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Abstract:    This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF 
model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is 
proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network 
trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models 
are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). 
Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the 
optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show 
the effectiveness of our proposed NF modelling approach. 
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1  Introduction 
 

Nowadays, physical process modelling has be-
come one of the most attractive and challenging is-
sues in control theory and applications. There are 
some factors that make conventional modelling a 
tedious and time consuming task and one that may 
even yield unpromising results if there is a lack of 
precise, formal knowledge about the system or a high 
degree of uncertainty. However, extracting a suitable 
model for a winding process seems to be necessary 
for model-based control and diagnosis trials. Thus, in 
this paper, data-driven modelling methods are applied 
instead of analytical methods to identify an accurate 
and reliable model of a real winding process. 

Winding systems are major components of a 
wide variety of industrial plants. For example, rolling 
mills in the steel industry (Hussein et al., 2001; Ba-

buska and Verbruggen, 2003) and plants involving 
web conveyance including coating, paper making, 
and polymer film extrusion processes (Ebler et al., 
1993; Braatz et al., 1996; SISTA, 1999). In the last 
few decades, researchers have studied the issue of 
reducing the computational burden associated with 
the design, analysis, and implementation of control 
techniques and active fault tolerant control in web 
conveyance systems (Sievers et al., 1988), sheet and 
film processes (Braatz et al., 1996), aluminium in-
dustries (Hoshino et al., 1988), and steel industries 
(Parant et al., 1989). 

In addition to studies employing analytical 
methods in the modelling of winding machines (Ho-
shino et al., 1988; Sievers et al., 1988; Parant et al., 
1992), recently, a few attempts have been made to 
utilize data-based techniques to identify an appropri-
ate model of the winding process. A linear model of a 
winding machine, such as an auto-regressive with 
external inputs (ARX) structure, was built for model- 
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based fault diagnosis applications (Noura et al., 2009). 
Subspace methods were exploited for multivariable 
identification of a winding process with the purpose 
of tension control (Bastogne et al., 1998). Genetic 
programming (GP) was used to construct a non-linear 
model of a winding process (Hussian et al., 2000). A 
non-parametric neural network (NN) predictor model 
of a winding process was developed (Hussein et al., 
2001). It is apparent that there are few studies that 
deal with intelligent non-linear modelling of a wind-
ing process on the basis of soft computing techniques. 
To our knowledge, no attempt has been made to apply 
neuro-fuzzy (NF) modelling to a winding process. 
The main drawback of NN models is that systems 
cannot be expressed in them because they are usually 
considered as black boxes. NF modelling can be re-
garded as a grey-box technique on the boundary be-
tween neural networks and qualitative fuzzy models, 
in which a system is expressible through fuzzy rules 
using fuzzy modelling. The most common NF sys-
tems are based on two types of fuzzy models, Takagi– 
Sugeno (TS for short, data-based) and Mamdani 
(knowledge-based), combined with NN learning al-
gorithms. The TS-type NF model is preferable when 
the accuracy of the model is the main concern 
(Razavi-Far et al., 2009). 
 
 
2  Linear dynamic system identification 
 

The procedure for the linear identification of 
dynamic multi-input single-output (MISO) systems 
from input-output sequences (u(t)úp, y(t)úr, with 
r=1) is described in this section. According to system 
identification theory, the simplest solutions should be 
tried first to build the model of a plant when no prior 
knowledge about its intrinsic behaviour is available. It 
has been mathematically proven that the least square 
error (LSE) method is the optimal modelling method 
in the case of linear systems (Ljung, 1987; Nelles, 
2001). To achieve the linear model, a finite sequence 
of the input-output variables observed with a constant 
sampling interval is considered. If dynamic linear 
relations exist among these variables, they can be 
described by the following model: 

 

M M
1 1 1

( ) ( ) ( ).
impn

l il i
l i l

y k a y k l b u k l
  

           (1) 

This describes linear MISO discrete-time systems 
(and is simply convertible to its corresponding  
discrete-time transfer function) where al and bil are 
parameters, mi denotes the order of the numerator of 
the ith input, and n is the denominator order, usually 
of the same value (Nelles, 1996). The parameters can 
be estimated by the least squares techniques since the 
prediction error is linear in parameters (Ljung, 1987; 
Nelles, 2001). 

One of the most important parts of modelling a 
system is to select the proper model structure. The 
purpose of order selection is to identify a model that 
best fits a given data set. This issue is so critical that 
imperfection in this section may lead to some severe 
problems in other parts of the modelling. Several 
information criteria can be used to accomplish this 
task (Ljung, 1987), such as the Akaike information 
criterion (AIC). For simplicity, the obtained orders 
based on linear models can then be applied to 
non-linear approximators in the case of non-linear 
identification. In the given order selection technique, 
the order of the linear model presented in Eq. (1) is 
increased and the AIC index is calculated in each step. 
Finally, after some iteration, the order corresponding 
to the lowest AIC value is selected as the model order: 
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J
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where Q is the number of samples used to compute 
JAIC, P is the number of parameters, and 2P/Q is a 
penalty term. The sum of square errors (SSE) is given 
by 
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1

SSE ( ( ) ( )) ,
Q

N

y N y N


                (3) 

 
where yP and yM are the outputs of the process and 
model, respectively. 
 
 
3  Non-linear dynamic system identification 
 

Non-linear system identification is more appro-
priate when linear methods do not present satisfactory 
results in modelling of physical systems. Thus, in this 
section, the process of coping with the nonlinearity as 
well as the dynamism of a winding process is de-
scribed on the basis of recurrent local linear neuro- 
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fuzzy (RLLNF) techniques. Other NN architectures 
used for comparative purposes are also introduced in 
the subsequent sections. 

3.1  Recurrent local linear neuro-fuzzy networks 

To identify a non-linear simulator model of a 
winding process, an RLLNF network is utilized, and a 
local linear model tree (LOLIMOT) algorithm is 
employed to find the best structure and parameters for 
the network. There are a host of advantages of an 
RLLNF model trained with a LOLIMOT algorithm, 
including low computational cost due to local esti-
mation, robustness with respect to noise due to regu-
larization effect, high accuracy, fast training and 
evaluation capabilities, and online adaptation. 

More advantages of RLLNF models were de-
scribed by Nelles (1996). 

The structure of the RLLNF network is shown in 
Fig. 1. Each neuron realizes a local linear model 
(LLM) and an associated fuzzy validity function that 
determines its region of validity. The LLNF models 
have basically the same interpretation as TS models, 
where each neuron represents one fuzzy rule, the 
validity functions represent the rule premise, and the 
LLMs represent the rule consequents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To create a simulator model, the delayed inputs 

of the process and past samples of the LLNF model 
output are injected into the model as inputs. Hence, in 
the case of a recurrent (dynamic) LLNF network the 
input of the model is given as 


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where n and mi (i=1, 2, …, p) are the denominator and 
numerator orders of the ith input, respectively. The 
parameters wj of the jth rule consequence is 
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These parameters are estimated using the weighted 
least square (WLS) solution (Nelles, 2001). Thus, the 
global output of the model is calculated as the 
weighted summation of the output of all LLMs as 
follows: 

 

1 2M
1 1

1 M 2 M

M

( ) ( 1) ( 2)

    ( ) ( 1) ( 2)

     ( ) ( ),

i i

imi

pM

j i j i
j i

j i i j j

jn j j

y k b u k b u k

b u k m a y k a y k

a y k n  

 

    

     

    



x





  (6) 

 

where 
imi
jb  and ain represent the numerator and de-

nominator coefficients respectively, ζj is the offset of 
LLMj, and φj(x) are the operating point-dependent 
weighting factors. In other words, the network inter-
polates between different LLMs using the validity 
functions (Nelles, 1996). The validity functions on x 
are typically chosen as normalised Gaussians, so they 
form a partition of unity as 
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In the case of axis-orthogonal Gaussians, the validity 
functions are defined as 
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Thus, μj(x) can be given as 
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Fig. 1  Architecture of a recurrent local linear neuro-fuzzy 
(RLLNF) network 
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where 
1

p

ii
D n m


   is the total number of input 

channels of the LLNF model, and c and σ are the 
centre coordinates and the individual standard devia-
tions, respectively. 

Local linear modelling approaches are based on 
a divide-and-conquer strategy. A complex winding 
process model is broken into a number of smaller and 
thus simpler sub-problems, which are solved inde-
pendently by identifying piecewise linear models 
(Nelles and Isermann, 1996; Nelles, 2001). The most 
important factor for the success of this model using an 
LLM method is the division strategy for the original 
complex problem. This is determined by an algorithm 
named LOLIMOT. The LOLIMOT algorithm con-
sists of an outer loop in which the rule premise 
structure is determined, and a nested inner loop in 
which the rule consequent parameters are optimized 
by local estimation. This loop can be summarised in 
five steps as follows (Nelles, 1996; 2001; Nelles and 
Isermann, 1996): 

Step 1: Start with an initial single LLM which is 
globally optimal based on least-squares estimation 
over the whole input space. 

Step 2: Find the worst performing LLM, i.e., the 
one that has the maximum local loss function, e.g., the 
mean squared error (MSE) among the M LLMs. 

Step 3: The worst model (neuron) selected in 
Step 2 is considered for further division. The valida-
tion hypercube of this neuron is broken into two 
halves with an axis-orthogonal split. Divisions in all 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

dimensions are carried out, and for each of the divi-
sions the following four steps are performed: 

(i) Construction of the multi-dimensional fuzzy 
membership functions for both hyper-rectangles. 

(ii) Construction of all validity functions. 
(iii) Local estimation of the rule consequent pa-

rameters for both newly generated local linear  
neurons. 

(iv) Calculation of the global loss function for 
the current overall model. 

Step 4: Find the best division (the best of the 
alternatives checked in Step 3), and increment the 
number of neurons: M→M+1. 

Step 5: Test for convergence. 
Remark 1    For the termination criterion various 
options exist including a maximal model complexity, 
i.e., a maximal number of LLMs, statistical validation 
tests, or information criteria. 

3.2  Multilayer perceptron neural network 

Multilayer feedforward neural networks are very 
suitable tools for data-based modelling of real plants 
due to their general function approximation capabili-
ties. Detailed information concerning neural networks 
was given by Nelles and Isermann (1996) and Nelles 
(2001). The architecture of an MLP neural network 
suitable for MISO identification is shown in Fig. 2. 
This network has one non-linear hidden layer with L 
tangent hyperbolic activation functions. The output 
layer also has one neuron with linear activation func-
tions with a slope of 1. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Network structure of a recurrent multilayer perceptron (MLP) 
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Here, just a brief overview of the learning algo-
rithm used in this network is given. Neural networks 
aim to update their defined parameters with learning 
algorithms to give proper outputs for proper inputs 
and to minimize the error. There are many learning 
algorithms for this purpose, such as Gauss-Newton 
(GN), gradient descent (GD), and Levenberg- 
Marquardt (LM). We decided to use the LM algorithm 
to update the MLP network parameters because it has 
the following advantages: (1) faster convergence than 
the GD method, (2) more robustness than the GN 
method, (3) an interpolation between the GN and GD 
methods (i.e., it has the speed of GN and the con-
vergence of GD). 

The LM algorithm updates the parameters of the 
MLP network according to 

 

1
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
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where e is the error function, J is a Jacobian matrix, 
and μ is a scalar that makes LM closed to either GD or 
GN. W, which contains the weights of the network, is 
defined as follows: 
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Regarding the feedforward multilayer neural 

network, note that a network with one hidden layer is 
sufficient for most approximation tasks. More layers 
can give a better fit, but the training takes longer. 

3.3  Radial basis function network 

A radial basis function (RBF) network is a 
two-layered neural network with the topology de-
picted in Fig. 3. This network is represented by the 
following function: 
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where the usual choice for the basis functions μj(x) is 
the Gaussian function given in Eq. (9). The parame-
ters of RBF networks are the output weights vj and  
the parameters of the basis functions (centres cj and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
standard deviation σj). Since the network’s output  
Eq. (12) is linear in the weights vj, these weights can 
be estimated by least-squares methods, whereas c and 
σ are network non-linear parameters which can be 
updated via an optimization problem solved using the 
GD method (Ljung, 1987; Nelles, 1996). First-order 
gradient methods are based on the following general 
update rule for the parameters cj, σj: 
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where cn and σn are the centre and standard deviation 
vectors, respectively. At iteration n, μ is the learning 
rate, and J is the cost function defined as 
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J(·) is the Jacobian of the network, given as 
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4  Case study: winding process description 
 

The winding plant introduced in the first sub-
section represents the major subsystem often met in 

Fig. 3  Recurrent radial basis function (RBF) network with 
external dynamics 
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web conveyance systems. Modelling of a winding 
process using theory-based methods such as Hooke’s 
equation is a complicated task and represents a chal-
lenge for both system theory and applications (Hus-
sian et al., 2000). To overcome these problems, 
non-analytical techniques presented in previous sec-
tions are experimentally applied for the identification 
of winding process models. 

4.1  Process description 

The case study is a test setup of an industrial 
winding process (SISTA, 1999). Fig. 4 shows the 
layout of the winding process under consideration, 
which consists of multi-variable and coupled systems 
with process parameters varying during operation. 
The main role of the winding process is to control the 
web conveyance in order to avoid the effects of fric-
tion and sliding. The solution consists of maintaining 
a traction effort on the strip and controlling the ten-
sion at different points along the web (Braatz et al., 
1996). The winding machine is composed of three 
reels driven by DC motors denoted as M1, M2, and M3, 
gear reduction coupled with the reels, and a plastic 
strip. Motor M1 corresponds to the unwinding reel, M3 
to the rewinding reel, and M2 to the traction reel. The 
angular velocity of motor M2 (Ω2) and the strip ten-
sions between the reels (T1, T3) are measured using a 
dynamo tachometer and tension meters, respectively. 
Each motor is driven by a local controller. Torque 
control is achieved for motors M1 and M3, while speed 
control is realized for motor M2. Significant process 
variables are measured by sensors at pre-chosen 
points of the process and then the acquired data are 
recorded at a sampling rate of 0.1 s in the monitoring 
system. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Note that the parameter variation which occurs 
in this process is due to variation in the reel radius 
during unwinding. This non-measurable variation of 
the reel radius significantly modifies the dynamic 
behaviour of the system during the overall process of 
unwinding (Noura et al., 2009). Hence, owing to 
these uncontrolled effects to which the winding 
process is subjected, this type of process is challeng-
ing in modelling, identification, and control. To iden-
tify the winding process, the input and output vari-
ables are listed in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Data pre-processing for system identification 

Data pre-processing methods are required to 
extract valid data from the available experimental 
data. Peak shaving and smoothing of the intensive 
changes in real data are very important in the pre- 
processing phase. Toward these objectives, the real 
data are passed through a first-order digital Butter-
worth low-pass filter with a bandwidth of 0.3 Hz. 
From a signal processing standpoint, a suitable filter 
should not change or affect the original signal shape 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Input and output variables in the winding 
process 

Variable name Variable description 

S1 Angular speed of reel 1 
S2 Angular speed of reel 2 
S3 Angular speed of reel 3 

RI1 Set point current at M1 

Input 

RI3 Set point current at M2 

T1 Tension in the web between 
reels 1 and 2 

Output 
T3 Tension in the web between 

reels 2 and 3 

Fig. 4  Schematic of an industrial winding process with monitored sensors 

Traction reel

Unwinding reel

Tension meter

Tacho meter

Tension meter
Winding reel

Motors and gear reduction

M1

M2

M3

T3

T1

Local controllers

Controllers-1

Controllers-2

Controllers-3

Traction SP1

Traction SP3

Velocity SP

Ω2



Abbasi Nozari et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(6):403-412 409

while eliminating noise and disturbing signals. Fur-
thermore, since the input and output data have dif-
ferent ranges, the filter may yield errors in data 
quantization and lead to poor identification of the 
system (Banadaki et al., 2011; Sadeghian and Fatehi, 
2011). Data normalisation must be performed as an 
essential step of data mining for system identification. 
Experiments have proven that more promising mod-
elling results will be revealed using data normalisa-
tion. The original signal S can be mapped to the 
normalised signal Sn as follows:  
 

min
n

max min

,
S S

S
S S





                      (16) 

 

where Smax and Smin are the maximum and minimum 
values of S, respectively. The effects of the Butter-
worth filter and normalisation on the signal S2 are 
shown in Fig. 5. 

4.3  Experimental modelling results 

To evaluate modelling performance, we used the 
mean squared error (MSE) and the variance ac-
counted for (VAF). MSE is defined as 

 

 2

P M
1

1
MSE ( ) ( ) .

Q

N

y N y N
Q 

            (17) 

 
The percentile VAF was also used to measure the 
performance of the obtained model: 
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where cov(·) is the covariance of the respective vector. 
As discussed in Section 2.1, the order of the 

model should be determined to improve performance 
through the system identification procedure. For the 
purpose of order selection, an AIC information index 
was exploited in this study. Table 2 shows the varia-
tion in the AIC index with respect to the increase in 
model order for both outputs of the winding process, 
denoted as T1 and T3. 

 
 
 
 
 
 
 
 
 
 
As the orders of the models increased from 1 to 2, 

the values of the AIC index for both linear dynamic 
models decreased. However, when increasing the 
order from 2 to 10, there were no significant im-
provements in AIC values for either model. Thus, we 
decided to choose the second-order models which 
yield the lowest AIC values. The selected orders for 
linear models were then also applied as the orders of 
the non-linear models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Data pre-processing of the angular speed of reel 2: (a) Butterworth effects; (b) normalisation effects 

Table 2  Variation in the Akaike information criterion 
(AIC) information index with respect to order increment

Order
JAIC-T1

(N/m)
JAIC-T3

(N/m)
Order 

JAIC-T1 

(N/m) 
JAIC-T3

(N/m)
1 0.0209 0.1611 6 0.0178 0.2229
2 0.0145 0.1464 7 0.0169 0.2034
3 0.0177 0.2273 8 0.0170 0.2076
4 0.0188 0.2250 9 0.0173 0.2101
5 0.0183 0.2260 10 0.0176 0.2089
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In the case of both LLNF and NN models, the 
most crucial concern is the number of neurons, which 
should be as small as possible. The number of neurons 
for all the networks presented in this work was based 
on the MSE curve. A typical MSE curve for an MLP 
network is shown in Fig. 6 for the simulated web 
tension between reels 2 and 3 (T3). In this regard, the 
ideal neuron number was determined by increasing 
the number of neurons until more neurons did not 
have a significant effect on the reduction of the MSE 
for the test data. As the neuron number increased from 
1 to 5, MSE values for the training and test data sets 
declined. When the number of hidden neurons in-
creased past 5, there were no marked improvements 
in the MSE for the test data. Hence, an MLP network 
with five hidden neurons was selected based on the 
MSE curve. The same procedure was performed to 
select the optimal neuron number for other networks, 
namely RBF and LLNF. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figs. 7 and 8 show the responses of the proposed 
NF, MLP, and RBF models, and the response of the 
real winding process to the tensions in the web be-
tween reels 1 and 2 (T1) and between reels 2 and 3 (T3). 
The proposed NF model was best able to track the 
corresponding outputs of the real winding process. 
Other models had severe problems in tracking the 
responses of the real systems, especially in some time 
intervals. Such a case can be observed in the time 
interval between 220 s and 225 s for the second output 
of the real winding process (T3). The real response of 
the system was effectively tracked by the response of 
the RLLNF model, whereas other intelligent models, 
namely MLP and RBF, had some tracking problems, 
especially in intervals in which a set of fluctuations 
are observed within the response of the system (e.g., 

[235, 245] s). The LSE linear models had severe 
tracking problems, especially with large magnitudes 
of system responses. Moreover, since LSE is the op-
timal modelling method for linear systems, it can be 
concluded that the winding process belongs to the 
non-linear systems category. 

Table 3 shows the accuracy results achieved on 
the basis of the proposed modelling accuracy criteria 
for different winding machine models. Taking into 
account the obtained MSE and VAF values, the pro-
posed RLLNF models showed almost the highest 
accuracies throughout the modelling of the non-linear 
winding process compared with the other modelling 
approaches. Besides, in relation to the neuron number 
of the non-linear networks presented in Table 3, note 
that the neuron (rule) numbers of the RLLNF net-
works are meaningfully large as a result of the fast 
training and evaluation capabilities of the LOLIMOT 
algorithm.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

All the non-linear simulator models presented 
could simulate winding plant behaviour after training 
without the need of real winding plant output data, but 
only by feeding inputs into the models. This advan-
tage of the proposed intelligent simulator models 
makes it possible to simulate and design model-based 
controllers over the whole operating ranges of a 
non-linear winding system. Furthermore, the local 
linear modelling strategy employed in constructing an 
NF simulator model allows for exploiting the ob-
tained LLM parameters for designing or re-designing 
the local controllers of a winding process owing to the 
representation of a non-linear system by several NF 
piecewise linear models. 

Fig. 6  The variation of the mean square error (MSE) of the 
web tension model between reels 2 and 3 using the multi-
layer perceptron (MLP) model 
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Table 3  Accuracy results for linear and non-linear 
models of the winding process* 

MSE VAF (%) 
Model 
output

Neuron 
number Training 

set 
Validation 

set 
Training 

set 
Validation

set 
LSE−T1 – 0.1247 0.1359 87.3062 86.7406

MLP−T1 12 8.93e-4 8.61e-4 98.4746 98.6752

RBF−T1 10 8.76e-4 8.54e-4 98.5999 98.6899

LLNF−T1 20 1.44e-4 7.72e-4 99.6915 98.8234

LSE−T3 – 0.2547 0.2430 75.2313 73.9855

MLP−T3 5 9.27e-4 1.10e-3 93.5317 89.9052

RBF−T3 10 8.37e-4 2.20e-3 94.5855 86.7895

LLNF−T3 25 8.86e-4 1.10e-3 94.0865 92.2721
* Values in this table are approximate. LSE: least square error; MLP: 
multilayer perceptron; RBF: radial basis function; LLNF: local linear 
neuro-fuzzy. MSE: mean square error; VAF: variance accounted for 
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Fig. 7  Modelling performance for the web tension model between reels 1 and 2 
(a) Responses of local linear neuro-fuzzy (LLNF) and least square error (LSE) models; (b) Response of the multilayer 
perceptron (MLP) model; (c) Response of the radial basis function (RBF) model 
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Fig. 8  Modelling performance for the web tension model between reels 2 and 3 
(a) Responses of local linear neuro-fuzzy (LLNF) and least square error (LSE) models; (b) Response of the multilayer 
perceptron (MLP) model; (c) Response of the radial basis function (RBF) model 
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5  Conclusions 
 

In this paper, the identification of non-linear 
simulator models using an RLLNF technique was 
carried out for a real industrial winding process. For 
data-based modelling, noise elimination, data nor-
malisation, and order selection are essential. After 
pre-processing the data and obtaining a rich data set, 
one linear LSE-based and three non-linear recurrent 
intelligent models were proposed for all the winding 
machine outputs by LLNF, MLP, and RBF. The 
LLNF simulator model for a real winding process has 
been presented for the first time. 

In terms of the experimental results, all proposed 
NF models demonstrated the highest accuracies in 
that they effectively created a faithful replica of their 
corresponding MISO sub-system. Furthermore, the 
comparisons made between linear and non-linear 
modelling methods proved that the winding process is 
a non-linear system. Employing this LLNF simulator 
model in developing model-based fault diagnosis and 
fault tolerant control systems of winding processes 
seems to be a worthwhile direction for future re-
search. Moreover, developing NF piecewise linear 
predictor models of the winding process could be 
considered as another direction for further research 
toward designing a model predictive controller. 
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