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Abstract: Linked data is a decentralized space of interlinked Resource Description Framework (RDF) graphs that
are published, accessed, and manipulated by a multitude of Web agents. Here, we present a multi-agent framework
for mining hypothetical semantic relations from linked data, in which the discovery, management, and validation
of relations can be carried out independently by different agents. These agents collaborate in relation mining by
publishing and exchanging inter-dependent knowledge elements, e.g., hypotheses, evidence, and proofs, giving rise
to an evidentiary network that connects and ranks diverse knowledge elements. Simulation results show that the
framework is scalable in a multi-agent environment. Real-world applications show that the framework is suitable for
interdisciplinary and collaborative relation discovery tasks in social domains.
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1 Introduction

Berners-Lee et al. (2001) envisioned the Seman-
tic Web (SW) as a Web of data that is meaning-
ful and understandable to any computer. The Web
of data, when fully realized, will enable us to share
structured data (e.g., spreadsheets and databases) as
easily as we share documents, photos, and videos to-
day. Conceptually speaking, the Web of data can be
viewed as a graph layer that emerges on top of the
current Web (Ayers, 2008). According to Berners-
Lee et al. (2008), the Web of data has two faces: (1)
the ‘Graph of Things’ (also called the Giant Global
Graph, GGG), which encapsulates the semantic re-
lations under investigation, with nodes representing
concepts and edges representing relations that are
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annotated with evidence, and (2) the ‘Web of docu-
ments’, which contains a set of interlinked documents
that serve as evidence. The Semantic Web will ig-
nite a revolution of intelligent agents, which operate
directly on the ‘Graph of Things’ and collaborate
with each other to solve complex problems and ac-
complish intelligent tasks (Berners-Lee et al., 2001;
Hendler, 2001; 2007). This technical trend will lead
to the emergence of intelligent applications that take
advantage of the Web of data to augment the un-
derlying Web system’s functionalities, such as infor-
mation retrieval and knowledge sharing (Mukherjea,
2005).

The concept of the Semantic Web is best man-
ifested in the prosperous movement of Linked Data,
which was initiated by Berners-Lee (2006). Accord-
ing to Heath and Bizer (2011), Linked Data “pro-
vides a publishing paradigm in which not only docu-
ments, but also data, can be a first class citizen of the
Web, thereby enabling the extension of the Web with
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a global data space based on open standards—the
Web of data”. Inspired by Linked Data principles,
the Semantic Web community has published a large
set of datasets, covering a broad range of domains
such as life sciences, healthcare, social networking,
and e-commerce (Bizer et al., 2009). With the rapid
growth of datasets on the Web, how to distill knowl-
edge and insights from this wealth of data becomes
an important problem.

In this paper, we focus on a particular knowl-
edge discovery problem called relation discovery
(also called link discovery, link predication, relation
mining, etc.), which typically means to find interest-
ing relations (expressed as meaningful paths, sub-
graphs, patterns, etc.) from large-scale datasets
(Tarjan, 1981; Deerwester et al., 1990; de Raedt
et al., 2007). The Web of data, which is essentially
a graphical data model, has provided excellent ve-
hicle for the representation, mapping, and analysis
of complex relations. With this background, seman-
tic association discovery (SAD) is proposed to in-
fer implicit or latent relations between arbitrary re-
sources based on patterns discovered from the Web
of data (Anyanwu and Sheth, 2003; Aleman-Meza,
2005; Anyanwu, 2007; Anyanwu et al., 2007).

Here, we illustrate the usefulness of SAD
through a motivating story of mining social networks
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In June 1989, Obama met Michelle Robinson when he was employed 
as a summer associate at the Chicago law firm of Sidley Austin. They 
began dating later that summer, became engaged in 1991, and were 
married on October 3, 1992. The couple’s first daughter, Malia Ann, 
was born in 1998, followed by a second daughter, Natasha (‘Sasha’), 
in 2001, and they attended the private University of Chicago Labora-
tory Schools, then Sidwell Friends School in Washington, D.C.

Fig. 1 An example of mining semantic relations from documents with the help of Linked Data. (a) A snippet
of text from which entities and relations are to be extracted; (b) The graph extracted from the first sentence;
(c) The graph extracted from the third sentence; (d) The mining process

(Mika, 2005; Aleman-Meza et al., 2006). As shown
in Fig. 1, the news contents from Web pages are im-
portant sources for mining social relations between
public figures. The extracted relations, however, typ-
ically lack accurate semantic labels. Linked data
can be used to discover direct or indirect evidence
that annotates the extracted relations. For example,
the frequent co-occurrences of ‘Obama’ and ‘Michelle
Robinson’ can be annotated with the triple 〈Obama,
spouse, Michelle Robinson〉 that can be queried from
linked data.

This story illustrates a genre of ‘connect-the-
dots’ applications, in which knowledge analysts typ-
ically use analytical tools to gather a set of in-
terlinked intelligence resources to discern hidden
and important relations, which often involves cross-
domain knowledge integration and collaboration.
A ‘connect-the-dots’ application requires that the
‘Graph of Things’ should be extracted from the ‘Web
of documents’, which is then navigable and editable
by multiple parties, and also capable of answering
domain-specific complex problems.

To support the above genre of applications, se-
mantic relations should be derived from intelligence
resources and aggregated into a graph while connect-
ing to their evidence for justification and validation.
Accordingly, we propose a hypothesis-driven
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framework for a multitude of agents to collab-
orate in discovering and validating latent semantic
relations. A semantic relation is published as a
hypothesis, which is an identified and attributable
RDF statement whose truthfulness depends on
the existence of certain relevant evidence. On the
other hand, an evidence is open or uncertain if
its own reliability depends on the validity of some
open hypotheses. The mutual dependency between
hypotheses and (open) evidence gives rise to an
evidentiary network.

In the scenario of multi-agent collaboration, an
agent can publish a predicted yet unproved relation
as a hypothesis H , send H to a selective set of neigh-
bors who might be interested in it and devoted to
solving it, and then periodically search for the evi-
dence of H that other agents have published. Each
agent, upon solving a hypothesis, can make its own
decision on which (partial) evidence to provide and
which (derivative) hypotheses to propose, to influ-
ence the direction of mining and contribute to the
final solution to the hypothesis. This framework al-
lows an evidentiary network to emerge through the
communication of hypotheses and evidence by a mul-
titude of agents.

2 Related work

The activities of Semantic Web are led by the
World Wide Web Consortium (W3C), which fo-
cuses on promoting the standardization and devel-
opment of the World Wide Web (Berners-Lee et al.,
2006). According to the W3C Semantic Web Ac-
tivity (http://www.w3.org/2001/sw/), “the Seman-
tic Web provides a common framework that allows
data to be shared and reused across application, en-
terprise, and community boundaries”.

The Semantic Web builds on the Resource De-
scription Framework (RDF) (W3C RDF Working
Group, 2004). RDF extends the use of the uniform
resource identifier (URI) (Berners-Lee et al., 1998)
to the identification of any significant object, includ-
ing concrete things and abstract concepts (Berners-
Lee et al., 2008). An RDF document, as a set of
subject-predicate-object triples, is also a graph with
each node corresponding to a URI or a literal, and
an edge corresponding to a triple. For example, a

triple 〈s, p, o〉 is represented as s
p �� o . There-

fore, a set of RDF triples is called an RDF graph.

Also, a named graph is an RDF graph that is asso-
ciated with a URI (Carroll et al., 2005), and a set
of named graphs forms a dataset that can be pub-
lished on the Web. In addition, the major Semantic
Web technologies include the Simple Knowledge Or-
ganization System (SKOS) (Semantic Web Deploy-
ment Working Group, 2009), Web Ontology Lan-
guage (OWL) (W3C OWL Working Group, 2009),
and SPARQL query language (W3C SPARQL Work-
ing Group, 2008).

The basic idea of Linked Data is to apply Se-
mantic Web technologies to the task of sharing struc-
tured data on global scale (Heath and Bizer, 2011).
Berners-Lee (2006) first coined the term ‘Linked
Data’, and proposed the following Linked Data prin-
ciples:

1. Use URIs as names for things.
2. Use HTTP URIs, so that people can look up

those names.
3. When someone looks up a URI, provide

useful information, by using the standards (RDF,
SPARQL).

4. Include links to other URIs, so that they can
discover more things.

In 2007, W3C initiated the Linking Open Data
(LOD) community project to realize the Semantic
Web vision by publishing various open datasets ac-
cording to Linked Data principles. As of September
2011, the resulting Web of data, also known as the
LOD cloud, contains 295 datasets, 31 634 213 770
RDF triples, and 503 998 829 RDF links (Bizer,
2006). The resulting Web of data allows humans
and Web agents to look up, navigate, and edit RDF
graphs using the HTTP protocol, and provides an el-
egant solution to connect data from different sources
and domains. This data utility has been applied
in various domains, such as genetics (Feigenbaum
et al., 2007), drug discovery (Stephens et al., 2006),
neuroscience (Ruttenberg et al., 2009), and social
networking (Mika, 2005; Aleman-Meza et al., 2006).
A rich set of technologies and tools, such as semantic
browsers and semantic search engines, have been cre-
ated to consume linked data for these applications.

Here, we focus on discussing the major works in
SAD, which means mining relations from the Web
of data. Anyanwu and Sheth (2003) defined a set
of ρ-queries for SAD, which were further developed
and extended by Aleman-Meza (2005) and Mukher-
jea et al. (2005). Sabou et al. (2008) presented a
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demo of SCARLET, a technique for discovering rela-
tions between two concepts by harvesting the Seman-
tic Web, i.e., automatically finding and exploring
multiple and heterogeneous online ontologies. Volz
et al. (2009) presented the Silk Linking Framework,
a toolkit for discovering and maintaining data links
between Web data sources. Anyanwu (2007) inte-
grated SAD with SPARQL query language, to sup-
port a more powerful analysis of linked data.

These works share the characteristic of repre-
senting relations in terms of a domain ontology,
which enables agents to reason with the relations
(Anyanwu and Sheth, 2003; Aleman-Meza, 2005;
Mukherjea et al., 2005; Anyanwu, 2007). The re-
lated works show that the Semantic Web can im-
prove the accuracy, application-relevance, and ac-
tionability of relation mining, through the following
means: (1) formally representing the domain knowl-
edge, the data semantics, and the problem-solving
context (Mukherjea, 2005); (2) facilitating the au-
tomated extraction of semantic relations from texts
(Mukherjea et al., 2005); (3) facilitating data inte-
gration to map a comprehensive network of relations
(Aleman-Meza et al., 2006).

In terms of practicality, SAD has been applied
in a series of use cases, e.g., social network anal-
ysis (Aleman-Meza et al., 2006), national security
(Anyanwu, 2007), patent retrieval (Mukherjea et al.,
2005), and biomedicine (Mukherjea, 2005). How-
ever, the effectiveness of the proposed techniques in
real-world applications needs to be further investi-
gated (Anyanwu and Sheth, 2003; Mukherjea, 2005).

In addition, these works are limited by the fact
that the mining function is typically conducted by
one agent in a centralized manner (Anyanwu and
Sheth, 2003; Mukherjea et al., 2005; Aleman-Meza
et al., 2006; Anyanwu, 2007). Designing a scal-
able infrastructure for relation mining in distributed
environments is an open and important problem
(Mukherjea et al., 2005; Anyanwu, 2007). There-
fore, our major concern is to propose decentralized
and collaborative mechanisms that are scalable to
multiple distributed sources.

3 Formulation and methods

3.1 Formulation

As shown in Fig. 2a, we define some fun-
damental concepts in knowledge publication and

exchange. Here, every published knowledge el-
ement is defined as a knowledge resource that
must have at least one author; therefore, we
reuse the dc:Creator (from Dublin Core Meta-
data, http://dublincore.org/documents/dces/) and
foaf:Agent (from Friend of a Friend (FOAF),
http://xmlns. com/foaf/spec/) to define the Class
KnowledgeResource as the subClass of ‘dc:Creator
some foaf:Agent’. A knowledge resource can be an-
notated with numeric or literal values delivering its
semantic information. In particular, a knowledge
resource can be annotated with numerical weights,
such as ‘confidence’, ‘utility’, and ‘importance’.
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Fig. 2 An overview of the ontology used in this study.
(a) The major classes and properties used for knowl-
edge exchange; (b) The graph related to the hypothe-
sis “Huperzine A seems to treat Alzheimer’s disease”

We define a hypothesis as a published RDF
statement whose truthfulness is under investigation.
A hypothesis h is a quintuple 〈u, s, p, o, a〉, in which u

is the URI for h, s, p, and o are the subject, predicate,
and object of h, respectively, and a is a set of agents
that ‘propose’ h. A hypothesis h = 〈u, s, p, o, a〉
means that the URI u identifies a problem regarding
whether 〈s, o〉 belongs to the binary relation denoted

by p, and is represented as h〈u〉 or h : s
?p �� o

(the notion ‘?’ is used to denote uncertainty). A hy-
pothesis is a knowledge resource that is proposed by
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(isProposedBy [propBy]) at least one agent; there-
fore, we define the class Hypothesis [hyp] as the
subClass of ‘KnowledgeResource and isProposedBy
some foaf:Agent’. A hypothesis is represented in two
ways:

1. RDF statement. A HypotheticalState-
ment is a hypothesis that is represented as an
rdf:Statement. As illustrated in the follow-
ing graph, we reuse the reification vocabulary
in RDFS, such as rdf:Statement[stat], and the
properties rdf:subject[subj], rdf:predicate[pred], and
rdf:object[obj] to represent an instance of Hypothet-
icalStatement:

stat hyp
isa�� u

type�� propBy��

pred

��
obj
���

�

���
���

subj
���

�

�����
�

Yu

s p o

2. Named (singleton) graph. A Hypothetical-
Graph contains a set of hypotheses proposed by the
same authors and is represented as a named graph.
A HypotheticalGraph is a singleton graph if it has
exactly one hypothesis.

While an ‘evidence’ in general can be any re-
source (documents, images, videos, or even persons)
that facilitates an agent to achieve a belief (or de-
nial) of a hypothesis, we here focus on explicit and
formal evidence that is expressed in Semantic Web
languages. An evidence e is a triple 〈u, p, a〉, in which
u is e’s URI, p is a graph that specifies e’s pattern,
and a is a set of agents that ‘assert’ e. Such an
evidence is in itself a pattern seen as a subgraph ex-
tracted from an agent’s knowledge base, and thus
evidence discovery can be seen as a subgraph extrac-
tion problem.

In addition to the publication of hypotheses and
evidence, agents also need to make assertions about
their mutual dependency: (1) If an evidence e is as-
serted to support a hypothesis h, then the statement
〈h, depends, e〉 can be asserted; (2) If an evidence
e′ depends on a hypothesis h′, then the statement
〈e′, depends, h′〉 can be asserted. Therefore, an evi-
dence e may be related with two kinds of hypothe-
ses: (1) the hypotheses that e is intended to support;
(2) the hypotheses that e depends on (if e is un-
certain). We propose an evidentiary graph to wrap
up these dependency relationships. For two mutu-
ally exclusive sets H and E that contain hypotheses
and evidence respectively, an evidentiary graph is a

directed bipartite graph 〈H,E,D〉 where H and E

are two sets of vertices, and D is a set of edges cor-
responding to the mutual dependency relationships
among members of H and members of E, so that for
h ∈ H, e ∈ E,

〈h, depends, e〉 ⇔ h
dep �� e ∈ D,

〈e, depends, h〉 ⇔ e
dep �� h ∈ D.

In essence, it is the authors’ intent that deter-
mines whether a knowledge resource is a hypothesis
or an evidence. An agent proposes a hypothesis and
asserts an evidence. In addition, an agent accepts
a KnowledgeResource if the agent believes it to be
true. It accepts resources with the following recur-
sive process:

1. Selectively accept an evidence that does not
depend on other hypotheses.

2. Selectively accept a hypothesis that is sup-
ported by accepted evidence.

3. Selectively accept an evidence that depends
on only accepted hypotheses.

We define a proof as an evidentiary graph in
which every knowledge resource is accepted. We say
that a proof proves the hypotheses and includes the
evidence within its evidentiary graph.

We present an example of our formulation in
Fig. 2b. The hypothesis ‘:hype’, proposed by
‘:Zhang’, states that the drug ‘:Huperzine A’ seems
to ‘treats’ the disease “:Alzheimer’s”, with a confi-
dence of 0.9. To prove the hypothesis, the evidence
‘:evid’ is asserted by ‘:Tong’. The hypothesis ‘:hype’
and the evidence ‘:evid’ are connected by ‘supports’
and ‘depends’ relations. The ‘:evid’ itself may con-
tain open hypotheses which set goals for further in-
vestigation. Finally, ‘:Zhang’ creates a proof ‘:proof’
that includes the ‘:evid’ to prove the ‘:hype’.

3.2 Semantic relation mining

We propose a recursive problem division strat-
egy, in which one agent attempts to solve a published
hypothesis with evidence that might depend on other
hypotheses, which in themselves may be proved or be
under investigation. In this strategy, an agent exe-
cutes the following process recursively:

1. Select a new hypothesis to solve from a pool
of published hypotheses.
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2. Extract a subgraph from its factual graph
that can support the hypothesis.

3. Formalize the (possible) gap between the pat-
tern (as what is proved) and the hypothesis (as what
needs to be proved) into a set of hypotheses.

4. Publish the pattern as an evidence and pos-
sibly the newly-derived hypotheses.

We first use an example in Fig. 3 to illustrate
this process. Suppose the client proposes a hypoth-

esis H1 = 1
?p �� 2 , and an engine E and three

agents collaborate in producing the evidence E for
the hypothesis. The engine notifies the hypoth-
esis to agent A, who then discovers an evidence

E1 = 1
f �� 3

?p �� 5
g �� 2 , which is partial in

that it depends on a hypothesis H2 = 3
?p �� 5 .

Agent A publishes the evidence and its dependency

H1 E1
supports�� depends�� H2 . Agent B then provides an

evidence E2 = 3
h �� 4

?p �� 5 for H2, which

depends on H3 = 4
?p �� 5 . Agent C provides

a complete evidence E3 = 4
h �� 6

a �� 5 for
H3. Since the resources are distributed among
agents, a crawler is needed to recursively crawl
the available evidence and index them in the
directory. Through the collaboration between

E, A, B, C: E
H1 �� A

H2 �� B
H3 �� C ,

the proof generator finds a proof for H1:

H1
depends�� E1

depends�� H2
depends�� E2

depends�� H3
depends�� E3 ,

and an accepted evidence

E = 1
f ��

?p

��

3
h �� 4

h

��
2 5

g�� 6
a��

is returned to the client.

Given a hypothesis a
?p �� b , the generic strat-

egy for an agent is:

1. Return available triples { a
pi �� b }ni=1 as

direct evidence.

2. Propose a path a �� b ≡ a
?p1 �� r1

?p2 �� r2 rn
?pn+1 �� b .

3. For each sub-problem r
?p �� s ∈ P , replace

it with an available triple r
p �� s if possible.

4. Return P as a new evidence.
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Fig. 3 An overview of the system architecture and the
knowledge flow. (a) The architecture of the proposed
system which contains a set of agents (called miners)
for evidence discovery and hypothesis generation and
an engine for registration and notification; (b) The
knowledge flow between the client, engine, and agents

5. Publish the newly-generated hypotheses
within P .

6. Go to step 2 if more paths exist.
In this process, the basic task of probabilis-

tic decision-making (PDM) for agents to perform is

to substitute the hypothesis a
?p �� b with a pri-

mary evidence a
p �� a′ and a new hypothesis

a′
?p �� b . Given a set of candidate primary evi-

dence with a as the subject, { a
pi �� ai }ni=1, the

decision of choosing a
p �� a′ over others is based

on the expected complexity of solving a′
?p �� b .

We will move on to implement the engine and
the miner, and also investigate how alternative local
collaboration and evidence discovery strategies could
affect the global results.

3.2.1 Engine

The engine coordinates the collaboration
through the agent-capacity registration, the notifi-
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cation of knowledge resources, and through proof
generation. The directory maintains a global schema
for a domain, and each agent can register their local
schema describing their hypothesis-answering capac-
ity with the directory. Therefore, the engine can pro-
vide a notification of the knowledge resources to the
relevant agents who might be able to handle them.

Routing table: The possibility of an agent
A reaching resource o is measured by P =

maxi Similarity(ai ∈ A, o) (ai ∈ A means A hosts
ai as a resource). In particular, if o ∈ A, then P = 1.
For a set of agents {Ai}ni=1 and a set of resources
{Rj}mj=1, the matrix M [n][m] = (Pij) is called the
probabilistic routing table.

Notifier: The notifier notifies a hypothesis

h〈u〉 = s
?p �� o to the agent A that is chosen

from a set of candidates by the following criteria: (1)
A has not be notified of h; (2) h belongs to A’s local
schema; (3) s belongs to A’s resource list; (4) A has
the maximum possibility of reaching o (by consulting
the routing table) among the candidates that satisfy
criteria 1, 2, and 3. The candidates for global no-
tification include all agents, and the candidates for
local notification include neighbors of h’s creator.

Proof generator: As specified in Algorithm 1,
the proof generator is an intelligent agent that works
on the evidentiary graph in search of an optimized set
of proofs for a hypothesis or hypothetical graph spec-
ified by users. It includes a checker and a crawler:

1. The checker, a procedure triggered by the
generation of evidence e with no depending hypothe-
sis, recursively checks if the hypotheses and evidence
that (indirectly) depend on e are closed. Here, an
evidence is closed if (1) it does not depend on any
hypothesis, or (2) it depends only on hypotheses that
are closed. A hypothesis is closed if it is supported
by closed evidence.

2. The crawler, a procedure triggered by the
client proposing a hypothesis h, navigates on the
global evidentiary graph to generate a subgraph that
proves h.

3.2.2 Miner

Evidence discovery is implemented as seman-
tic graph routing (Algorithm 2). Within each itera-
tion of the recursive routing procedure, the router
(which hosts a graph FG) is given a hypothesis

h = s
?h �� o as the original problem, and a trace

Algorithm 1 Proof generation
Checker(e ∈ Evidence)

for all h
dep �� e do

setTrue(h.closed);

for all ( e′
dep �� h ) ∧ (isClosed(e′) = True) do

Checker(e′);
end for

end for

isClosed(e ∈ Evidence)

if (e.closed = False)∧((∀ e
dep �� h )h.closed = True)

then
setTrue(e.closed);

end if
return e.closed;

Crawler(hc ∈ ClosedHypothesis)
eg = Graph();

for all ec, h′c : hc
dep �� ec

dep �� h′c do

eg.add( hc
dep �� ec

dep �� h′c );
eg.add(Crawler(h′c));

end for
return eg;

(which is a path) t = s �� c as the current solu-
tion, which is shown as follows:

s ��

?h

��c
p �� j

?h′
�� o

It first chooses j (as the next ‘jumping point’)
from the neighbors of c and updates the trace t as
s �� j , and then invokes the next iteration with
h and t.

The choice of j from neighbors of c is performed
by the Next function, which optimizes the possibility
of j associated with o using the following procedure:

1. Choose j if FG entails j
p �� o .

2. Choose j which optimizes the estimated value
I × S, in which I is j’s importance as measured by
its degree (the number of triples that contain j as
the subject or the object), and S is the similarity
between j and o.

The routing procedure terminates within an
agent’s local boundary under the following condi-

tions: (1) the remaining problem c
?h �� o is an

identified hypothesis; (2) j = o; (3) j is null (c is the
locally-optimized point for h).

In addition, the routing procedure can be
relayed to the agent’s neighbors through local
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Algorithm 2 Semantic graph routing
Router(s, c, o ∈ Resource, t ∈ Graph)

if c
?p �� o ∈ HG then

return new Evidence ( s
t �� c

?p �� o );
end if
if c

p �� o ∈ FG then

t.add( c
p �� o );

return new Evidence ( s
t �� o );

end if
Resource j = Next(c, o, t);
if (j = null) then

new Hypothesis ( c
?p �� o ∈ HG);

return new Evidence ( s
t �� c

?p �� o );
else

t.add( c
p �� o );

return Router (s, j, o, t);
end if

Next(c, o ∈ Resource, t ∈ Graph)
for all {ji}ni=1 : (c → ji ∈ FG) ∧ (ji /∈ t) do

j : I(j, o) = maxn
i=1 I(ji, o);

end for
if (j �= null) ∧ (I(j, o) � I(c, 0)) then

return j ;
else

return null;
end if

notification. If agent A fails to find such a neigh-
boring agent to relay h, then it will invoke the global
notification mechanism for h.

4 Experimental evaluation

We established a multi-agent environment to
evaluate the feasibility and scalability of our ap-
proach. The experiment setting contains the fol-
lowing components: (1) the schema base (SB) which
contains a set of RDF schemas, (2) the resource list
(RL) which contains a list of resources, (3) the simi-
larity matrix (SM) which captures the pair-wise sim-
ilarity between resources, and (4) the factual graph
(FG) which is the global graph containing all the
triples under investigation.

We then generated an engine and K agents, and
assigned agents with data. The scalability parameter
K is the number of agents among which the graph
is distributed. We used clustering methods to divide
the FG into K inter-related communities, which are

hosted by K inter-linked agents, and analyzed the
performance with respect to K.

We started the process by proposing a set of
seeding hypotheses. The original hypothesis gener-
ator Agenthg created a set of seeding valid hypothe-

ses: {si ?pi �� oi }ni=1. The engine then performed
the global notification mechanism for the seeding hy-
potheses to initiate the evidence discovery process.

The engine and agents performed evidence dis-
covery through routing and notification until all
seeding hypotheses were solved or the time T ran
out.

We first present an example (Fig. 4) to explain
the process. The factual graph FG contained 21
vertices, 72 edges, and 4 obvious communities with
the overlapping node as ‘0’. The similarity between
node i and node j was defined as 1/(D(i, j) + 1),

where D(i, j) is the distance between i and j (with
D(i, j) = 0 for i = j). We assigned each commu-
nity to one agent, and started the process P with a

hypothesis h1 = 20
? �� 10 :

1. The engine notifies h1 to Agent A0, the only
agent that contains h1’s subject ‘20’.

2. Agent A0 routes through the path 20 → 4 →
0 to optimize the similarity between the current node
and the target ‘10’. Agent A0 publishes the evidence

e1 = 20 �� 0
? �� 10 which depends on h2 =

0
? �� 10 .
3. Agent A2 is notified of h2 since the possibility

P of A2 reaching ‘10’ (P = 1 since 10 ∈ A2) is the
highest among the neighbors of A0.
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End

Fig. 4 An example of semantic relation mining by
four agents that hold four communities connected by
node 0
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4. Agent A2 routes through the path 0 → 2 →
10 based on the same strategy as A0, and publishes
the path as an evidence e2 for h2.

5. The publication of e2 triggers the proof
checker to accept h2, e1, and h1 in turn.

Now that h1 is closed, the discovery pro-
cess is terminated. Upon the client’s request,
the crawler can generate an evidentiary graph

h1
dep �� e1

dep �� h2
dep �� e2 , which entails the

evidence 20 → 4 → 0 → 2 → 10.
We compared P with an alternative process P ′,

in which the same graph was assigned to only one
agent, who found one evidence 20 → 4 → 0 → 2 →
10 for h1 = 20

? �� 10 by using the same strategy
as Agent A0, with the following measurements:

1. Coverage ratio c: The coverage ratio c, as the
ratio of the number of traversed statements to the
number of all statements in FG, is a major factor for
measuring agents’ efficiency. Process P has c = 4/72,

equal to the c of P ′, which means P is efficient.
2. Average evidence size |e|: supposing a process

generates {ei}ni=1, |e| = 1
n

∑n
i=1 |ei| is a critical

factor for measuring agent’s responsiveness. For
P , the average evidence size is (|e1| + |e2|)/2 = 2;
for P ′, the average evidence size is 4—through
multi-agent collaboration, the responsiveness of each
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Fig. 5 Simulation results for evaluating the scalability of the proposed mechanism: (a) runtime; (b) success
rate; (c) serendipitous discovery rate; (d) average length of evidence; (e) average statement; (f) participation
rate. As for the legend, R represents the communication strategy ‘a hypothesis is notified to a preferred agent
according to the routing table’, and S represents ‘a hypothesis is notified to a random agent’

agent increases.
3. Participation ratio w: the ratio of the num-

ber of working miners (who participate in the col-
laboration) to the number of all miners. For P , the
collaboration graph shows w = 2/4 ≡ 0.5; for P ′,
w ≡ 1.

4. Total computational time t: For the engine E
and miners {Ai}ni=1, t is the sum of computational
time of all agents: t = T (E) +

∑n
i=1 Ai. The change

of factor t over a different number of agents reflects
the scalability of the mechanism.

5. Success ratio s and serendipitous discovery
ratio d: suppose a process that is given a set S of
seeding hypotheses actually solves the set R of hy-
potheses. The success ratio s = |S ∩R|/|S| and the
serendipitous discovery ratio d = |R − S|/|S| are two
factors that determine the quality of mining. For P ,
s = 1/1 and d = 1/1; for P ′, s = 1/1 and d ≡ 0.
This means that the multi-agent collaboration has
the advantage of discovering some extra knowledge.

4.1 Result analysis

As shown in Fig. 5, we generated a graph
with 100 nodes and 861 edges, and performed
each iteration with 10 hypotheses. We examined
the scalability by increasing the number of agents
K from 1, 2, 4, 6, 8, to 10, and the change of
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major performance factors. For each K, we com-
pared two communication strategies: (1) a hypothe-
sis is notified to a random agent; (2) a hypothesis is
notified to a preferred agent according to the routing
table.

We performed the process for five iterations.
Overall, we proposed 600 hypotheses and finally
solved 556 of them with an overall success ratio of
92.7%, which demonstrates that our approach is very
effective. The 7.3% unsolved hypotheses indicated
the fact that semantic similarity does not necessarily
translate to connectivity in a graph. Fig. 5a shows
that as the number of agents increased, the total run-
time t did not show a large increase in the similarity-
based routing strategy, in comparison with the ran-
dom strategy. Fig. 5b shows that the success rate
remained high as the number of agents increased.
Fig. 5c highlights that the serendipitous discovery
rate (as the rate of the number of derivative hy-
potheses versus the number of original hypotheses)
increased as the number of agents increased. Fig. 5d
shows that as the number of agents increased, the
average length of evidence decreased, and hypothe-
ses were more frequently solved by the combination
of evidence. Fig. 5e demonstrates that as the num-
ber of agents increased the covering of statements by
agents increased. Finally, Fig. 5f shows that as the
number of agents increased, the rate of agents that
participated in evidence discovery decreased.

These results show that the proposed routing-
table-based approach can scale up to a large num-
ber of agents while sustaining the quality and per-
formance of discovery, thus outperforming the ran-
dom approach. In both approaches, as the num-
ber of agents increases, serendipitous discovery can
also increase. The results suggest that decentralized
decision-making can be effective in discovering hid-
den semantic relations from distributed information
sources.

5 Application in social relationship
discovery

In this section, we elaborate on the motivat-
ing story in Section 1. In this application, we aim
to discover and validate interesting social relations
between political figures from textual documents.
This application demonstrates that Linked Data can
be used to annotate hypothetical relations with evi-

dence, and our approach is suitable particularly for
cross-domain knowledge exchange and integration.

5.1 Experiment description

In this experiment, we used mainly the follow-
ing two datasets: (1) news on the Web—as shown
in Fig. 1a, a collection of news describing politi-
cal figures, news, and events, crawled from news
Web sites (Heritrix, http://crawler.archive.org/),
was used to crawl these Web resources; (2) DBpedia
(http://www.dbpedia.org/), a large-scale Semantic
Web dataset extracted from Wikipedia.

In the relation discovery process, we aimed to
use linked data to generate semantic annotations for
frequent patterns extracted from textual documents.
As illustrated in Fig. 1d, we first extracted entities
(persons, organizations, locations, etc.) from the
content of Web pages. Then, we discerned semantic
relations and merged them into graphs (one graph
for each document), from which a set of frequently-
occurring subgraphs was learned. We then searched
linked data for the information that is used to
annotate semantics to the edges of the frequent
subgraphs.

1. Sentence extraction: Use language pro-
cessing and regular expression techniques to ex-
tract sentences from contents (HTML parser
at http://htmlparser.sourceforge.net/ was used to
parse pages).

2. Named entity extraction: Recognize dif-
ferent types of named entities (Fig. 1a) (Stan-
ford Named Entity Recognizer at http://nlp.
stanford.edu/software/CRF-NER.shtml was used to
extract entities from texts).

3. Hypothetical relation discovery in this process
takes the following steps:

(1) Semantic relation extraction: For each doc-
ument, extract hypothetical relations from its con-
tent. As illustrated in Figs. 1b and 1c, we asserted
the proper hypothetical relations between two en-
tities co-occuring in the same sentence. We fo-
cused on triples with an instance of foaf:Person
as the subject, i.e., relations between persons (de-
noted by foaf:Person) and organizations (denoted by
foaf:Organization), and between persons and loca-
tions (denoted by geo:Feature). For instance, in
Fig. 1b, ‘Obama’ is related with ‘Michelle Robin-
son’, ‘Sidley Austin’, and ‘Chicago’. These rela-
tions are represented as hypotheses, e.g., 〈Obama,
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Fig. 6 An example of social relationship discovery. (a) Hypothetical relations of the entity ‘Barack Obama’
extracted from news; (b) The extension of (a) with the relations discovered from linked data (partially shown)

?foaf:knows, Michelle Obama〉.
(2) Graph generation: Merge all the sentence

graphs into one named graph that represents the
content of a textual document.

(3) Pattern recognition: Apply the MARGIN al-
gorithm (Thomas et al., 2006) on the graphs to dis-
cover frequently-occurring subgraphs, which reveal
the patterns of close or persistent relations between
entities.

4. Evidence discovery: Search linked data for ev-
idence that annotates the hypothetical semantic re-
lations within the discovered patterns. We searched
two types of evidence for each hypothesis 〈s, ?p, o〉:

(1) Direct evidence: Search linked data for triple
in the form of 〈s, p′, o〉, where p′ is a subproperty of p.
For instance, we used 〈Obama, hasSpouse, Michelle
Obama〉 as the evidence for the hypothesis 〈Obama,
?foaf:knows, Michelle Obama〉.
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(2) Indirect evidence: Search linked data for a
subgraph that supports the hypothesis. For instance,
for the hypothetical relation of 〈Obama, ?foaf:knows,
Carl Levin〉 (Carl Levin is a senator from Michigan),
we have the evidence {〈Obama, almaMater, Har-
vard Law School〉, 〈Carl Levin, almaMater, Harvard
Law School〉} (meaning Obama and Carl Levin are
schoolmates of Harvard Law School).

5. Pattern visualization: Visualize discovered
patterns for human interpretation.

5.2 Results

Fig. 6a displays the results of frequent subgraph
mining with a support of 0.04 from our Web re-
sources. Fig. 6b shows that the patterns were an-
notated with evidence derived from DBpedia. Users
can understand the relation between two persons if
there are edges between them. Through this ap-
proach, we can not only obtain an effective applica-
tion for text mining, but also enrich linked data with
relations learned from textual documents.

6 Conclusions

The Semantic Web, when fully realized, will en-
able data to be shared and reused in a machine-
understandable format, and foster multiple agents
to collaborate in knowledge discovery (Mukherjea,
2005). To realize this potential, we have proposed a
novel approach for discovering hidden semantic rela-
tion from linked data in a human-agent collaborative
manner. This approach emphasizes the publication
of (partial) knowledge resources that can be inter-
linked into an evidentiary network. Based on this
model, agents can make local decisions as to which
hypotheses to propose and work on. Simulation
results suggest that certain decentralized decision-
making strategies, such as the semantic-based rout-
ing tables, can be effective and scalable in a dis-
tributed environment. Our approach can be applied
in such tasks as social network analysis and medical
network analysis.
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