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Abstract:    Image classification is an essential task in content-based image retrieval. However, due to the semantic gap between 
low-level visual features and high-level semantic concepts, and the diversification of Web images, the performance of traditional 
classification approaches is far from users’ expectations. In an attempt to reduce the semantic gap and satisfy the urgent re-
quirements for dimensionality reduction, high-quality retrieval results, and batch-based processing, we propose a hierarchical 
image manifold with novel distance measures for calculation. Assuming that the images in an image set describe the same or 
similar object but have various scenes, we formulate two kinds of manifolds, object manifold and scene manifold, at different 
levels of semantic granularity. Object manifold is developed for object-level classification using an algorithm named extended 
locally linear embedding (ELLE) based on intra- and inter-object difference measures. Scene manifold is built for scene-level 
classification using an algorithm named locally linear submanifold extraction (LLSE) by combining linear perturbation and region 
growing. Experimental results show that our method is effective in improving the performance of classifying Web images. 
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1  Introduction 
 

Nowadays, computer vision research generally 
requires a large amount of digital images. The rapid 
development of image acquisition and processing 
technology has encouraged more and more digital 
images to be generated and further spread on the 
World Wide Web. Specifically, some online photo 
sharing platforms like Flickr (http://www.flickr.com) 
are reporting thousands of uploaded images per min-
ute, and providing users more facilities for accessing, 
disseminating, and exchanging Web images (Ames 
and Naaman, 2007; Li LJ et al., 2010; Sun et al., 

2011). Image classification plays an essential role in 
content-based image retrieval. However, Web images 
are usually difficult to classify, since most previous 
classification approaches result in reduced perform-
ance when they deal with large-scale and high-  
dimensional image data in real world applications. 
Therefore, Web image classification has been a 
promising yet challenging topic in computer vision 
research (Zhang, 2008; Zhou et al., 2009; Luo et al., 
2010; Farajtabar et al., 2011; Liu et al., 2011; Parikh, 
2011). 

Image classification approaches can be roughly 
divided into four types (Lu and Weng, 2007): (1) 
Machine learning based: image classification can be 
seen as a process of finding the mappings between 
low-level visual features and high-level semantic 
concepts from the perspective of machine learning 
(Chang et al., 2003; Kim DW et al., 2007; Joshi et al., 
2009; Lin et al., 2011). (2) Relevance feedback based: 

Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 

ISSN 1869-1951 (Print); ISSN 1869-196X (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

 

* Project supported by the National High-Tech R & D Program (863) 
of China (No. 2009AA011900), the Zhejiang Provincial Natural 
Science Foundation of China (No. 2011Y1110960), and the Zhejiang 
Provincial Nonprofit Technology and Application Research Program 
of China (Nos. 2011C31045 and 2012C21020) 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012 



Zhu et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(10):719-735 720 

a certain relevance feedback scheme is applied to 
learn users’ intentions during the classification proc-
ess (Klaydios, 2004; Tao et al., 2006; Cheng et al., 
2009; dos Santos et al., 2011). (3) Ontology-based: 
domain-specific knowledge is used to create domain 
ontologies so that the semantic concepts of the images 
can be easily inferred (Jaimes and Smith, 2003; Vieux 
et al., 2007; Chai et al., 2009; Li XR et al., 2010). (4) 
Object-based: according to human visual perception, 
the object region within an image that is important for 
describing image semantics is extracted, and the 
classification process is conducted based on the dif-
ferences among objects. Some previous research 
shows that object-based classification has the advan-
tage of simplifying the process of image classification 
and improving the classification accuracy, especially 
for those images having clear objects but a complex 
background (Luo et al., 2004; Shao and Brady, 2006; 
Zeng et al., 2009; El Sayad et al., 2010). A common 
idea behind the above approaches is to shorten the 
well-known ‘semantic gap’ (Enser and Sandom, 2003; 
Wang CH et al., 2008). Moreover, it is necessary to 
develop a novel classification method for Web images 
to satisfy some urgent requirements as follows: 

1. Dimensionality reduction for high-dimensional 
visual features. The fusion of multiple visual features 
improves the classification performance, but it also 
brings high-dimensional visual features. Researchers 
have paid more attention to finding the mappings 
between visual features and semantic concepts, or to 
developing some effective learning machines for 
image representation. However, the side effect of 
‘dimensionality curse’ (Bellman, 1961), which is 
caused by high-dimensional visual features, has often 
been ignored. Thus, most classifiers are not scalable 
enough for dealing with Web images. Consequently, 
dimensionality reduction for high-dimensional visual 
features should be regarded as a necessary step for 
image classification. 

2. Users’ demands for high-quality retrieval re-
sults. Finding users’ intended items from the sea of 
Web images remains a difficult task. For example, to 
obtain good retrieval results in an image retrieval 
system, a certain relevance feedback scheme is ap-
plied to prompt users to make feedback on the re-
turned results with several relevant levels. But this 
has proven tedious and time consuming (Rui et al., 
1998). On the other hand, people often have little 

patience to browse the images beyond the top three to 
five pages (Datta et al., 2008). In addition, in many 
cases, users submit some special tags for image re-
trieval (e.g., ‘a poodle’, ‘a brown poodle’, or ‘a brown 
poodle on lawn’). Clearly, global-based classification 
is not suitable for those requirements (Souvenir and 
Pless, 2005; Fan et al., 2008). 

3. Batch-based classification for unordered im-
ages. Nowadays, more and more users upload a group 
of images for sharing on the Internet. In many cases, 
the images in an image set share a common semantic 
concept (i.e., they describe the same or similar object 
but have various scenes). Obviously, if the subject of 
the classification is an image set, rather than just a 
single image (i.e., batch-based classification), the 
process of image classification will be greatly sped up. 
Moreover, different from the frames in a video se-
quence, although some similarities may exist, the 
images in an image set are generally unordered. 
Therefore, most frame-based approaches are not fea-
sible for batch-based classification. The idea of 
batch-based classification first appeared in Wang RP 
et al. (2008). To the best of our knowledge, so far only 
a few studies have been published on this topic. 

Manifold learning addresses the problem of 
seeking a low-dimensional manifold hidden in the 
high-dimensional data space, where the images in an 
image set are mapped into a nonlinear manifold while 
preserving their local similarities. Theoretically, given 
enough images, it is possible to reveal the intrinsic 
topological structure of the manifold, and thus much 
underlying useful information can be exploited 
without analyzing the high-dimensional image data. 
Previous work has shown that a nonlinear manifold 
provides a powerful structure for semantic represen-
tation, even if there is no convincing evidence of its 
accuracy. On the other hand, according to Seung and 
Lee (2000), the principle of manifold learning is more 
consistent with that of human visual perception. 

In recent years, many state-of-the-art approaches 
based on manifold learning have been proposed, e.g., 
locally linear embedding (LLE) (Roweis and Saul, 
2000), isometric mapping (Isomap) (Tenenbaum et al., 
2000), and Laplacian eigenmap (LE) (Belkin and 
Niyogi, 2001). These approaches have been widely 
used in various research fields, such as dimensionality 
reduction, face recognition, and image retrieval. In 
this paper, we try to develop a novel classification 
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method based on manifold learning. Specifically, we 
aim at constructing a hierarchical image manifold for 
representing and classifying Web images. However, 
since Web images are generally diversified, it is not 
reasonable to design the image manifold with a single 
framework. In addition, we can collect only a limited 
number of Web images in real world applications. 
Therefore, learning a hierarchal image manifold and 
then recovering its intrinsic topological structure, is 
not a trivial task. 

The major contributions of our work are as fol-
lows: (1) Transform the classification in the high- 
dimensional data space to one on the low-dimensional 
image manifold with novel distance measures for 
calculation; (2) Construct a hierarchical image mani- 
fold in view of human visual perception by combing 
semantic granularity; (3) Formulate two kinds of 
manifold, object manifold and scene manifold. The 
former is built for object-level classification using an 
extended locally linear embedding (ELLE) algorithm, 
taking into account both intra- and inter-object dis-
tance measures, while the latter is set up for scene- 
level classification using a locally linear submanifold 
extraction (LLSE) algorithm, via linear perturbation 
and region growing. 

Note that our method has some similarities with 
the method proposed by Wang RP et al. (2008); i.e., 
both aim at calculating the distances between two 
points lying on a nonlinear manifold. But they have 
great differences in their schemes for constructing a 
nonlinear manifold. In the method proposed by Wang 
RP et al. (2008), only one kind of manifold is defined 
for face recognition, and the manifold is built in a 
local coordinate system, while in our method, a hier-
archical image model including an object manifold 
and a scene manifold is formulated for image classi-
fication, and these two kinds of manifold are set up in 
one global coordinate system. Moreover, we adopt the 
ideas of some previous subspace schemes and  
spectrum-based approaches to recover the intrinsic 
topological structure of the image manifold; thus, 
there may be some relationships between our method 
and others, including the methods proposed by Huang 
et al. (2003), Gao and Fan (2005), and Kim et al. 
(2010). At last, note that the proposed model is sen-
sitive to the result of object extraction, and that it 
cannot deal with the landscape images without clear 
objects. 

2  Image manifold construction  

2.1  Motivation 

Based on our observations, we found that the 
significant differences among Web images are caused 
mainly by the variations in imaging conditions (e.g., 
illumination, viewing direction, and camera features), 
the complexity of an object, and the changing scenes. 
For example, two images related to different semantic 
concepts (i.e., they describe different objects) are very 
similar in content (Figs. 1a and 1b). On the contrary, 
two images that are irrelevant based on global features 
may share a common semantic concept (i.e., they 
describe the same or similar object) (Figs. 1c and 1d). 
Fortunately, according to the photography principle 
(Patterson, 1986), there generally exists a particular 
area within an image where the eyes are attracted. In 
other words, an image can be segmented into two 
parts: the foreground (i.e., an object region, which 
represents the semantic concept of an image) and the 
background (i.e., a scene region, which represents its 
imaging environment). Therefore, developing a hier-
archical image manifold by combining semantic 
granularity (e.g., object- and scene-oriented semantics) 
(Jaimes et al., 1999) and classifying the images at 
different semantic levels (e.g., object-level and scene- 
level), the classification process will be simplified 
and the classification accuracy improved. Obviously, 
this strategy agrees with the coarse-to-fine processing 
of human visual perception for image understanding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 

(a) (b) 

Fig. 1  Some samples of Web images 
(a) ‘Woman’; (b) ‘Dog’; (c) ‘Tulip’; (d) ‘Tulip’ 
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2.2  Object manifold definition 

Assume there is a group of images X in the high- 
dimensional data space úD, X={x1, x2, …, xN|xi=[xi

1, 
xi

2, …, xi
D]T, i=1, 2, …, N}, where N is the number of 

images in X. Suppose that X consists of C image sets, 
i.e., X={X1, X2, …, XC}, and that each set Xi (i=1, 2, …, 
C) includes Ni images describing the same or similar 
object but having different scenes, where N= 

1

C

ii
N

 . 

Definition 1    An object manifold MO is constructed 
for X, defined as a combination of multiple nonlinear 
manifolds, i.e., MO={MO,1, MO,2, …, MO,C}. Each 
nonlinear manifold MO,i (i=1, 2, …, C) is corre-
sponding to Xi, and any two nonlinear manifolds are 
disjoint, i.e., MO,iMO,j= (i, j=1, 2, ..., C; i≠j). 

We attempt to construct a suitable object mani-
fold and to find a good embedding for X in the low- 
dimensional space, not only preserving the local 
similarities of the images in X, but also maintaining 
the whole topological structure of X. Some approaches 
to tackling the problem of learning multiple nonlinear 
manifolds have been presented over the last few years. 
There are usually two solutions: (1) Each nonlinear 
manifold is mapped separately into a local coordinate 
system (Saul and Roweis, 2003; Lu and Weng, 2007); 
(2) All nonlinear manifolds are projected into one 
global coordinate system (Yang, 2002; de Ridder et 
al., 2003; Wu and Chan, 2004; Pillati and Viroli, 2005; 
Jun and Ghosh, 2010). Although the former has 
proven effective in learning multiple nonlinear mani-
folds, it lacks a uniform coordinate system to represent 
images. We propose a novel algorithm named extended 
locally linear embedding (ELLE) using path-based 
clustering (Fischer and Buhmann, 2003) based on 
intra- and inter-object distance measures. 
Definition 2    Suppose that x1 and x2 are two images 
belonging to the ith image set Xi in the high- 
dimensional data space úD, and that they are mapped 
into one nonlinear manifold MO,i. Assuming that there 
is a set of paths P between x1 and x2, P(x1, x2)={p1(x1, 
x2), p2(x1, x2), …, pl(x1, x2)}, and that there exist qk 
small edge elements on each path pk(x1, x2) (k=1, 2, …, 
l), the distance between x1 and x2 is defined as 
 

 
1 2

1 2
1 1 1 1 1 1

( , ) min max , max , , max ,
l

P e e e
e q e q e q

d d d d
        

x x   

(1) 

where e denotes each edge element on one path, and 
de denotes the weight of edge e. Thus, the intra-object 
distance measure between x1 and x2 can be formulated 
as 

intra 2 1 2( , ) ( , ).Pd dx x x x1                   (2) 

 
Definition 3    Suppose that x1 and x2 are two images 
belonging to the ith image set Xi and the jth image set 
Xj respectively in the high-dimensional data space úD, 
and that they are mapped into the nonlinear manifold 
MO,i and the nonlinear manifold MO,j, respectively. 
Assume that xi′ and xj′ are two boundary points taking 
the largest Euclidean distance between Xi and Xj, as 
follows:  
 

E E
,

( , ) max { , }.
i i j j

i j i j
X X

d d X X
  

  
x x

x x           (3) 

 
Then the inter-object distance measure between x1 
and x2 can be formulated as 
 

int er 1 2 1 E 2( , ) ( , ) ( , ) ( , ),

             , 1,2,..., ;  .

P i i j P jd d d d

i j C i j

     

 

x x x x x x x x
(4) 

 

The main steps of ELLE can be summarized as 
follows. 

Step 1: Suppose MO is a d-dimensional object 
manifold constructed for X, d<<D. For each image xi 
(i=1, 2, …, N) in X, compute the distance between xi 

and xj (j=1, 2, …, N; i≠j) based on the intra- and inter- 
object distance measures (Eqs. (1)–(4)). If there exist 
si images that satisfy a certain condition (k-nearest 
neighbor or r-radius), these images are chosen as xi’s 
nearest neighbors. 

Step 2: Calculate the reconstruction weight wi,j 
for xi using the si nearest neighbors. Minimize the 
reconstruction error function as follows: 

 
2
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W x x

Q           (5) 

 

where W=(wi,j)N×N is a reconstruction weight matrix, 
and Qi is a symmetric, semi-positive covariance 
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matrix, i.e., Qi=(xi−xi,j)(xi−xi,k), where xi,j and xi,k are 
the nearest neighbors of xi, xi,j≠xi,k (1≤j, k≤si; j≠k). 

Step 3: Assume Y={y1, y2, …, yN} is the 
embedding of X={x1, x2, …, xN} on MO. To obtain Y, 
minimize the cost function as follows:  
 

2

, ,
1 1

T
,

1 1

( ) arg min

1
s.t.   ,  ,

isN

i i j i j
i j

N N

i i i j
i i

Y w

N


 

 

 

 

 

 

y y

y y y I0

          (6) 

 
where yi,j (1≤j≤si) is yi’s nearest neighbor. Finally, 
Eq. (6) can be calculated by finding the d eigen- 
vectors with the smallest (nonzero) eigenvalues of the 
cost matrix M=(I−W)T(I−W).  

The flow of ELLE is shown in Algorithm 1. 
 

Algorithm 1    Extended locally linear embedding 
(ELLE) 
Input: a group of images X in the high-dimensional data space 
úD, X={x1, x2, …, xN|xi=[xi

1, xi
2, …, xi

D]T, i=1, 2, ..., N}; C 
image sets Xi (i=1, 2, …, C), X={X1, X2, …, XC}; an object 
manifold MO constructed for X; the dimensionality of MO, d 
(d<<D). 
Output: the embedding Y for X on MO, Y={y1, y2, …, yN|yi=[yi

1, 
yi

2, …, yi
d]T, i=1, 2, ..., N}. 

1  For each xiX do { 

2     For each xjX do { 

3         If (xiXi && xjXi) then 
4             Compute the distance between xi and xj: 

                   , intra ( , )
i j i jd dx x x x ;                   // Eqs. (1) and (2) 

5         If (xiXi && xjXj) then 
6             Compute the distance between xi and xj: 

                   , inter ( , )
i j i jd dx x x x ; }                // Eqs. (3) and (4) 

7      Select the si nearest neighbors of xi according to , ;
i j

d x x  

8      Calculate the reconstruction weight wi,j; 
9      Establish the reconstruction weight matrix W;    // Eq. (5) 
10    Construct the cost matrix M according to 

M=(I−W)T(I−W); 
11    Find the d eigenvectors with the smallest (nonzero)  

eigenvalues of M; }                                         // Eq. (6) 
12  Return {y1, y2, …, yN}. 

 
In terms of the computational complexity of 

ELLE, we consider only the additional complexity 
generated by the calculation of the intra- and inter- 
object distance measures between pairs of the images. 
The processing cost is computed as follows: 

1
2

1 1

1 ( 1) .
N N

i j

N N N N


 

               (7) 

 

Therefore, ELLE has an additional complexity of 
O(N2).  

Obviously, ELLE has the capability of shortening 
the distance between two points lying on one nonlinear 
manifold (which are connected by some small edge 
elements), while enlarging the distance between two 
points lying on different nonlinear manifolds (which 
are linked by a long path). For simplification, assume 
that an image in the high-dimensional data space is 
corresponding to a point on the low-dimensional 
manifold. The advantages of ELLE can be summa- 
rized as follows: (1) It conforms to the local 
consistency of LLE. That is, the nearby images in the 
high-dimensional data space remain nearby and have 
high affinity on the object manifold. (2) It conforms to 
the global consistency of the clustering method. That 
is, the images describing the same or similar semantic 
concept (they belong to the same image set) are 
gathered together on the object manifold, whereas the 
images related to different semantic concepts (they 
belong to different image sets) are far away from each 
other on the object manifold. (3) Since neither the 
Euclidean distance nor the geodesic distance can be 
used to deal with the nonlinear manifold with a 
complex structure, especially when the structure of 
the nonlinear manifold with curved surfaces bears 
folding or bending (like a spiral) (Zhu and Yao, 2009), 
path-based clustering, a psychophysically plausible 
similarity measure, is applied to define novel distance 
measures, i.e., intra- and inter-object distance 
measures. Note that if the intrinsic dimensionality of 
each nonlinear manifold is different, or two nonlinear 
manifolds intersect or overlap, the overall topological 
structure of the object manifold may not be well 
recovered in one global coordinate system. 

2.3  Scene manifold definition 

Definition 4    A scene manifold MS,i is constructed 
for Xi (i=1, 2, …, C), defined as an integration of a 
series of locally linear submanifolds, i.e., MS,i={Si,1, 
Si,2, …, Si,C′} (i=1, 2, …, C), where C′ is the number of 
locally linear submanifolds. Each locally linear 
submanifold Si,j (i=1, 2, …, C; j=1, 2, …, C′) is 
corresponding to the images having the same or 
similar scene, and any two locally linear submanifolds 
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do not overlap, i.e., Si,lSi,m= (i=1, 2, ..., C; l, m=1, 
2, …, C′; l≠m).  

Different from the object manifold in which each 
nonlinear manifold is constructed for the images 
having the same semantic concept, a scene manifold 
is built for the images sharing one object semantic but 
having different scene semantics. Moreover, the 
number of possible scenes is unknown. Therefore, it 
is hard to reveal the distinct topological structure of 
the scene manifold. Fortunately, according to previous 
work, a nonlinear manifold can be viewed as an 
integration of a series of local regions (i.e., locally 
linear submanifolds). Therefore, if the topological 
structures of these locally linear submanifolds can be 
well found, the embeddings of the images will also be 
well recovered on the scene manifold. 

To automatically extract a series of locally linear 
submanifolds from a nonlinear manifold, many 
approaches have been presented (Souvenir and Pless, 
2005; Fan and Yeung, 2006; Zhai et al., 2008). 
According to geometric intuition (Carlsson et al., 
2008; Briggs et al., 2009), we propose a novel 
algorithm named locally linear submanifold extraction 
(LLSE) by combining linear perturbation and region 
growing. Here linear perturbation acts as a constraint 
condition, which is defined as the deviation of the 
Euclidean distance and the geodesic distance (Wang 
RP et al., 2008). Specifically, each linear region is 
gradually stemmed from a seed point using a region 
growing method until the constraint condition is 
broken. At last, the maximum linear region can be 
obtained; it is just a locally linear submanifold. The 
above process is repeated until the points on the scene 
manifold are used up. Fig. 2 shows a scene manifold 
having three locally linear submanifolds.  

The flow of ELLE is shown in Algorithm 2. 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 2    Locally linear submanifold extraction 
(LLSE) 
Input: the ith image set Xi in the high-dimensional data space 
úD, Xi={xi,1, xi,2, …, xi,Ni

|xi,j=[xi,j
1, xi,j

2, …, xi,j
D]T, j=1, 2, ..., Ni}; 

a scene manifold MS,i constructed for Xi; the dimensionality of 
MS,i, d (d<<D); the embedding Yi for Xi on MS,i, Yi={yi,1, yi,2, …, 
yi,Ni

|yi,j=[yi,j
1, yi,j

2, …, yi,j
d]T, j=1, 2, ..., Ni}. 

Output: a series of locally linear submanifolds, Si,1, Si,2, …, Si,C′ 
(C′ is the number of submanifolds). 
1  l=1, Si,l=; 
2  While Yi≠ do { 
3       Randomly select a point, denoted as yi,l,1,  

which acts as a seed point for region growing; 
4       Insert yi,l,1 into Si,l: Si,l=Si,l{yi,l,1};  
5       Delete yi,l,1 from Yi: Yi=Yi\{yi,l,1}; 
6       k=1; 
7       For each yi,jYi do { 
8           If dG(yi,l,k, yi,j)−dE(yi,l,k, yi,j)≤Th then {   

// Th denotes a threshold 
9              Insert yi,j into Si,l: Si,l=Si,l{yi,j};  
10            Delete yi,j from Yi: Yi=Yi\{yi,j}; 
11            k=k+1; 
12            yi,j is denoted as yi,l,k; }} 
13      l=l+1, Si,l=; } 
14  Return {Si,1, Si,2, …, Si,C′}. 
 

Similar to the evaluation of the processing cost 
of ELLE, in LLSE, only the additional complexity 
generated by the distance calculation should be 
considered. Therefore, LLSE also has an additional 
complexity of O(Ni

2).  
Note that although both the object manifold and 

scene manifold depend on the calculation of distance 
measures, there still exist great differences between 
them, mainly in the following two aspects: (1) The 
object manifold is built for a group of image sets with 
various semantic concepts, and each nonlinear mani- 
fold is corresponding to an image set having one 
semantic concept; thus, based on prior knowledge, the 
distance between two points on one nonlinear mani- 
fold can be shortened, whereas the distance between 
two points from different nonlinear manifolds can be 
enlarged, which results in good performance in 
multiple manifold learning. The scene manifold is set 
up for an image set having several scenes, and since 
the number of scenes is unknown, no prior knowledge 
can be used to define the distance measure. (2) For the 
object manifold, ELLE is conducted in the high- 
dimensional data space, and the finding of each 
nonlinear manifold can be regarded as a process of 
reducing the dimensionality of image data. For the 

Fig. 2  A scene manifold having three locally linear sub-
manifolds, i.e., MS,i={Si,1, Si,2, Si,3} 
yi,1, yi,2, and yi,3 are the embeddings for xi,1, xi,2, and xi,3 on 
MS,i, respectively; dE denotes the Euclidean distance; dG 
denotes the geodesic distance 
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scene manifold, LLSE is conducted in the low- 
dimensional space, and extracting each locally linear 
submanifold can be viewed as a process of 
performing a region growing method. 

Finally, a hierarchical image manifold (IM) is 
represented as a tree structure which can be described 
by Fig. 3. At the object semantic level, an object 
manifold MO is divided into a set of nonlinear mani-
folds, {MO,1, MO,2, …, MO,C}. Each nonlinear mani-
fold MO,i (i=1, 2, …, C) is corresponding to a scene 
manifold MS,i (i=1, 2, …, C). At the scene semantic 
level, a scene manifold MS,i is further divided into a 
series of locally linear submanifolds, {Si,1, Si,2, …, 
Si,Ci′}. Note that in this model the object manifold is 

constructed earlier than the scene manifold, since 
scene semantic is more abstract than object semantic 
from the perspective of human cognition. Moreover, 
its object semantic of an image is usually more 
important than its scene semantic. Although the above 
hierarchical image manifold is proposed for the 
classification of Web images, considering only the 
users’ urgent demands and the characteristics of Web 
images, it is not enough to classify the images in real 
world applications. Actually, the proposed model can 
be further extended. For example, at the object 
semantic level, when the number of the images in an 
image set is very large, or the described object has a 
diversified form, the object manifold will be 
composed of more levels and each object class can be 
further specified; e.g., an object class ‘tiger’ is 
specified to ‘brown tiger’ and ‘white tiger’. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3  Image classification 

3.1  Object-level classification 

Given a test set T that includes Nt images in the 
high-dimensional data space úD, i.e., T={t1, t2, …, 
tNt

|ti=[ti
1, ti

2, …, ti
D]T, i=1, 2, …, Nt}, and supposing 

that an object class corresponds to one semantic con-
cept (i.e., object semantic), the object class identity ki 
of each image ti (i=1, 2, …, Nt) can be obtained as 

 

O O,

t

( , ) arg max ( , ),
1,2,..., ;  1,2,..., ,

i i i jk p M p M
i N j C

 
 
t t

      (8) 

 

where MO denotes an object manifold constructed for a 
training set X, MO,j is the jth nonlinear manifold in MO, 
and p(ti, MO) denotes the probability of ti lying on MO. 
To be more exact, p(ti, MO,j) denotes the probability of 
ti lying on a certain nonlinear manifold MO,j (j=1, 
2, …, C). 

To calculate p(ti, MO,j), first the embedding of Y 
for X on MO is obtained by conducting ELLE. Then, 
the points in Y are gathered together into different 
clusters using k-means clustering, and a centroid uO,j 
(j=1, 2, …, C) is calculated to represent each 
nonlinear manifold MO,j. Meanwhile, an object 
manifold MO,T (i.e., a nonlinear manifold) is con-
structed for T by applying LLE, and the embedding ti′ 
(i=1, 2, …, Nt) of each ti is obtained on MO,T. A simple 
strategy to calculate p(ti, MO,j) is to compute the dis-
tance between ti′ and uO,j, as follows:  
 

O, L2 O,

t

( , ) min ( , ),
  1,2,..., ;  1,2,..., ,

i j i jp M d
i N j C


 

t t u
            (9) 

 

where L2 O,( , )i jd t u  denotes the distance between ti′ 

and uO,j using the L2 distance measure (de Juan and 
Bodenheimer, 2004).  

Finally, the whole identity kO of T can be de-
termined via a majority voting based scheme. In fact, 
the images included in T usually describe the same or 
similar object (i.e., they belong to the same semantic 
concept); thus, the object class identity ki of each 
image ti does not need to be obtained, and then the 
implementation of object-level classification will be 
sped up. The whole identity kO is determined as 
 

O L2 O, O,

L2 O, O,

arg min ( , )

arg min ( , ),    1,2,..., ,

T j

T j

k d M M

d j C



 u u
  (10) 

Fig. 3  A hierarchical image manifold (IM) 
MO is an object manifold; MO,1, MO,i, and MO,C are nonlinear 
manifolds; MS,1, MS,i, and MS,C are scene manifolds; S1,1, S1,j, 

11,C 'S , S2,1, S2,j, 
22,C 'S , SC,1, SC,j, and , CC C 'S  are locally linear 

submanifolds 

,C'S
11 ,C 'S

22 , CC C 'S
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where uO,T denotes a centroid for MO,T.  

3.2  Scene-level classification 

We suppose that the images within T are correctly 
classified into the ith object class during object-level 
classification, and MS,T is a scene manifold con-
structed for T. After performing LLSE, a series of 
locally linear submanifolds (i.e., S1, S2, …, SC″) can be 
extracted from MS,T. Assume that MS,i is a scene 
manifold corresponding to MO,i (which is a nonlinear 
manifold constructed for the images included in the 
ith object class), and Si,1, Si,2, …, Si,C′ are several lo-
cally linear submanifolds generated from MS,i. Then 
the scene semantic identity kS of T can be determined 
by calculating the distances between all pairs of the 
submanifolds in MS,T and MS,i: 
 

1 2
1 2

S S ,
1 1

arg min { min ( , )}.c i c
c C c C

k d S S
    

         (11) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To deal with the distance calculation between 
two subspaces, a feasible scheme is to apply certain 
exemplar-based or cluster mean based approaches 
(Wang L et al., 2006; Kim TK et al., 2007; Wang RP 
et al., 2008), but when these subspaces have different 
dimensionalities, they may easily result in reduced 
performance. Therefore, the distance calculation be-
tween a d1-dimensional submanifold S1 and a 
d2-dimensional submanifold S2 is formulated as  
 

1 2
1/2

T 2
S 1 2 1 2

1 2

( , ) max( , ) ( ) ,
d d

i j
i j

d S S d d
 

 
  
 

 u v   (12) 

 

where u1, u2, …, 
1du  and v1, v2, …, 

2dv  are the or-

thonormal bases of S1 and S2, respectively.  
Fig. 4 shows the process of classifying Web 

images based on the proposed hierarchical image 
manifold.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4  The process of classifying Web images based on the proposed hierarchical image manifold 
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4  Experimental results 
 

We designed some experiments to further 
evaluate the effectiveness of the proposed hierarchical 
image manifold. All images were in JPEG format with 
size of 126×189 or 189×126 pixels. Considering that 
object extraction is critical for object-level classifica-
tion, object region within an image was segmented 
using an efficient method (Kang et al., 2009), and 
then it was clipped out via a rectangular box.  

As to the extraction of visual features, different 
from the images oriented to some special domains, 
such as medical images and remote sensing images, 
Web images are digital photos taken under natural 
scenes, and they usually have such characteristics as 
complex imaging conditions and rich content; thus, it 
is necessary to select some distinguishing features 
according to the requirements. Here a 514-dimen-
sional visual feature was extracted (Vailaya et al., 
1998; Guo et al., 2002; Rizon et al., 2006). It includes 
color histogram (CH, 256), color coherence vector 
(CCV, 128), color moment (CM, 9), tamura feature 
(TF, 18), pyramidal wavelet transform (PWT, 24), 
edge direction histogram (EDH, 72), and shape in-
variant moment (SIM, 7). The CH, CCV, CM, TF, 
PWT, and SIM were used during object-level classi-
fication, while the CH, CCV, CM, TF, PWT, and  
EDH were used during scene-level classification. 
AdaBoost-based face detection (Viola and Jones, 
2004) was applied to segment the face region within 
an image.  

A good classifier should well distinguish the 
images from one class to the others. That is, the 
number of the images that are correctly classified into 
the ith class (they belong to the ith class) is as large as 
possible, while the number of the images that are 
wrongly classified into the ith class (they actually do 
not belong to the ith class) is as small as possible. 
Therefore, considering that there is still no uniform 
evaluation criterion that can be applied for Web image 
classification, we use two metrics, object classifica-
tion accuracy (OCA) and false positive rate (FPR), to 
quantitatively evaluate the performance of the pro-
posed ELLE. They are defined as follows: 
 

_pOCA ,i i iN N                      (13) 

_fFPR ,i i iN N                     (14) 
 

where Ni_p denotes the number of the images that are 

correctly classified into the ith class, Ni denotes the 
number of the images included in the ith class, _fiN  

denotes the number of the images that are wrongly 
classified into the ith class (they actually do not be-

long to the ith class), and iN  denotes the number of 

the images not included in the ith class.  
All experiments were conducted five times. In 

each collection, half of the images were used for 
training and the other half for testing. The hardware 
platform is a T2350 with 1.86 GHz CPU and 2 GB 
main memory.  
Experiment 1    The collection consists of 1620 images 
downloaded from the publically available image data- 
set MIRFlickr (http://press.liacs.mirflickr) (Huiskes 
and Lew, 2008). These images were divided into six 
sets according to their tags (each set is corresponding 
to one class): ‘Baby’ (200), ‘Bird’ (200), ‘Car’ (220), 
‘Dog’ (300), ‘Flower’ (400), and ‘Food’ (300). Fig. 5 
shows some samples of the images in the collection. 

We compared the performance of ELLE(path- 
based clustering) with other manifold learning-based 
ones, i.e., LLE(Euclidean distance), LLE(geodesic 
distance), and Isomap(geodesic distance) (Wu and 
Chan, 2004). Here some important parameters were 
set as follows: k=8, d=20. Note that both k and d are 
flexible parameters. Thus, the changes of their values 
may affect the result of ELLE. An optimum value 
relies on experience in most cases; e.g., the value of d 
is determined by preserving 95% data variances. Figs. 
6 and 7 show the comparison of the classification 
performances among the four algorithms. 

On one hand, among the six classes, both ‘Baby’ 
and ‘Flower’ achieve higher OCA. Since the images 
belonging to ‘Baby’ usually have a face region,  
AdaBoost-based face detection can play an important 
role in the recognition of the images belonging to this 
class. The images in ‘Flower’ have distinct visual 
characteristics, such as regular shapes; thus, the im-
ages belonging to this class can be easily distin-
guished from the images in other classes. Since the 
images included in ‘Food’ often have the diversity of 
color and texture features, and many images in ‘Bird’ 
are grayscale ones, the OCA of these two classes is 
lower than that of the other four classes. On the other 
hand, the FPR of ‘Baby’ is the lowest, and ‘Car’  
comes second, while ‘Food’ yields relatively poor 
performance, i.e., the highest FPR, since some images  
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belonging to ‘Flower’ and ‘Car’ are easily misrecog-
nized as ‘Food’. Besides, some phenomena, such as 
unclear objects, fuzzy content, and inaccurate anno-
tations, may also influence the performance of image  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

classification. For example, the main object of an 
image is ‘boy’, not ‘bird’ (Fig. 8a); an image does not 
have a distinguishing object (Fig. 8b); the area ‘bird’ 
within an image is a decorative pattern (Fig. 8c). 

Fig. 7  Comparison of false positive rate (FPR) among the 
four algorithms 
LLE1: LLE(Euclidean distance); LLE2: LLE(geodesic dis-
tance); Isomap: Isomap(geodesic distance); ELLE: ELLE 
(path-based clustering)  
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Fig. 6  Comparison of object classification accuracy 
(OCA) among the four algorithms 
LLE1: LLE(Euclidean distance); LLE2: LLE(geodesic dis-
tance); Isomap: Isomap(geodesic distance); ELLE: ELLE 
(path-based clustering) 
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Fig. 5  Some samples of the images in the collection (each row corresponds to one class and they are ‘Baby’, ‘Bird’, 
‘Car’, ‘Dog’, ‘Flower’, and ‘Food’ from top to bottom) 
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As shown in Figs. 6 and 7, LLE(Euclidean dis-

tance) obtains poor performance, especially in deal-
ing with the images in ‘Bird’ and ‘Food’ that usually 
contain larger variations; thus, Euclidean distance 
based algorithms may not work well for complex 
images in real world applications. The other three 
algorithms, LLE(geodesic distance), Isomap(geo-
desic distance), and ELLE(path-based clustering), 
obtain different results due to their respective prop-
erties. LLE(geodesic distance) results in the lowest 
OCA and the highest FPR. By integrating the prop-
erties of LLE and the clustering method in a novel 
way, the proposed ELLE achieves good performance.  

The reasons for the better classification results 
may be as follows: (1) Different from LLE(Euclidean 
distance), the other three algorithms calculate the 
distance between two images based on either the 
geodesic distance or path-based clustering, and thus 
they can well recover the distinct topological struc-
ture of a nonlinear manifold. (2) Both LLE(Euclidean 
distance) and LLE(geodesic distance) fail to solve the 
problem of learning multiple nonlinear manifolds, so 
they construct each nonlinear manifold in different 
coordinate systems. In contrast, Isomap(geodesic 
distance) and ELLE(path-based clustering) tackle the 
consistency problem in multi-manifold learning; thus, 
both of them can obtain good low-dimensional em-
beddings for the images in a global coordinate system. 
(3) Since path-based clustering is applied to formulate 
novel distance measures for calculation, different from 
Isomap(geodesic distance), ELLE(path-based cluster-
ing) can deal with the nonlinear manifold with a com-
plex structure. 
Experiment 2    Considering that a large number of 
Web images are uploaded on various websites every 
day, and that the images in the online datasets are 
constantly updated, we invited three undergraduate 

students to gather two collections for use in the fol-
lowing experiments. When collecting images, they 
took several semantic concepts as tags and input them 
into the search textbox separately. In real world ap-
plications, it is hard to create a large-scale collection 
with semantic consistency. Therefore, they did not 
remove irrelevant images but directly gathered the 
images from a few return pages. Some inaccurate tags, 
however, may reduce the performance of image clas-
sification to a certain extent.  

The first collection was built to evaluate the ef-
fectiveness of ELLE during object-level classification, 
with 2100 images in nine sets. They are ‘Airplane’ 
(300), ‘Buddha’ (200), ‘Butterfly’ (250), ‘Camera’ 
(200), ‘Elephant’ (300), ‘Face’ (200), ‘Lotus’ (250), 
‘Pigeon’ (200), and ‘Starfish’ (200). Fig. 9 shows some 
samples of the images in the first collection. The 
second collection was set up to evaluate the effective-
ness of LLSE during scene-level classification, with 
1010 images in five sets. They are ‘Bird’ (234 images: 
‘Ground’ 48, ‘Roof’ 40, ‘Sky’ 50, ‘Tree’ 54, and 
‘Water’ 42), ‘Butterfly’ (148 images in four scenes: 
‘Garden’ 40, ‘Grass’ 32, ‘Ground’ 38, and ‘Sky’ 38), 
‘Dog’ (216 images in five scenes: ‘Grass’ 50, ‘Indoor’ 
48, ‘Snowfield’ 34, ‘Street’ 42, and ‘Water’ 42), ‘Girl’ 
(226 images in five scenes: ‘Beach’ 52, ‘Garden’ 40, 
‘Grass’ 50, ‘Indoor’ 42, and ‘Plaza’ 42), and ‘Lion’ 
(186 images in five scenes: ‘Brushwood’ 36, ‘Forest’ 30, 
‘Mountain’ 38, ‘Snowfield’ 40, and ‘Zoo’ 42). Fig. 10 
shows some samples of ‘Lion’ in the second collection. 

As can be seen from Table 1, among the nine 
classes, ‘Camera’, ‘Lotus’, and ‘Starfish’ yield satis-
fying results due to the fact that the images belonging 
to these classes usually have clear objects. The images 
included in ‘Buddha’ and ‘Elephant’ have diversity in 
object shapes, and thus their OCA is lower than that of 
the other classes. In addition, Table 1 shows that the 
images belonging to ‘Face’ can be more easily dis-
tinguished using AdaBoost-based face detection to 
recognize the face region within an image. 

LLE(Euclidean distance) obtains the poorest 
performance among the four algorithms; e.g., for 
‘Buddha’, it has the lowest OCA. Obviously, the 
proposed ELLE achieves the best results. 

The following is the evaluation of the results of 
LLSE during scene-level classification. After con-
ducting ELLE, the images within the second collection 
were correctly classified into the corresponding object 

(a)      (b)     (c) 

Fig. 8  Some images belonging to ‘Bird’: (a) an image 
with the main object being a ‘boy’; (b) an image without 
a distinguishing object; (c) an image with a decorative 
pattern ‘bird’  
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Fig. 9  Some samples of the images in the first collection (each row corresponds to one class and they are ‘Airplane’, 
‘Buddha’, ‘Butterfly’, ‘Camera’, ‘Elephant’, ‘Face’, ‘Lotus’, ‘Pigeon’, and ‘Starfish’ from top to bottom) 

Table 1  Comparison of object classification accuracy (OCA) and false positive rate (FPR) among the four algorithms

OCA FPR 
Class 

LLE1 LLE2 Isomap ELLE LLE1 LLE2 Isomap ELLE 

Airplane 0.663 0.710 0.764 0.817 0.017 0.014 0.012 0.009 

Buddha 0.655 0.690 0.725 0.784 0.052 0.043 0.036 0.027 

Butterfly 0.742 0.760 0.794 0.852 0.042 0.036 0.029 0.023 

Camera 0.795 0.816 0.830 0.885 0.040 0.033 0.027 0.021 

Elephant 0.710 0.747 0.800 0.813 0.064 0.052 0.043 0.033 

Face 0.750 0.778 0.828 0.870 0.021 0.018 0.015 0.011 

Lotus 0.752 0.812 0.854 0.889 0.024 0.019 0.016 0.012 

Pigeon 0.705 0.760 0.815 0.864 0.026 0.021 0.017 0.014 

Starfish 0.800 0.825 0.856 0.890 0.038 0.031 0.026 0.020 

LLE1: LLE(Euclidean distance); LLE2: LLE(geodesic distance); Isomap: Isomap(geodesic distance); ELLE: ELLE(path-based clustering) 
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classes. Two other algorithms, connected component 
(CC) (Zhai et al., 2008) and manifold-manifold dis-
tance (MMD) (Wang RP et al., 2008), were intro-
duced for comparison. The parameters were set ac-
cording to experience as follows: Th=1.2; 8≤d≤14; 
each scene manifold was divided into 4 to 7 locally 
linear submanifolds. To quantitatively evaluate the 
effectiveness of LLSE, scene classification accuracy 
(SCA) and false positive rate (FPR) were used to 
evaluate the classification performance: 

 

, , _p ,SCA ,i j i j i jN N                  (15) 

, _f, ,FPR ,i j i j i jN N                  (16) 

 

where Ni,j_p denotes the number of the images that are 
correctly classified into the ith class and jth scene, Ni,j 
denotes the number of the images included in the ith 
class and jth scene, , _fi jN  denotes the number of the 

images that are wrongly classified into the ith class 
and jth scene (they belong to the ith class but are not 
included in the jth scene), and ,i jN  denotes the 

number of the images that belong to the ith class but 
are not included in the jth scene.  

Table 2 shows that, compared with CC, both 
MMD and LLSE obtain better results. For example, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for ‘Lion’, the SCA of CC for each scene is lower 
than that of MMD and LLSE, and the FPR of CC is 
higher than that of MMD and LLSE. The reasons are 
as follows: different from MMD and LLSE, CC ap-
plies the exemplar-based scheme to calculate the 
distance between two locally linear submanifolds, but 
it is difficult to select a suitable exemplar in real 
world applications, and thus CC obtains the lowest 
SCA and the highest FPR for each scene. LLSE is 
superior to MMD when calculating the distance be-
tween two locally linear submanifolds with different 
dimensionalities. 

It can also be observed that the images in dif-
ferent scenes have different classification perform-
ances. For example, for ‘Lion’, the SCA is the best in 
the scene ‘Forest’ mainly because the images in this 
scene class have distinct color and texture features, 
whereas the SCA is the poorest for ‘Zoo’, since the 
images belonging to this scene class usually have a 
complex background. Specifically, many images are 
easily misrecognized as ‘Brushwood’ due to the color 
of the wall. Among the five scenes, the FPR for 
‘Snowfield’ is the lowest as the images belonging to 
this scene class usually contain a large white region. 
In contrast, the FPR for ‘Mountain’ is the poorest, 
since some images have parts that are visually similar 

Fig. 10  Some samples of ‘Lion’ in the second collection (each row corresponds to one scene and they are ‘Brush-
wood’, ‘Forest’, ‘Mountain’, ‘Snowfield’, and ‘Zoo’ from top to bottom) 
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to the ones in ‘Snowfield’ and ‘Zoo’; i.e., the color of 
the upper part within an image is blue and the color of 
its bottom part is brown. For ‘Bird’, more satisfactory 
results were achieved for ‘Tree’ as the images be-
longing to this scene class have significant differ-
ences compared with the images in ‘Ground’, ‘Roof’, 
‘Sky’, and ‘Water’, although there exist large vari-
ances among the images in ‘Tree’, such as the shape 
of a tree’s leaves and the color of the flowers. In ad-
dition, the images in ‘Roof’, ‘Sky’, and ‘Water’ may 
be easily confused with each other, and they have 
lower SCA and higher FPR, since many images in the 
three scene classes have similarities in color features. 
For ‘Girl’, among five scenes, the SCA is the highest 
for ‘Grass’, followed by ‘Garden’ and ‘Beach’, and 
the poorest for ‘Indoor’ and ‘Plaza’. However, there 
are many similarities in the images belonging to 
‘Indoor’ and ‘Plaza’, and thus both of them obtain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
poor FPR. For ‘Butterfly’, ‘Sky’ achieves the highest 
SCA and the lowest FPR, as the images in this scene 
class have distinct visual characteristics and they can 
be easily distinguished from the ones included in the 
other three scene classes. For ‘Dog’, compared with 
‘Indoor’, ‘Snowfield’, ‘Street’, and ‘Water’, the im-
ages belonging to ‘Grass’ have distinct color features, 
so satisfactory classification performance can be ob-
tained. Many images in ‘Indoor’ and ‘Street’ contain 
similar backgrounds, and thus they obtain relatively 
low classification results. 

Although our method has some robustness with 
respect to the classification errors during object-level 
classification, there still exist some limitations: (1) 
The proposed algorithms may not hold for a variety of 
Web images, such as the scenery images with no 
specific object. In such cases, Web image classifica-
tion can be viewed as a global-based one, and the 

Table 2  Comparison of scene classification accuracy (SCA) and false positive rate (FPR) among the three algorithms 

SCA FPR 
Class Scene 

CC MMD LLSE CC MMD LLSE 

Ground 0.771 0.917 0.978 0.065 0.021 0.011 

Roof 0.625 0.875 0.950 0.077 0.025 0.010 

Sky 0.700 0.900 0.960 0.076 0.025 0.010 

Tree 0.852 0.944 0.981 0.033 0.011 0.005 

Bird 

Water 0.643 0.881 0.952 0.094 0.031 0.015 

Garden 0.675 0.825 0.925 0.111 0.058 0.025 

Grass 0.625 0.813 0.906 0.129 0.068 0.029 

Ground 0.789 0.884 0.947 0.073 0.036 0.016 
Butterfly 

Sky 0.815 0.895 0.972 0.045 0.020 0.010 

Grass 0.860 0.920 0.960 0.042 0.017 0.009 

Indoor 0.688 0.854 0.917 0.071 0.029 0.015 

Snowfield 0.824 0.912 0.941 0.060 0.024 0.013 

Street 0.667 0.857 0.928 0.080 0.031 0.018 

Dog 

Water 0.809 0.905 0.952 0.057 0.023 0.012 

Beach 0.692 0.865 0.923 0.098 0.041 0.023 

Garden 0.725 0.875 0.925 0.032 0.013 0.007 

Grass 0.820 0.920 0.960 0.034 0.014 0.008 

Indoor 0.571 0.809 0.881 0.108 0.046 0.025 

Girl 

Plaza 0.595 0.833 0.904 0.107 0.046 0.025 

Brushwood 0.722 0.917 0.944 0.060 0.020 0.013 

Forest  0.800 0.933 0.967 0.064 0.022 0.012 

Mountain 0.763 0.921 0.947 0.101 0.034 0.020 

Snowfield 0.725 0.900 0.950 0.041 0.014 0.007 

Lion 

Zoo 0.595 0.857 0.928 0.090 0.031 0.014 

CC: connected component; MMD: manifold-manifold distance; LLSE: locally linear submanifold extraction 
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classifier can be designed on a novel distance measure 
based on double manifold learning. (2) We did not 
analyze the effectiveness of the extracted features; 
instead, we directly adopted some visual features for 
the classification based on previous research. There-
fore, when we classified two objects with similar 
appearance, such as ‘Tiger’ and ‘Lion’, much prior 
knowledge should be used in the classification proc-
ess. (3) The proposed hierarchical image manifold 
was constructed at different semantic levels, designed 
according to human cognition, and thus our method 
may have subjectivity to some extent. 

 
 

5  Conclusions 
 

In this paper, under the assumption that the im-
ages in an image set are usually related to the same or 
similar object but with various scenes, we propose a 
novel method based on manifold learning to learn a 
hierarchical image manifold for Web image classifi-
cation. To achieve good classification performance 
and effectively reduce the computational complexity, 
a coarse-to-fine processing strategy is applied to de-
velop the image manifold at the different levels of 
semantic granularity. That is, two kinds of manifold 
(object manifold and scene manifold) are constructed 
using extended locally linear embedding (ELLE) and 
locally linear submanifold extraction (LLSE), re-
spectively, considering the diversification of Web 
images. In our method, object-level classification and 
scene-level classification are viewed as two important 
parts in one framework, and each part can be further 
divided into several smaller ones. Therefore, our 
method is extensible and flexible enough for the 
classification of Web images. 

Our future work will focus on the following as-
pects: (1) Develop a hierarchical image manifold to 
tackle the problem of object-based image classifica-
tion due to the complexity of Web images. A more 
reasonable manifold learning based method should be 
presented for global-based image classification. (2) 
Propose a solution to disjoint multiple nonlinear 
manifolds, and thus a more sophisticated scheme 
should be applied to handle the intersected manifolds 
or the ones with imperfect structures. (3) Calculate 
the distance between two images on the image 
manifold based on a specific pairwise similarity 

measure. This process may be time consuming, and 
thus more precise calculation methods or parallel 
execution schemes should be exploited. (4) The 
proposed hierarchical image model is constructed 
considering only object semantics and scene seman-
tics in high-level image semantics. Some novel clas-
sification models based on more abstract semantic 
concepts, e.g., behavioral semantics and emotional 
semantics, should be developed. (5) In this study the 
experiments were conducted on small collections 
with limited semantic concepts; some larger collec-
tions and more semantic concepts should be used for 
further experiments. 
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