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Abstract:    Online learners are individuals, and their learning abilities, knowledge, and learning performance differ substantially 
and are ever changing. These individual characteristics pose considerable challenges to online learning courses. In this paper, we 
propose an online course generation and evolution approach based on genetic algorithms to provide personalized learning. The 
courses generated consider not only the difficulty level of a concept and the time spent by an individual learner on the concept, but 
also the changing learning performance of the individual learner during the learning process. We present a layered topological sort 
algorithm, which converges towards an optimal solution while considering multiple objectives. Our general approach makes use of 
the stochastic convergence of genetic algorithms. Experimental results show that the proposed algorithm is superior to the free 
browsing learning mode typically enabled by online learning environments because of the precise selection of learning content 
relevant to the individual learner, which results in good learning performance. 
 
Key words:  Genetic algorithm, Course generation, Course evolution, Personalized learning, Domain ontology 
doi:10.1631/jzus.C1200174                       Document code:  A                      CLC number:  TP391.7 
 
 

1  Introduction 
 

E-learning systems have become an indispensa-
ble component of education in the current society. In 
the last decades, research in e-learning has shown that 
the individual characteristics of online learners differ 
significantly with respect to prior knowledge, pref-
erences, skill, and learning goals (Weber and Specht, 
1997; Roland, 2000; Brusilovsky and Vassileva, 2003; 
Chen et al., 2005; Dabbagh, 2007). These differences 
require personalized course content, including different 
content and different sequences through the content. 

Personalized learning honors each student as an 
individual learner, recognizing that each student has 
his/her own learning style, interest, aspirations, and 

challenges to learning, and supports each student to 
learn in his/her own unique way. Considerable research 
has been carried out on investigating personalized 
services, such as how the delivery of online courses 
should be adapted to individual demands, such as the 
learner’s goals, experiences, and current knowledge 
level (Cristea and de Mooij, 2003; Hong et al., 2007; 
Huang et al., 2007; Bai and Chen, 2008; Chen, 2008; 
Bhaskar et al., 2010; Chu et al., 2011). Online courses 
are the main components of e-learning systems. Per-
sonalized courseware generation is the process of as-
sembling a sequence of learning objects that are 
adapted to an individual user’s learning goals, pref-
erences, and capabilities. Research on course genera-
tion started early in the history of technology en-
hanced learning. 

The existing work on courseware generation is 
abundant. The early research on the dynamic course- 
ware generator (DCG) by Vassileva and Deters (1998) 
set the foundations for most of today’s course 
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generation. Later approaches in course generation 
(Cristea and de Mooij, 2003; Karampiperis and 
Sampson, 2004; Méndez et al., 2004; Huang et al., 
2008) all used rather rudimentary pedagogical 
knowledge (Ullrich, 2008). The Paigos system uses 
hierarchical task network planning (HTN-Planning) 
and handles different learning goals (Ullrich and 
Melis, 2009). Recently, some new approaches have 
been applied to course composition to explore 
personalized learning, such as genetic algorithms 
(GAs) (Huang et al., 2007; Chen, 2008; Wang and 
Tsai, 2009; Chu et al., 2011), artificial neural networks 
(Baylari and Montazer, 2009), and particle swarm 
optimization (Dheeban et al., 2010). 

The GAs (Goldverg, 1989) have shown a good 
performance for solving a wide variety of problems. 
de-Marcos et al. (2007) modelled the learning se-
quence as a classical constraint satisfaction problem 
(CSP). Since then, research on the application of GAs 
to personalized learning has emerged. Jebari et al. 
(2011) used GAs to find suitable dynamic personalized 
course sequences of exercises within the solution 
space, respecting the constraints and maximizing 
student success. An automatic test generation system 
based on GAs (Meng et al., 2007) and a genetic ap-
proach enhanced auto-reply scheme in an e-learning 
system (Hwang et al., 2008) provide supplementary 
systems in personalized learning. Various approaches 
for determining an optimal learning path based on 
GAs have been explored in personalized learning 
systems. Hong et al. (2007) used improved CSP based 
on GAs to construct an adaptive learning path ac-
cording to the incorrect test responses of individual 
learners in a pre-test. Their approach provides bene-
fits in terms of learning performance. Huang et al. 
(2007) applied GAs to generate personalized learning 
paths based on case-based reasoning (CBR) for per-
sonalized knowledge. They considered the curricu-
lum difficulty level and the continuity of successive 
curriculums. Bhaskar et al. (2010) applied GAs to 
evolve learning path generation into a learning scheme 
generation which accommodates each learner’s entire 
context, including their profile, infrastructure, pref-
erence, and learning contexts. The problem with these 
approaches is that the learning path is used to navigate 
learners through a range of e-learning activities 
(Clement, 2000), but does not generate personalized  

learning objects adapted to each individual learner. 
Chen (2008) applied GAs to propose personalized 
curriculum sequencing based on pre-test and pre- 
learning performance. The pre-test for each individ-
ual learner is based on incorrect test responses. The 
personalized mechanisms are based on a pre-test 
performed at the start of the lesson, which can collect 
incorrect learning concepts of learners through com-
puterized adaptive testing (CAT) (Huang et al., 
2007).  

To summarize our literature review, although 
various studies have applied GAs to realize person-
alized learning with adaptive learning paths to im-
prove the learning performance of individual learners, 
some important problems remain. Some of the re-
search has explored personalization based on an in-
dividual learner’s pre-test. However, these systems 
neglected the importance of the individual learner’s 
changing performance in the learning process. Also, 
most research focused on exploring personalized 
learning paths for individual learners in the same 
learning system, but not the generation of different 
online courses including different learning objects.   

This work presents a GA-based personalized 
course generation and evolution scheme (PCE-GA) 
which constructs personalized courses considering 
both the course difficulty level and each learner’s 
changing performance in the learning process. It is an 
extension of existing research. The initial course of 
PCE-GA is generated according to the automatic 
course generation system (ACGS) (Tan et al., 2010). 
ACGS provides course generation in a large-scale, 
teacher driven context, in which all the students are 
supposed to be in the same (virtual) class and to take 
exams at the same time. There, the content of the 
exams is set by the teachers. The content of the course 
is generated from a teaching outline and a domain 
structure constructed by teachers. The approach pre-
sented in this paper takes this initial course and 
evolves it based on GAs to meet individual learner’s 
personalized needs in the learning process. The GAs 
are employed to construct a near optimal domain 
concept sequence and learning content according to 
the difficulty level of concepts and the time spent on 
them by each learner and, moreover, considering the 
learning performance of each learner in the learning 
process.  
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2  Course structure and system architecture 

2.1  Course structure 

In this course generation system, the domain 
concepts and the learning objects of a course are de-
scribed as a domain ontology. Fig. 1 shows part of the 
domain ontology of the course data structure. The 
square nodes represent concepts and the elliptical 
nodes represent the learning objects. There are three 
types of relation, namely “including (has)”, “prereq-
uisite (requires)”, and “for (is for)”. The relation “in-
cluding” represents the hierarchical relation of the 
concepts. The relation “prerequisite” represents the 
pre-/post-learning concepts among the courses. The 
relation “for” describes the relation between a learn-
ing object and a concept (namely that a learning ob-
ject is for a concept, for instance, an example related 
to a concept). The structure of the concepts with “in-
cluding” relations is a tree. The terminal nodes of this 
tree (for instance, “lists”, “stacks”, and “queues” in 
Fig. 1) are the core concepts, which are the smallest 
units of learning concepts (later, we will see that they 
also correspond to the smallest unit genes). The core 
concepts with “prerequisite” relations form a directed 
acyclic graph (DAG). The important part of the 
course generation is to construct the core concepts 
sequencing. The other concepts (non-terminal nodes 
in the tree) are added by the “including” relations to 
form the hierarchical index of the course. The learn-
ing objects are added by the “for” relations to gener-
ate the learning contents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  System architecture of the PCE-GA 

The system architecture of the PCE-GA (Fig. 2) 
comprises an initial course generation module, an 
evaluation module, a module for the GA-based per-
sonalized course generation, and a course evolution 
module. The initial course (C0) is generated using the 
course generation module ACGS. Note that the initial 
course (C0) is not yet adapted to the individual student, 
but only to the overall course. 

The evaluation module evaluates each student’s 
learning performance. Basically, for each student it 
assigns a score, ranging from 0 to 5 for each concept. 
The domain ontology with scored concepts is called 
the personalized domain ontology. This is the input to 
the PCE-GA. The personalized course generated from 
PCE-GA is called Ci (i=1, 2, …, with i specifying the 
number of updates to C0). During the learning process, 
the evaluation module evaluates the student’s learning 
performance every week or two (configurable by the 
teacher). Accordingly, the course Ci is updated to Ci+1 
after each evaluation. This means that PCE-GA gen-
erates a sequence of personalized courses (Ci, i=1, 
2, …) for each student in the learning cycle. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
3  Personalized course generation and evo-
lution algorithm 

3.1  Initial course generation 

The generation of the initial course content is a 
basic task that has to be done before the course evo-
lution can take place. In ACGS, the course generation  
 

Fig. 1  An example of a course structure: part of the 
domain ontology of the course data structure 
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is based on the domain concept graph, which is a 
DAG. In this system, we apply GAs to evolve the 
course during the learning process. Therefore, we 
have to consider the stochastic convergence of GAs. 
This means that an optimal solution should be con-
verged from the multi-objective optimization problem, 
which is the process of simultaneously optimizing 
two or more conflicting objectives subject to certain 
constraints. Additionally, the sequential relationship 
between concepts should be retained. To address 
these two factors, we improve the initial course gen-
eration method of ACGS by introducing a layered 
topological sort (LTS) algorithm on the basis of the 
topological sort algorithm. A topological sort of a 
DAG is a linearly ordered list of its vertexes. There is 
not necessarily a unique linearly ordered list since 
some of the vertexes are exchangeable in the topo-
logical sorted list. The exchangeable vertexes in a 
linearly ordered list of a DAG are said to be on the 
same layer. 

The definition of an LTS is as follows: 
Let R be a partially ordered relation on the vertex 

set M=(a1, a2, …, an), with ai being a vertex of the set 
M. For each vertex ai, there is a weight li to mark its 
precedence in topological order.  

Then, the vertex sequence A=((a1, l1), (a2, l2), …, 
(an, ln)) is topologically ordered relative to the relation 
R. We call each (ai, li) a binary combination. 

For 0≤i≤n−1, for each two adjacent binary 
combinations (ai, li) and (ai+1, li+1), if it holds that 
0≤li+1−li≤1, then the element in the sequence A is 
defined as in layer-topological-order relative to the 
relation set R. The weight li is defined as the layer in 
the DAG. Vertexes with the same weight are ex-
changeable in the vertex sequence A. 

3.2  Estimation of parameters 

Teachers define a general time spent on each 
concept when they construct the teaching outline. 
Since there are differences in comprehension for 
students, the time spent on a concept for each student 
is calculated as follows:  

Suppose tgi is general time spent on a concept i 
set by teachers. si is the score of this concept for a 
student, which is evaluated by the evaluation module 
in the learning process. Then ti, the time spent on a 
concept i by the student, is 

 

ti=tgi(5−int(si)),  0≤si≤5,                     (1) 
 

where int(si) is the integral function. For example, if 
si=4.6, int(si)=4, ti=tgi; if si=3.5, int(si)=3, ti=2tgi. Here 
a time coefficient te of concept i is defined as 
 

te=ti/tgi.                                (2) 
 

This section gives an example of the estimation 
of the concept difficulty of a course. To design a course 
of “data structure”, several experienced teachers were 
invited as experts to analyze the concepts and build up 
the teaching outline for this course. The experts wrote 
tests for each learning concept. Also, about 500 stu-
dents who majored in computer science in the School 
of Continuing Education of Shanghai Jiao Tong 
University (SOCE-SJTU) took a test containing 100 
test items covering the learning concepts of the course 
on data structures. Their test data were analyzed ac-
cording to the item response theory in CAT (Baker, 
1992) using the statistics-based BILOG program to 
obtain the appropriate difficulty parameters for these 
test items. Since the test item is related to the con-
cept, it is assumed that the difficulty of the test  
item represents the difficulty of the corresponding  
concept.  

3.3  Metadata of a gene 

The core concepts in the DAG of Fig. 1 are the 
smallest units of genes of the chromosome. Since all 
the core concepts will appear in the chromosome, the 
chromosome coding on concept arrangement recodes 
the position of each gene. 

To consider the learners’ personalized needs in 
the fitness function, the gene is represented as a tuple 
(id, te, d, wt, wd, r), with id being the concept identifier, 
te being the time coefficient defined as in Eq. (2), d 
being the difficulty level of the concept, wt being the 
time weight and wd being the difficulty weight, and r 
being the general rank. The meaning of these symbols 
is as follows: 

The time coefficient te and the difficulty attribute 
d are two important parameters used to calculate the 
adaptability of a chromosome. The domains of te and 
d are all [0, 5]. The time weight wt and the difficulty 
weight wd are two control parameters used by the 
developer to manually adjust the chromosome to  
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fine-tune the time-base or the difficulty scale, in order 
to determine an order suitable to the learners’ actual 
needs. For example, for students with good pre- 
knowledge and good understanding, we adjust wd to a 
higher value and wt to a lower value to enhance the 
course difficulty. Conversely, for students with weak 
comprehension and preferring to learn more, we ad-
just wt to a higher value and wd to a lower value to 
construct more learning objects in the course. The 
domains of wt and wd are all [0, 1]. The general rank r 
is the eigenvalue of the gene. In this setting, the value 
of r represents the comprehensive learning cost of a 
concept, and is calculated as 

 
r=tewt+dwd.                           (3) 

 
According to the domain of the parameters, the 

domain of r is [0, 10]. The value of r plays an im-
portant role when designing the fitness function. In 
the following introduction of the fitness function, we 
explain in detail how to use the parameters. 

3.4  Personalized course evolution 

This section explains how to evolve the course 
based on GAs to meet each learner’s needs. In general, 
GAs perform the optimization process in four stages: 
initialization, selection, crossover, and mutation 
(Davis, 1991). As for the optimization of learning 
contents, the process is solving the population of an 
abstract representation (named chromosome) of a 
certain quantity of concepts, evolving towards an 
organic combination of the optimal learning content 
sequence. The course evolution process is described 
in the flowchart (Fig. 3). 

3.4.1  Initial population size 

The population size affects the precision and 
performance of the GA directly. Generally, the initial 
population size can be determined according to the 
complexity of the solved problem. According to 
Huang et al. (2007), Bhaskar et al. (2010), and Jebari 
et al. (2011), a typical value of a population size is 
from 20 to 100. A large initial population size will 
slow down the search speed, but will improve the 
probability of optimization. Considering the scale of 
this course generated system, we take 50 as the de-
fault population size. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4.2  Selecting the fitness function  

The fitness function is applied to judge the 
quality of the generated learning concept sequence. 
To generate a personalized course, it is necessary to 
consider the difficulty level of a concept and the time 
spent on it for each student. In this paper, the value of 
general rank r of the gene represents these two im-
portant attributes. Therefore, r is considered to de-
termine the fitness function. The average square de-
viation (variance) of r is adopted for measurement. 
The method is as follows: given a chromosome 
composed of a set of genes, then each gene has its 
own eigenvalue ri, which is calculated as Eq. (3) 
specified in Section 3.3. The eigenvalue of the whole 
chromosome is R=(r1, r2, …, rn). Then, the calcula-
tion of the average square deviation is as follows: 

First, calculate the average value of all the genes’ 
eigenvalues in the whole chromosome: 
 

1

1
.

n

i
i

r r
n 

                              (4) 

 

Then, group the genes and put two neighboring 
genes in the same group, and calculate the average 
eigenvalue of each group. This is defined as the local 
gene eigenvalue: 
 

1 ,   2,3,..., .
2

i ir r
r i n                    (5) 

 

Fig. 3  Flowchart of GA-based course evolution 
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Finally, calculate the variance between local 
gene eigenvalues and the average value of the gene 
eigenvalues of the whole group of chromosomes: 
 

2

2

( ) ,
n

i
i

f r r


              (6) 

 

where f  is the proposed fitness function for person-
alized course generation by the GAs. The smaller the 
value of f, the more evenly are the genes distributed in 
a complete chromosome. 

3.4.3  Selection operation 

To evolve the learning content sequence in the 
learning process according to an individual’s learning 
performance, the individuals with a small fitness 
function value have a relatively high probability to be 
selected for the next generation. The tournament se-
lection is a useful and robust selection mechanism 
(Miller and Goldberg, 1995). After repeated experi-
ments, we choose the tournament selection rank- 
based fitness assignment to perform the reproduction 
operation in this study. 

3.4.4  Crossover operation 

The learning concept sequence rearrangement, 
which is the crossover operation, aims to combine 
two parent chromosomes to generate a child chro-
mosome with better performance. In this system, 
considering the requirement that all the genes of the 
chromosomes have to appear and there should be no 
repetition, we choose the mapped partially matched 
crossover (PMX) method (Sivanandam and Deepa, 
2007). In this method, two crossover points are se-
lected at random to give a matching segment. The 
matching segment gives the mapping relations among 
genes. According to the mapping relationship, parents 
are mapped to each other to generate two child indi-
viduals. This method retains a segment of the genes, 
which is beneficial for the transmission of excellent 
characteristics. Meanwhile, the mapping relations 
ensure uniqueness of every gene in the chromosome. 

This crossover operation was compared with the 
common single-point and two-point crossovers. In 
experiments, the generation was set to 1000 and the 
crossover probability was set to 0.5. With the same 
data set, the convergence properties of different 
crossovers were observed. The single-point crossover 
operator converged 382 times, the two-point crossover 

396 times, and the proposed PMX crossover 478 
times. The results show that the convergence property 
of the PMX crossover is more efficient than the 
common crossover operators.  

3.4.5  Procedure for personalized course generation 

In summary, the procedures of the proposed 
PCE-GA are as follows: 

Step 1: Two excellent chromosomes of the par-
ent population are run out through the tournament 
selection function described above.  

Step 2: To generate a random value and to judge 
according to the crossover probability whether the 
crossover operation will be conducted. Either the 
crossover function will be used or the child chromo-
some will inherit the genes of the parent chromo-
somes directly. 

Step 3: To judge according to the mutation 
probability whether to make a mutation operation or 
not. If a mutation operation is to be made, a mutation 
function will be used.  

After the generation of the complete child 
chromosomes, we sort them with the rank population 
function, retain the setting of population size, and 
empty the present population, and then the child 
population becomes the current population.  
 
 
4  Experiments 
 

We carried out experiments to repeatedly test 
and determine the mutation probability and the 
crossover probability. In the experiments, the popu-
lation size was set to 50. 

First, we set the crossover probability to 0.5, 
took different values for the mutation probability, and 
observed the impact on the average fitness of the 
population and the generation of an optimal-adaptive 
chromosome. The test results (Fig. 4) show that the 
mutation probability has little influence on the popu-
lation’s average fitness. In contrast, a high average 
fitness will change the trend in population evolution. 

Second, we set the mutation probability to 0.10, 
took different values for the crossover probability, 
and observed the impact on the average fitness and 
the generation of an optimal-adaptive chromosome. It 
is obvious that chromosomes with a larger crossover 
probability have a better performance during the 
search for an optimal solution (Fig. 5). 
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With respect to the crossover probability and the 

mutation probability, larger values are more favorable, 
as they help to avoid premature convergence of a 
population. However, the large size of a newly gen-
erated chromosome also means a great deal of com-
putation and the degradation of population evolution 
performance. Therefore, after the experiments, we 
decided to choose a crossover probability of 0.5 and a 
mutation probability of 0.15. 
 
 
5  Implementation and evaluations 

 
For assessing the usability of the PCE-GA, we 

used the system usability scale (SUS) (Brooke, 1996), 
which is a method frequently used by the human- 
computer interaction (HCI) community. It consists of 
10 items used to measure user satisfaction with the 
usability of a system. It is easy to administer and there 
is a standard way to calculate the satisfaction score. 
All 10 questionnaire items are scored (0–4) on  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a five-point scale ranging from “strongly agree” to 
“strongly disagree”. For our questionnaire, we used 
the original 10 items in the SUS adapted slightly 
according to our learning system context: (1) I 
thought that I would like to use this system to learn 
frequently; (2) I found the system unnecessarily 
complex; (3) I thought the system was easy to use;  
(4) I thought that I would need the support of a tech-
nical person to be able to use this system; (5) I found 
that the various functions in this system were well 
integrated; (6) I thought that there was too much in-
consistency in this system; (7) I would image that 
most learners would learn to use this system very 
quickly; (8) I found the system very cumbersome to 
use; (9) I felt very confident of using the system;  
(10) I need to learn a lot of things before I could get 
going with this system. 

The SUS score of the PCE-GA was calculated in 
two steps: first calculating the SUS score of each re-
spondent, and then averaging the scores of the total 290 
respondents (from the 295 students who participated in 
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the survey). We followed the standard method to 
calculate the SUS score of each respondent. This 
means first summing up the score contributions from 
each item, which ranged from 0 to 4. For Items 1, 3, 5, 
7, and 9, the score contribution is the scale position 
minus 1, while for Items 2, 4, 6, 8, and 10, the con-
tribution is 5 minus the scale position. We then mul-
tiplied the sum of the scores by 2.5 to obtain the 
overall value of SUS. Consequently, SUS scores 
ranged from 0 to 100. The higher the score, the more 
robust and reliable is the system. 

To evaluate the efficiency of the learning system 
with personalized course generation, we performed a 
descriptive analysis of participants’ and nonpartici-
pants’ grades. A sample of 530 students enrolled in 
the DS course in the 2011 fall semester.  They were 
selected and categorized into two groups: participants 
who took the DS course in the system with PCE-GA, 
and nonparticipants who took the DS course in the 
normal e-learning platform at SOCE-SJTU. After 
learning, all learners took part in the same test and 
were assigned grades. To determine which learning 
model was more effective, grades were compared 
between the two groups in the two different learning 
models. Because the grades of the two groups appear 
as skewed distributions, the Mann-Whitney U test (a 
common nonparametric test for independent samples) 
was used to compare the differences between the two 
independent groups. Table 1 shows the U-test results. 
The mean rank of participants was 312.56, while the 
mean rank of nonparticipants was 246.32. The results 
show that the participants’ grades were significantly 
higher than the nonparticipants’ grades (n=530, U= 
39 169.8, α=0.05, P<0.0001). This strongly indicates 
that the personalized learning courses from PCE-GA 
are efficient. 

 
 
 
 
 
 
 

 
6  Conclusions and future work 
 

The aim of this system is to provide a personal-
ized online learning course for individual learners in 

large scale online education. A PCE-GA method is 
proposed. In the PCE-GA presented, the domain con-
cepts and the learning objects of a course are described 
as a domain ontology. To consider the stochastic 
convergence of GAs, an LTS method is applied. The 
generated courses consider not only the concept dif-
ficulty level and the time spent on each concept, but 
also the learning performance of individual students 
during the learning process. The personalized course 
can be evolved in the learning process according to 
the updated personalized concept graph. 

Further work will be devoted to extending the 
personalized mechanism to handle more complex 
individual characteristics and behaviors of the learn-
ers. We will also research how to help learners learn 
more effectively in the personalized learning  
environment. 
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