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Abstract: We propose a robust method for detecting features on triangular meshes by combining normal tensor
voting with neighbor supporting. Our method contains two stages: feature detection and feature refinement. First,
the normal tensor voting method is modified to detect the initial features, which may include some pseudo features.
Then, at the feature refinement stage, a novel salient measure deriving from the idea of neighbor supporting
is developed. Benefiting from the integrated reliable salient measure feature, pseudo features can be effectively
discriminated from the initially detected features and removed. Compared to previous methods based on the
differential geometric property, the main advantage of our method is that it can detect both sharp and weak
features. Numerical experiments show that our algorithm is robust, effective, and can produce more accurate results.
We also discuss how detected features are incorporated into applications, such as feature-preserving mesh denoising
and hole-filling, and present visually appealing results by integrating feature information.
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1 Introduction

In recent years, triangular meshes have been ex-
tensively used to represent objects in computer-aided
design and computer graphics, not only due to their
simplicity and efficiency, but also the rapid develop-
ment of 3D acquisition techniques. In the process
of model analysis, understanding, and editing, fea-
ture detection usually plays an important and pre-
liminary role in a variety of applications, such as
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feature-preserving mesh denoising (Shimizu et al.,
2005; Fan et al., 2010; Bian and Tong, 2011), simpli-
fication (Kim et al., 2006), segmentation (Stylianou
and Farin, 2004), and hole-filling (Li et al., 2010).
The features involved in this paper refer to vertices
lying at the intersection of multiple smooth surfaces,
which are also called ‘discontinuous points’ (di An-
gelo and di Stefano, 2010). Feature lines can be
obtained by connecting feature vertices.

For most methods (Watanabe and Belyaev,
2001; Ohtake et al., 2004; Stylianou and Farin, 2004;
Yoshizawa et al., 2008; Mao et al., 2009), high qual-
ity estimation of differential geometric properties
is critical to feature detection. However, the ac-
quired data are inevitably contaminated with noise
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as higher-order derivatives of the surface are noise
sensitive. These unreliable differential geometric
properties based methods lead to poor results. An-
other challenge for feature detection is to precisely
estimate the differential geometric properties in dis-
continuity regions. For instance, a corner has no
preferred orientation and the curvature is also mean-
ingless (Ohtake et al., 2004). Therefore, the noise
and discontinuities should be specially taken care of
for piecewise-smooth surfaces in feature detection.

Optional preprocessing can be adopted to deal
with noise, such as the smoothing used in Hilde-
brandt et al. (2005). Although smoothing can mini-
mize the effects of the noise, directly smoothing the
original surface will change or destroy the original
surface. Furthermore, some salient features might
be diffused and weak features will be filtered out.

To detect features on triangular meshes, a two-
stage method is proposed in this paper. At the first
stage, the modified normal tensor voting method is
adopted to detect the initial features, which include
all potential features, such as sharp and weak fea-
tures and possibly with noise. At the second stage,
a refinement of feature selection is conducted to ex-
tract the real features from the initially detected fea-
tures. To this end, we introduce a novel salient mea-
sure via neighbor supporting. From this measure,
we develop an efficient and robust feature detection
algorithm, which extracts not only sharp features,
but weak features as well. The contributions of our
work can be summarized as follows:

1. Based on the idea of neighbor supporting, an
anisotropic vertex salient measure is defined, which
can effectively characterize the geometric features of
the surface.

2. Compared to the methods based on purely
differential geometric properties, the newly defined
salient measure allows the simultaneous detection of
both sharp and weak features.

3. A unified framework for feature detection on
triangular meshes is proposed, which is insensitive to
noise and has a strong ability to discriminate actual
features from noise.

2 Related works

Recently, numerous research techniques have
been developed for feature detection on triangular
meshes.

According to differential geometry preliminar-
ies, for a smooth oriented surface, feature lines can be
defined via first- and second-order curvature deriva-
tives, i.e., the extreme of principal curvatures along
corresponding principal directions. To detect fea-
tures, a natural idea is following the mathematical
definition, such as the method proposed by Ohtake
et al. (2004). Stylianou and Farin (2004) first identi-
fied the feature vertex by testing whether its largest
(smallest) curvature was locally maximum (mini-
mum) in its corresponding direction. Then, the re-
gion growing and skeleton techniques were employed
to obtain the final feature lines. This method cou-
pled with the similar measure was further used in
Mao et al. (2009) to detect perceptually salient fea-
tures on 3D meshes. Yoshizawa et al. (2005) ex-
tracted the feature lines by estimating the curvature
tensor and curvature derivatives via local polynomial
fitting. Kim and Kim (2006) adopted the moving-
least-squares approximation method to estimate the
local differential information and extracted the fea-
ture vertices as the zero-crossing of the curvature
derivative.

In an alternative method, Watanabe and
Belyaev (2001) extracted features on a polygonal
surface by analyzing the focal surface instead of the
original mesh. They contended that the focal ribs
correspond to the lines on the surface where the prin-
cipal curvatures have extremes along their associated
principal directions and the points where the princi-
pal curvatures are equal. Inspired by this observa-
tion, Yoshizawa et al. (2008) proposed a method for
detecting feature lines on meshes.

Another important category is normal vector
based methods (Sunil and Pande, 2008). These
methods usually identify the features by analyzing
the dihedral angle of two triangles sharing an edge
(Hubeli and Gross, 2001) or the diversity of the
normal in a local region around the current vertex
(Wang, 2006a; 2006b; di Angelo and di Stefano,
2010). Page et al. (2002) proposed a normal vector
voting method for feature detection and curvature
estimation on noisy meshes. This method is further
used in surface segmentation (Shimizu et al., 2005)
and feature detection (Kim et al., 2009; Wang SF
et al., 2011).

As pointed out in Page et al. (2002) and Kim
et al. (2009), the normal tensor voting method can
handle sharp features and show robustness to noisy
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data. It does not involve higher-order derivatives.
Only the first-order differential geometric property,
i.e., normal, is used. For piecewise-smooth surfaces,
the sharp edge and corner vertices can be easily iden-
tified. In light of these advantages, the normal ten-
sor voting method is also considered in this paper.
There are also some other detection methods, such
as detection based on Morse theory (Sahner et al.,
2008; Weinkauf and Günther, 2009) and that based
on integral invariants (Yang et al., 2006; Lai et al.,
2007).

3 Overview

3.1 Method overview

Give a triangular mesh M = (V,E, F ), where
V = {v1,v2, · · · ,vn} denotes the set of vertices, E
denotes the set of edges, and F = {f1, f2, · · · , fm}
denotes the set of faces. Each vertex vi ∈ V is
represented using Cartesian coordinates, denoted by
vi = (vix, viy, viz). Let Nf (vi) be the face indices
of 1-ring neighbors of vi. Our method involves four
main steps:

1. Initial feature vertex detection. The initial
feature vertices are first extracted and classified into
different types based on the modified normal tensor
voting (Fig. 1a).

2. Salient measure computation. For each sharp
edged type vertex, a novel salient measure is defined
according to neighbor supporting. One salient color
map is shown in Fig. 1b.

3. Weak feature enhancing. For detecting weak
features, a weak feature enhancing technique is im-
plemented. An enhanced salient map and the final
detected features are shown in Figs. 1c and 1d.

4. Post-processing. The filtered feature vertices
can be connected to generate feature lines (Fig. 1e).
If there are tough noisy vertices, which may result in
tiny feature lines, an optional pruning operation will
be conducted.

In the first step, to avoid missing any interesting
feature, we generate a large initial feature set. This
feature set is typically noisy. The second stage in-
cludes the remaining three steps, which refine the ini-
tial features by employing the novelty defined salient
measure, weak feature enhancing, and the optional
pruning operation.

3.2 Neighbor supporting

To further enhance the robustness of normal
tensor voting to detect features on noisy meshes,
we propose a novel salient measure benefiting from
neighbor supporting, which is inspired by the follow-
ing observation.

A crest point has maximum curvature in its cor-
responding direction and a crest line naturally fol-
lows the direction of the minimum curvature of its
composing crest point (Stylianou and Farin, 2004).
That is, the feature vertices lie on the principal cur-
vature line. As shown in Fig. 2a, the vertex lying on
a feature line is a feature vertex. In fact, if v is a fea-
ture vertex, there will be more feature vertices that
can be located in the principal direction or the oppo-
site principal direction corresponding to its smallest
principal curvature.

Tracing the located feature vertex’s principal di-
rection, we may find more feature vertices lying on a
potential feature line. In other words, if v is a fea-
ture vertex, there will be a certain number of feature
vertices along the principal curvature line to support

(a) (b) (c) (d) (e)

Fig. 1 Method overview. (a) is the initial feature vertex detection on a noisy Fandisk model. Sharp edge and
corner type vertices are shown in different colors. (b) and (c) are the color maps of salient measure before and
after weak feature enhancing, respectively. The weak features at the top of the fan are marked by an ellipse.
(d) and (e) are the final detected feature vertices and feature lines, respectively
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(a) (b)

Fig. 2 Neighbor supporting. (a) represents a vertex
lying on a feature line. In (b) a noisy vertex located in
a circle has no support from neighbors. A real feature
vertex located in a circle has a strong support from
the line neighbors marked by a dotted ellipse

it. On the contrary, if v is a noisy vertex, very few or
no feature vertices can be found by tracing its prin-
cipal direction. That is, there is weak support or no
support from its neighbors, which can be easily seen
from Fig. 2b. In this paper, this observation is called
‘neighbor supporting’.

Based on neighbor supporting, we can define a
new salient measure for each sharp edge type vertex,
v, by the integral of Ω with the weight function W

along the principal curvature line in a local region:

S(v) =
∫
l

WΩ ds, (1)

where l is a part of the principal curvature line cen-
tered around v. Ω is a scalar function measuring the
intrinsic feature intensity of the vertex (which will be
defined in Section 4.2). This definition can promote
the salient measure of the real features and suppress
the noisy data to some extent, which can be tested
and verified by the subsequent experiments.

4 The proposed method

4.1 Initial feature vertex detection

The initial feature vertices are first detected by
the normal tensor voting method with the modified
voting weight, which makes the algorithm more ro-
bust to irregular tessellated meshes.

4.1.1 Normal tensor voting

The normal voting tensor of a vertex on a trian-
gular mesh can be defined by the unit normal vectors
of its neighbor triangles (Page et al., 2002). First, the

covariance matrix V fi
v of the triangle fi is written as

V fi
v = nfin

T
fi =

⎛
⎝ a2 ab ac

ab b2 bc

ac bc c2

⎞
⎠ , (2)

where nfi = (a, b, c)T is the unit normal of fi.
The normal voting tensor of vertex v is defined

by
Tv =

∑
fi∈Nf (v)

μfinfin
T
fi , (3)

where μfi is a weight given by (Kim et al., 2009)

μfi =
A(fi)

Amax
· exp

(
−‖cfi − v‖

σ/3

)
, (4)

and A(fi) is the area of triangle fi, Amax is the max-
imum area among Nf(v), cfi is the barycenter of
triangle fi, and σ is the edge length of a cube that
defines the neighboring space of each vertex.

Tv is symmetric positive semi-definite and can
be represented as

Tv = λ1e1e
T
1 + λ2e2e

T
2 + λ3e3e

T
3 , (5)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are its eigenvalues and
e1, e2, e3 are the corresponding unit eigenvectors.

4.1.2 Vertex classification

According to the eigenvalues (Shimizu et al.,
2005; Kim et al., 2009), vertices can be classified
into face type, sharp edge type, and corner type by
the following rules: both sharp edge type and corner
type vertices are called feature vertices.

Face: λ1 is dominant, and λ2, λ3 are close to 0.
Sharp edge: λ1, λ2 are dominant, and λ3 is close

to 0.
Corner: λ1, λ2, and λ3 are approximately equal.
For some irregular tessellated meshes, the

weight μfi used in Eq. (4) does not work well, such
as the detection result shown in the left of Fig. 3.
The reason is that there are triangles with smaller
areas that play an important role in model represen-
tation. To overcome this shortcoming, the maximum
distance between the barycenters of the neighbor tri-
angles and the current vertex is used to control the
rate of exponential decay, which increases the weight
of the triangle with a closer distance between the
barycenter and the current vertex. That is,

μfi =
A(fi)

Amax
· exp

(
− ‖cfi − v‖
max(‖cf − v‖)

)
, (6)
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where f ∈ Nf(v). Adopting the modified weight,
more reasonable results can be obtained, such as the
result shown in the right of Fig. 3.

Fig. 3 Feature detection results with different
weights. Left and right pictures are the detection
results of the mechanical part using the weights of
Eqs. (4) and (6), respectively. The close-up of the
detection results are shown in the middle pictures

As mentioned above, corners have no preferred
orientation. Fortunately, they can be identified by
the normal tensor voting method in advance and
handled with special care. In the following, we turn
our attention to sharp edge type vertices.

4.2 Salient measure computation

Many feature detecting approaches measure the
salient of a vertex by computing the difference of
some properties with its neighbors, such as normal or
principal curvature. Usually, the center-surrounding
neighbors are used (Lee et al., 2005; Liu et al., 2007;
Mao et al., 2009). Differently, in our work the salient
of a vertex is measured by collecting the intrinsic
feature intensity from its supporting neighbors. Cer-
tainly, it is not the center-surrounding neighbors but
the anisotropic line style neighbors that can reflect
the line features more effectively.

To compute the salient measure for each sharp
edge type vertex according to Eq. (1), two essential
ingredients should be determined. One is the initial
measure, Ω, and the other is the integral direction,
t.

For each vertex, there are three eigenvalues λ1,
λ2, and λ3 and three eigenvectors e1, e2, and e3. Be-
fore Ω is defined, λ1, λ2, and λ3 are put into a vector
and normalized first. The vertices can be classified
into different types according to their eigenvalues. Ω

can be constructed as

Ω =
λ1 + λ2 + λ3

2
− 1

2
, (7)

which measures the intrinsic feature intensity of each
vertex. In fact, the magnitude of this measure is
large for sharp edge and corner type vertices. On
the contrary, it is small for face type vertices. For
instance, the Ω of a cube model is shown in Table 1.
After the Ω’s of all sharp type feature vertices are
computed, we normalize them to [0, 1], which allows
us to set coarse thresholds valid for most models.

Table 1 Eigenvalues and Ω of a cube model

Type λ1 λ2 λ3 Ω

Face 1 0 0 0
Edge 0.7071 0.7071 0 0.2071

Corner 0.5774 0.5774 0.5774 0.3661

For the integral direction t, following the state-
ment of Moreno et al. (2011), ideally, if a point be-
longs to a curve, the third eigenvector of its tensor
must be aligned with the tangent to the curve at that
point, and λ3 must be zero. Thus, t can be naturally
initialized by e3, which is called ‘feature direction’ in
this paper.

At this point, we have the initial measure Ω

and the feature direction t. According to Eq. (1), for
each sharp edge type vertex v, the salient measure is
computed by

S(v) =
∑

vi∈N(v)

W (vi)Ω(vi), (8)

where N(v) represents the supporting neighbors of
v, and the weight is

W (vi) = exp

(
−‖v − vi‖

2δ2

)
, (9)

where δ is 1.5 times the mean edge length of the
mesh. Generally speaking, the new salient measure
of a feature vertex is cast by the initial salient mea-
sure of the supporting neighbors, which is more ro-
bust than the initial salient measure.

The supporting neighbors N(v) can be con-
structed by the following strategy. First, v is put into
N(v) as a front vertex. Then, following its feature
direction t, we may find one or no feature vertex in its
one-ring vertex. The feature vertex can be selected
as a new front, if the intersecting angle between the
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vertex’s feature direction and t is smaller than a
specified threshold, such as 15◦. At the same time,
the vertex should have a smaller angle than other
candidates. If there are two feature vertices with the
same smallest angle, the one with the smaller dis-
tance to v is selected. If there are still two feature
vertices that satisfy the above conditions, each of
them can be selected as the new front. In practice,
this situation rarely occurs in our experiments.

In the same way, one or no feature vertex can
be found in opposite direction −t. This process can
be easily observed in Fig. 4, where the feature di-
rections of the initially detected features are shown.
The obtained sharp edge type vertex is marked as a
new front and the procedure is continued until the
maximum number (K) of the supporting neighbors
N(v) is reached or no feature vertex can be found.
K is the smallest length of the feature segment to be
detected. In our experiments, K was always set to 5.

(a) (b)

Fig. 4 Feature directions of detected feature vertices.
In (a) each initial feature vertex is shown in color.
Feature direction and its opposite direction are shown
in different colors. (b) is the zoom-in view of part of
the model

For corner type vertices, the salient measure can
be set as the average of the measures of the top 20%

sharp edge type vertices. The measure of the face
type vertices is naturally set to zero. The salient
measure of the real feature vertices is promoted
owing to neighbor supporting, while the salient mea-
sure of noisy vertices is relatively suppressed. It is
helpful to filter the noisy data (with a smaller salient
measure) in an effective way by setting a proper
threshold ϕ, which will be discussed in Section 5.1.

4.3 Weak feature enhancing

Usually, sharp features are sufficient for some
applications, but in some cases weak features are re-

quired. However, it is hard to distinguish them from
noises. Although neighbor supporting can promote
the salient measure of the weak features to some ex-
tent, some weaker features may still be filtered out.

To solve this issue, before the filtering process,
weak feature enhancing is preformed. A feature ver-
tex v can be identified as a weak feature if the num-
ber of the elements in N(v) is a larger value (such
as larger than 3 when K is set to 5) and the Ω(v)

and the average Ω of the supporting neighbors are
small (such as smaller than 0.45). To avoid the weak
features from being filtered out with the noise, the
salient measure S(v) of the identified weak features
is promoted to a higher value by multiplying the
adaptive weight:

S(v)← K · exp(−Ω(v)) · S(v). (10)

The salient measure of the weak feature is pro-
moted by weak feature enhancing, which further en-
larges the gap of the salient measure between the real
and pseudo features. The effect of weak feature en-
hancing is evident in Fig. 1c, in which the salient map
of the weak features (marked in an ellipse) becomes
much clearer after weak feature enhancing.

4.4 Post-processing

In this section, the filtered sharp edge type fea-
ture vertices and corners are connected to generate
feature lines. For some models, due to the larger-
scale noise, there might be a few tough noisy vertices
left, which may result in some small branches or tiny
lines. It is desirable to prune them out by an optional
branch pruning process.

4.4.1 Connecting feature vertices

To generate feature lines, the method used in
Ohtake et al. (2004) is modified and employed here.
First, if two feature vertices are detected on a tri-
angle, they are connected by a straight segment.
Second, if a triangle contains three feature vertices,
according to Ohtake et al. (2004), the vertices are
connected with the centroid of the triangle formed
by the vertices. In this study, if one of them is a cor-
ner, the priority is assigned to it, other sharp edge
type vertices are just connected to the corner, and no
straight segments are drawn between sharp edge type
vertices again. Third, if a feature vertex has no other
feature vertices connected to the current feature ver-
tex, it is treated as a noisy vertex and deleted. By
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adopting this procedure, some noisy corners or sharp
edge type vertices may be further filtered out.

4.4.2 Branch pruning

Although an effective feature filtering has been
implemented, there may still be few tough noise
signals, which may result in some tiny branches
(Fig. 5d). The reason is obvious from Figs. 5a–5c,
where the noisy vertices not only are close to the real
feature lines, but also cluster in small groups and
support each other. To obtain satisfactory results,
the pruning algorithm mentioned in Demarsin et al.
(2007) is used. However, only the length of the fea-
ture line and not the intensity measure was used in
Demarsin et al. (2007). Before the pruning algorithm
is executed, an edge filtering is carried out by setting
a suitable threshold ψ according to the edge intensity
measure ST for each feature edge (vj vk):

ST(jk) = S(vj) · S(vk) ·#N(vj) ·#N(vk), (11)

where vj and vk are the connected feature vertices of
a feature line. S(vj) is the salient measure of vj , and
#N(vj) is the number of the supporting neighbors
of vj . After the pruning process, the tiny branched
edges are filtered out (Fig. 5f).

(a) (b) (c)

(d) (e) (f)

Fig. 5 Branch pruning. (a) Initial detected fea-
ture vertices; (b) Color map of the salient measure;
(c) Feature vertices after filtering; (d) Initial feature
lines; (e) Feature lines after branch pruning; (f) Final
feature lines

5 Implementations and results

In this section, we test the proposed method on
various models. Some parameters are discussed first,
and then the detected results and applications are
shown.

5.1 Parameters

In the initial feature detection, λ2 and λ3 play
important roles in vertex classification. The strategy
shown in Algorithm 1 is adopted.

Algorithm 1 Feature vertex classification
1: // #(V ) is the number of vertices
2: // FaceV , SharpV , and CornerV are the index sets of

face, sharp edge, and corner type vertices, respectively
3: for i← 1 to #(V ) do
4: λ1, λ2, λ3 are initialized
5: if λ3 ≤ α then
6: if λ2 ≤ β then
7: FaceV ← [FaceV i]

8: else
9: SharpV ← [SharpV i]

10: end if
11: else
12: CornerV ← [CornerV i]

13: end if
14: end for

For noise-free models with salient features, such
as a cube, the detection result is insensitive to thresh-
olds selecting. However, for detecting some weak fea-
tures, β is usually set to a smaller number. In Fig. 9j,
for example, α = 0.055, β = 0.025. But for noisy
models, α should be larger to avoid extracting many
false corners. β is a fine-tuning parameter around a
value, e.g., 0.05, for finding a tradeoff between de-
tecting weak features and the extra number of noisy
vertices due to setting a smaller β. In Fig. 10a, for a
larger-scale noisy model, α = 0.2, β = 0.045 produce
reasonable results.

Next, in noisy data filtering and branch prun-
ing, two thresholds ϕ and ψ should be properly set.
In the literature, many algorithms select thresholds
in a trial-and-error way, which is tedious and time-
consuming. In our experiments, immediate visual
feedback allows the selection of a proper threshold.
In the test of Fig. 1, a fast visual feedback of the
salient measure is obtained (Fig. 6).
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Fig. 6 The salient measure of the detected features

5.2 Experiment results

After the discussion of the parameters setting,
we present experiment results on various noise-free
and noisy models to demonstrate the performance of
our method, and then apply the detected features in
feature-preserving mesh denoising and hole-filling.

5.2.1 Noise-free models

Fig. 7 shows the feature detection results of a
mechanical bin. For the noise-free case, the feature
vertices can be extracted successfully and the feature
lines are clearly shown. The optional branch pruning
does not need to be conducted. In the same way, for a
noise-free octa-flower, near-perfect detection results
are shown in Fig. 8.

(a) (b) (c)

Fig. 7 Detected feature vertices (a) and feature lines
(b and c) of a machanical bin

(a) (b) (c)

Fig. 8 Detected feature vertices (a) and feature lines
(b and c) of an octa-flower

5.2.2 Noisy models

To demonstrate the ability of our method in
detecting features on noisy models, we compare our
method with Mao et al. (2009), Wang (2006b), and di
Angelo and di Stefano (2010) via the Fandisk model,
containing Gaussian noise with a variance of 5% of
the mean edge length of the mesh (Fig. 9). Using
Mao et al. (2009)’s method we obtain a blurred color
map over the feature lines (Fig. 9b) for the isotropic
neighbors adopted. Although clearer color maps
of the feature salient can be obtained using Wang
(2006b) and di Angelo and di Stefano (2010)’s meth-
ods, as shown in Figs. 9c and 9d respectively, the
maps of the weak features are missing. Compared
with Figs. 9b–9d, our method generates a clearer
map of the salient measure in Fig. 9e, especially for
the weak feature at the top of the fan. It is evi-
dent from Figs. 9g–9j that our method gives rise to
satisfactory results, while other methods result in the
missing of weak features.

Fig. 10 shows more satisfactory detection results
with larger-scale noise, such as the detection result of
another Fandisk model (with a variance of 8% of the
mean edge length of the mesh). Although so many
pseudo features together with real features may be
detected for the large-scale noise, most of them can
be effectively filtered out and satisfactory results
can be obtained. The details of the variances of
Gaussian noise and the parameters used are listed in
Table 2.

Table 2 Parameters used in Fig. 10

Model Noise α β ϕ ψ

Fig. 10a 8% 0.2 0.045 0.4 0.8
Fig. 10b 8% 0.2 0.045 0.4 3.9
Fig. 10c 8% 0.055 0.05 0.4 3.9
Fig. 10d 5% 0.05 0.06 0.3 3.9
Fig. 10e 5% 0.3 0.4 1.2 18

5.2.3 Feature-preserving mesh denoising

As mentioned at the beginning of the article,
various applications will benefit from robustness fea-
ture detection, such as mesh denoising. A mesh
denosing method based on differential coordinates
was proposed in Su et al. (2009). It first smooths
the Laplacian coordinates using the classical mean
filter, and then reconstructs the new Cartesian co-
ordinates to fit the smoothed Laplacian coordinates
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9 Comparison with the state-of-the-art methods. (a) is the color map of the Gaussian curvature of (f),
computed using Taubin (1995)’s method. (b)–(e) are color maps of the salient measure corresponding to Mao
et al. (2009), Wang (2006b), di Angelo and di Stefano (2010)’s methods and our method, respectively. (f) is
the noisy Fandisk model with a variance of 5% of the mean edge length of the mesh. (g) is the result of using
Mao et al. (2009)’s method with Tmax = 98%, Tmin = 90%, Smax = 86%, and Smin = 65%. (h) is the result
of using Wang (2006b)’s method with K = 6 and one-ring neighbor being used. (i) is the result of using di
Angelo and di Stefano (2010)’s method with the best selected parameters. (j) is our result with α = 0.055,
β = 0.025, ϕ = 0.5, and ψ = 0.7

(a) (b) (c) (d) (e)

Fig. 10 More results of feature detection with larger-scale noise. (a) Fandisk; (b) Smooth-feature; (c)
Octahedron; (d) Octa-flower; (e) Twist model

with face barycenter constraints. Thus, the three
linear systems below are solved:

AV
′
d =

(
L

F

)
V

′
d =

(
δ

′
d

bd

)
= Bd, d ∈ {x, y, z},

(12)
where L is the Laplacian matrix of the mesh, and V

′
d

are the Cartesian coordinates of the reconstructed
mesh, F is an m × n matrix in which the kth row
contains only three non-zero elements to constrain
the position of the barycenter of the corresponding

face fk = (r, s, t) with elements

Fkj =

{
1/3, j ∈ {r, s, t},
0, otherwise,

(13)

with 1 ≤ k ≤ m, 1 ≤ j ≤ n, and bd is an m × 1

vector with elements

bdk =
1

3
(vrd + vsd + vtd), fk = (r, s, t), d ∈ {x, y, z},

(14)
with 1 ≤ k ≤ m.

δ
′
d = (δ

′
1d, δ

′
2d, · · · , δ

′
nd)

T, d ∈ {x, y, z} is an n×1
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(a) (b) (c) (d) (e)

Fig. 11 Feature-preserving mesh denoising. (a) Fandisk model with Gaussian noise (the variance is 3% of the
mean edge length of the mesh); (b) Smoothed result of Su et al. (2009) in three iterations by using cotangent
weights; (c) Smoothed result after using the bilateral filter in Fleishman et al. (2003) in three iterations with
ρ = 2.5η, δc = 1.2η, and δs = 0.15η, where η is the mean edge length of the mesh; (d) Smoothed result
after performing bilateral filter to Laplacian coordinates three times with a = 2.0 and b = 1.0 in Wang H
et al. (2011); (e) Smoothed result with feature vertex constraints based on the scheme of Su et al. (2009) with
cotangent weights in three iterations and μ = 0.1

vector containing the x, y, or z smoothed Lapla-
cian coordinate of the n vertices, and the cotangent
weight is used in our experiments.

However, the mean filter is an isotropic method.
It cannot effectively preserve the sharp features
(Fig. 11b). To preserve the sharp features and over-
come the shortcoming of the isotropic method, the
detected features are used as constraints in mesh re-
construction. The following linear systems will be
solved:

AV
′
d =

⎛
⎝ L

F

C

⎞
⎠V

′
d =

⎛
⎝ δ

′′
d

bd
cd

⎞
⎠ = Bd, d ∈ {x, y, z},

(15)
where C is a w × n matrix in which each row con-
tains only one non-zero element used to constrain the
position of the detected feature vertex with elements

Ckj =

{
μ, j ∈ FT,

0, otherwise,
(16)

where 1 ≤ k ≤ w, and FT = {i1, i2, · · · , iw} is the
index set of the detected feature vertices. Usually, μ
is set to 0.1.

cd is a w × 1 column vector of the product of
feature vertices and μ: cdk = μvdik , 1 ≤ k ≤ w, d ∈
{x, y, z}. And δ

′′
d is constructed as

δ
′′
jd =

{
(4δ

′
jd + δjd)/5, if j ∈ FT,

δ
′
jd, otherwise,

(17)

where δ
′
jd and δjd are the smoothed and original

Laplacian coordinates of the vertices at each iter-
ation, respectively.

The Cartesian coordinates of the smoothed
mesh can be found by solving the least-square prob-
lems in Eq. (15) as

V
′
d = (ATA)−1ATBd, d ∈ {x, y, z}. (18)

Fig. 11a is a noisy Fandisk model. Fig. 11b
is the result of Su et al. (2009), where the sharp
features are obviously blurred due to the isotropic
mean filter. The improved results can be obtained
by the bilateral filter (Fleishman et al., 2003) and
bilateral filter applied on the Laplacian coordinates
(Wang H et al., 2011), which are shown in Figs. 11c
and 11d, respectively. Although the sharp features
are well preserved in Figs. 11c and 11d, the weak
features at the top fan of the model are blurred to
some extent. Thanks to the effective weak feature
detection of our method, the noise of the Fandisk is
effectively filtered out, while the geometric features
are well preserved, especially the weak features at
the top of the fan (Fig. 11e).

5.2.4 Feature-preserving hole-filling

Hole-filling is a preliminary work and has re-
ceived much attention in recent years. Most of them
work well for smaller holes located on smooth re-
gions. However, it is still a challenge to fill large and
complex holes with some missing sharp features. In
Chen and Cheng (2008), an iterative sharpness de-
pendent filtering was adopted to recover the missing
sharp features by adjusting the normal and the po-
sitions of the initially filled mesh. For the position
of the features not predicted, this implicit feature
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recovery method may not work well in some cases,
such as the result shown in Fig. 12c.

(a) (b)

(c) (d)

Fig. 12 Feature-preserving hole-filling. (a) Octa-
flower model; (b) A hole with sharp features missing;
(c) Result of Chen and Cheng (2008); (d) Result of
Wang et al. (2012) using the detected features

Feature detection plays an important role in
feature-preserving hole-filling. If features around
the hole are explicitly extracted, the positions of
the missing features can be inferred more accurately.
The detected features are first matched into different
feature sets to construct the missing features curves,
which divide the original hole into some simple sub-
holes. Then each sub-hole is filled separately, and
the reconstructed feature curves are explicitly pre-
served. For more details the reader is referred to
Wang et al. (2012). In Fig. 12d, we can see that the
missing sharp features are successfully reconstructed
with the help of detected features.

6 Conclusions and future work

In this paper, the problem of feature detection
on triangular meshes with a focus on the feature
detection of noisy models has been discussed. We
present a simple and robust method. In comparison
with previous works, our method can effectively pre-
serve the weak features while filtering out the noisy
data owing to the novel salient measure and the
weak feature enhancing technique. Combining de-
tected features, more feature-preserving algorithms

can be implemented in computer-aided design and
computer graphics, such as the feature-preserving
mesh denoising and hole-filling presented in this
paper.

When the initially detected feature vertices are
grouped into clusters, the presented approach may
provide unsatisfactory performance for the noisy ver-
tices supporting each other. Solutions to overcome
this limitation, as well as plans to extend the idea
of neighbor supporting to detect features on point
clouds, are the next subjects of research in our group.
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