the positive definiteness and monotonic 
property of tensor interpolation are preserved as long 
as the interpolation moves along the geodesic with a 
positive velocity. Then the original interpolation γRi(t) 
belongs to the linear control class with f(t)=t. 

Next, consider how to control the interpolation 
profile to fit an arbitrary profile. This problem is 
defined to find a mapping 

 

Ri: ,  ( ) det( ( )),  , [0,  1],f t u t u t u   γ      (2) 
 

where γRi(u) is the Riemannian interpolation geodesic, 
det(γRi(u)) is the Riemannian interpolation profile 
between two tensor determinants, and ψ(t) is a 
required interpolation profile such as the spline curve. 
We can obtain the following expression from Eq. (1) 
using the properties of logarithm, exponential opera-
tion, and symmetry of the tensor (Fletcher and Sarang, 
2007): 
 

1 1
1 2

1 2

det( ( )) det( ) ,

det ,  det .

u u u u
Ri u a b

a b

   

 

γ D D

D D
          (3) 

 

Consequently, the relationship between t and u is 
derived from Eqs. (2) and (3): 

 

log( ( ) / )
( ) .

log( / )

t a
u f t

b a
 


                   (4) 

 

And the DT interpolation γ(t) with profile ψ(t) is 
given as follows: 

 

 Ri( ) ( ( )),   Ri LE, RSS .t f t γ γ           (5) 

 

Although the permutation (4) is derived from LE 
scheme (1), this interpolation profile control (5) can 
be used for all the Riemannian interpolations, since 
the interpolation profiles of the tensor determinant are 
all the same. 

The relationships f(t) for several interpolation 
profiles are presented below: 
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1. Riemannian profile (Eq. (3)):  
 

1
Ri( ) det( ( )) t tt t a b  γ , so f(t)=t. 

 

2. Linear profile:  
 

( ) ( ) ,   t b a t a  

and then 
log[1 ( ) / ]

( )
log( / )

t b a a
f t

b a

 
 . 

 

3. Harmonic profile: 
 

If a<b, then  
 

( ) [sin(π π / 2) 1]( ) 2 ,t t b a a      

and  
log{1 [sin(π π / 2) 1]( ) (2 )}

( ) .
log( / )

t b a a
f t

b a

   
  

 

If a≥b, then  
 

( ) [cos(π π) 1]( ) 2 ,t t b a a      

and 
log{1 [cos(π π) 1]( ) (2 )}

( ) .
log( / )

t b a a
f t

b a

   
  

 
Fig. 2 shows the example of Riemannian, linear, 

and harmonic profiles (Fig. 2a) and the interpolated 
DT ellipsoids (Fig. 2b) between two prolate tensors 
with the same direction and different diffusion 
volumes. The diffusion ellipsoid series (Fig. 2b) 
interpolated under the three interpolation profiles 
illustrates the evident differences at the corresponding 
time points. The diffusion ellipsoids under the 
Riemannian profile are always smaller than the 
ellipsoids under the other two profiles. The first half 
(about γ(0)–γ(0.5)) of the ellipsoids under the linear 
profile are larger than these under the harmonic 
profile, while the ramaining are smaller. This 
illustrates that the interpolation is controlled correctly 
according to the required profile. 

2.3  Profile control in the two-dimensional space 

For four neighboring diffusion tensors Di (i=1, 2, 
3, 4) at image grids in the 2D DT image space (x, y), 
the coordinates are denoted as pi=(ui, vi), ui, vi{0, 1}, 
i1, 2, 3, 4 and the tensor determinants are Ai, i=1, 2, 
3, 4. In the LE scheme, a 2D Riemannian geodesic 
surface γRi(x, y) is expressed as the positive weighted 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sum of the logarithm of four tensors (Arsigny et al., 
2006): 

4

Ri
1

( , ) exp ( , )log ,i i
i

x y w x y


 
  

 
γ D           (6) 

where  
1 1( , ) [(1 ) ( 1) ][(1 ) ( 1) ].i iu v

i i iw x y u x v y         
 

Then the interpolation profile control problem is 
defined to find the map 
 

Ri:  ( , ) ( , ),  ( , ) det( ( , )),f x y x y     γ  
 

where ψ(x, y) is the required interpolation profile, 
4 ( , )

Ri 1
det( ( , )) iw

ii
A


   γ  (refer to Eq. (3)). 

Compared to the interpolation of two tensors 
(Section 2.2), the determinant det(γRi(η, ξ)), which fits 
to ψ(x, y), is not unique and forms a level-set Ω= 
{γRi(η, ξ)|det(γRi(η, ξ))=ψ(x, y)}. Therefore, we can 
determine the interpolation uniquely by finding the 
γRi(η, ξ)Ω with the minimum Riemannian distance 
from γRi(x, y). 

The unique interpolation γRi(η, ξ) is obtained as 
follows. First, Eq. (6) is used to calculate γRi(x, y), and 
then Eq. (7) is used to derive the four candidates γk, 
k=1, 2, 3, 4 on the geodesics from γRi(x, y) to four 

Fig. 2  Different interpolation profiles in our proposed 
scheme (a) and interpolated diffusion tensor ellipsoids (b) 
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tensors Dk, k=1, 2, 3, 4, respectively. 
 

Ri

log( ( , ) / )
,   det( ( , )),  1,2,3,4,

log( / )k
k

x y a
u a x y k

A a
  


γ  

 (7) 

Riexp[(1 )log( ( , )) log ].k k k ku x y u  γ γ D      (8) 
 

Finally the unique interpolation is determined as 
 

Ri( , ) argmin(dist( ( , ),  )),k
k

x y x yγ γ γ           (9) 

 

where dist(·,·) is a Riemannian distance function. 
Here the LE distance is used.  

Fig. 3 illustrates the interpolation results using 
the RSS scheme, the LE scheme, the interpolation 

using linear profile 
4

1
( , ) ( , ) ,i ii
x y w x y A


  and the 

Euclidean scheme. Here, all figures in the left column 
are the interpolation profiles of the tensor determinant 
and all figures in the right column are the DT ellipsoid 
images interpolated by the profile. The Riemannian 
schemes of RSS and LE have the same interpolation 
profile of the DT determinant while the interpolated 
DT ellipsoid patterns are a bit different. In fact, the 
anisotropy in the LE scheme increases a little more 
than that in the RSS scheme, but it is difficult to dis-
tinguish the difference with the naked eye, as 
mentioned in Arsigny et al. (2006). 

Compared with the linear profile scheme, 
Riemannian schemes have a larger gap between DT 
ellipsoids due to the smaller diffusion ellipsoids than 
in the linear profile case, and the interpolation profile 
border of Riemannian schemes exhibits the power 
function pattern. In the linear profile scheme, the 
interpolation profile border is linear. The Euclidean 
interpolation profile illustrates the evident swelling 
effect. A part of the interpolation profile surface is 
higher than the four corner tensor determinants.  

The extension of this interpolation scheme to 3D 
is straightforward by exchanging γRi(x, y), ψ(x, y), and 
corner number 4 with γRi(x, y, z), ψ(x, y, z), and corner 
number 8. 
 
 

3  Experiments and results 

3.1  Materials 

The DTI dataset was acquired using a dual 
spin-echo, single shot echo-planar imaging sequence 

on a Siemens Sonata 1.5 T scanner. The acquisition 
parameters were 3-mm slice thickness, no inter-slice 
gap, TR (repeat time)=8100 ms, TE (echo time)= 
92 ms, FOV=240 mm×240 mm, and four averages. 
Twelve non-collinear diffusion-sensitizing gradient 
directions with diffusion sensitivity b=1000 s/mm2 
and one non-diffusion-sensitizing gradient b=0 s/mm2 
were adopted. Fifty contiguous axial slices were 
acquired and each slice image is 128×128 pixels. The 
12 gradient directions were as follows: [(1.0, 0.0, 0.5), 
(0.0, 0.5, 1.0), (0.5, 1.0, 0.0), (1.0, 0.5, 0.0), (0.0, 1.0, 
0.5), (0.5, 0.0, 1.0), (1.0, 0.0, −0.5), (0.0, −0.5, 1.0), 
(−0.5, 1.0, 0.0), (1.0, −0.5, 0.0), (0.0, 1.0, −0.5), (−0.5, 
0.0, 1.0)].  

3.2  Method 

With the medical DTI data, we used the four 
schemes of Euclidean, RSS, LE, and the proposed 
(linear profile) interpolations to reconstruct a DTI 
slice downsampled by a factor of 2. One of two 
columns and one of two rows were removed using the 
downsampling. This reconstruction is the interpola-
tion at t=0.5 so that the linear profile and harmonic 
profile of the proposed scheme result in the same 
reconstruction (Fig. 2a). Therefore, we selected the 
linear profile for the computational simplicity. The 
slice was chosen in the mid-axial plane where strong 
variations are present in the DT image. After 
reconstruction, we produced the absolute value image 
of the pixel-wise difference tensor between the original 
and interpolated DT images for reconstruction error 
analysis. The absolute value tensor was defined as the 
symmetric positive semi-definite matrix obtained by 
replacing the eigenvalues of the original tensor with 
their absolute values. This absolute value image of 
DT retains all the information about the magnitude 
and the orientation (Arsigny et al., 2006).  

Then for quantitative comparison, we assessed 
the reconstruction errors with three error measures 
(see the Appendix): determinant, Euclidean norm, 
and Riemannian norm on the absolute value image. 
The error measures were computed as the total sum of 
pixel-wise errors on the selected slices. Since the 
diffusion tensor is a coefficient matrix of the Stejskal- 
Tanner equation (Stejskal and Tanner, 1965) for water 
molecule diffusion, it has no unit. Accordingly, the 
associated measures also have no unit. The smaller 
error measure reflects the better reconstruction result. 
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Fig. 3  The two-dimensional diffusion tensor (DT) interpolation: (a) RSS interpolation; (b) LE interpolation; (c) 
interpolation using a linear profile; (d) Euclidian interpolation 
In each interpolation, the left figure is the interpolation profile of the tensor determinant and the right figure is the DT ellipsoid 
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3.3  Results 

3.3.1  Absolute value image 

Fig. 4 displays the absolute value image by using 
reconstruction error ellipsoids of the diffusion tensor. 
Fig. 4a shows the FA image of the middle axial slice 
and Fig. 4b illustrates the original diffusion tensor 
ellipsoids within the rectangle part of the FA image. 
The rectangle range is a typical part with different 
diffusion patterns and large reconstruction error 
ellipsoids. The large isotropic tensors occur in the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ventricle, anisotropic tensors in the corpus callosum, 
and oblate tensors in the other part. The absolute 
value images for the four interpolation schemes are 
illustrated in Figs. 4c–4f. Here the larger ellipsoid 
represents the larger reconstruction error.  

3.3.2  Reconstruction error 

Table 1 provides the quantitative comparison 
between the four interpolation schemes by using three 
error measures: determinant error, Euclidean norm, 
and Riemannian norm. For the determinant error, the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  The fractional anisotropy (FA) image of the selected axial slice (a), the original diffusion tensor ellipsoid image 
(b), and the reconstruction error ellipsoid images obtained using the RSS scheme (c), the LE scheme (d), our proposed 
scheme (e), and the Euclidean scheme (f) 
The larger ellipsoid represents the larger reconstruction error 
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proposed scheme has the smallest error. The Euclidean 
scheme has the smallest error for the Euclidean norm, 
and the proposed scheme has the smallest error for the 
Riemannian norm. The elements of the DT matrix in 
general have the magnitude of 10–9 or lower, so the 
measured values are very small, except for the 
Riemannian norm, using logarithmic operation. 

 
 
 
 
 
 
 
 
 
 
 

 
 
4  Discussions 

4.1  Interpolation profile control 

The proposed scheme can control the DT 
interpolation profile of the determinant using Eqs. (4) 
and (5) for two tensors and Eqs. (7)–(9) for the DT 
image. Once a required profile was selected, this 
scheme was able to control the interpolation 
according to the profile (Figs. 2 and 3). Using this 
scheme, it was possible to generate an arbitrary 
monotonic interpolation profile. 

4.2  Reconstruction error for human DTI 

4.2.1  Visual observation 

In the reconstruction error images of the RSS, 
LE, the linear profile, and the Euclidean interpolation 
scheme, the large error ellipsoids occurred within the 
ventricle. The places where the large error ellipsoids 
occurred were different for each interpolation scheme. 
The proposed (linear profile) scheme (Fig. 4e) had the 
larger error ellipsoids on the x=64 column between 
left and right ventricles, compared with other schemes. 
Euclidean (Fig. 4f), RSS (Fig. 4c), and LE (Fig. 4d) 
schemes had the larger error ellipsoids on the x=60, 
66, and 68 columns than the linear profile scheme. 
Two Riemannian schemes had almost the same error 
image of diffusion ellipsoids, but were not completely 
the same. 

4.2.2  Quantitative comparison 

As shown in Table 1, the linear profile scheme 

had the smallest determinant error 2.2564×10−26. As 
we know, the tensor determinant is proportional to the 
diffusion ellipsoid volume. Thus, this result showed 
that the linear profile interpolation gave the best 
reconstruction of the original diffusion volume. As 
for the Euclidean norm, the Euclidean scheme had the 
smallest error 1.3580×10−7 (Table 1), which can be 
understood because the Euclidean distance was 
minimized just due to Euclidean interpolation. For the 
Riemannian norm, the proposed scheme also had the 
smallest error, and the Euclidean scheme had the 
largest error.  

Consequently, the proposed linear profile 
scheme worked better than other schemes. We could 
explain this as follows: The large errors occurred in 
the interface between the brain tissues with different 
diffusibilities (Fig. 4) and the error level depended on 
the transition pattern on the interface rather than the 
interpolation scheme. If the transition pattern fitted 
the linear profile, the reconstruction error was the 
smallest when using the linear profile scheme as in 
the x=60 column in Fig. 4e, and if the transition 
pattern fitted the power function profile, then the error 
would be the smallest when using the RSS or LE 
scheme, as in the x=64 column in Figs. 4c and 4d. The 
experiment results gave two hints: first, perhaps the 
general configuration of water molecule diffusion in 
the selected DTI slice is approximate to the linear 
profile; second, it is necessary to use adaptive inter- 
polation, depending on a local diffusion configuration, 
to improve the interpolation quality. 
 
 

5  Conclusions 
 

The proposed scheme uses the non-uniform 
motion on a Riemannian geodesic to generate a 
required interpolation profile and preserve the 
diffusion properties. The reconstruction experiment 
with an interpolation operation was performed on a 
human DT image. Here the sites with large 
reconstruction errors depended on the interpolation 
schemes. Experimental results showed that the 
adaptive interpolation was necessary to improve the 
reconstruction quality. In this work, we resolved the 
interpolation profile control as a problem for adaptive 
interpolation. In further work, we will study the 
methodology to collect the local diffusion pattern 
information.  

Table 1  Quantitative comparison between different in-
terpolation schemes 

Scheme Determinant 
error (×10−26) 

Euclidean 
norm (×10−7) 

Riemannian 
norm (×104)

Ours  2.2564 1.3939 1.0189 
RSS  3.4339 1.4221 1.0221 
LE  3.4355 1.4198 1.0223 
Euclidean 2.4127 1.3580 1.0232 
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Appendix: Three error measures 
 

1. Determinant error of the absolute value image: 
 

1 2
,

det | ( , ) ( , ) |,
x y Ω

V x y x y


  D D  

 

where D1 and D2 are the different DT images, Ω is the 
image range, and |·| represents the absolute value of 
the difference between corresponding diffusion 
tensors in D1 and D2. The absolute value of a 
non-positive definite tensor is obtained by reversing 
the sign of the negative eigenvalue and then 
re-computing the tensor (Bansal et al., 2008). 
Therefore, D=|D1−D2| is just the absolute image of the 
difference of D1 and D2. 

2. Euclidean norm of the absolute value image: 
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3. Riemannian norm (LE norm) of the absolute 
value image: 
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