
Haghighatnia et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(3):214-221 214

 

 

 

 

Enlarging the guaranteed region of attraction in nonlinear 

systems with bounded parametric uncertainty 
 

Sara HAGHIGHATNIA, Reihaneh Kardehi MOGHADDAM 
(Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran) 

E-mail: {Sara.haghighatnia, R_k_moghaddam}@mshdiau.ac.ir 
Received June 5, 2012;  Revision accepted Dec. 26, 2012;  Crosschecked Jan. 10, 2013 

 
Abstract:    A novel approach to enlarge the guaranteed region of attraction in nonlinear systems with bounded parametric un-
certainties based on the design of a nonlinear controller is proposed. The robust domain of attraction (RDA) is estimated using the 
parameter-dependent quadratic Lyapunov function and enlarged by the optimal controlling parameters. The problem of extending 
the RDA is indicated in a form of three-layer optimization problem. Some examples illustrate the efficiency of the proposed 
strategy in enlarging RDA.  
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1  Introduction 
 

Determining the domain of attraction (DA) of a 
stable equilibrium point is an important problem in 
nonlinear system theory. In general, DA cannot be 
exactly calculated. Different methods have been 
proposed to estimate DA. These methods can be 
classified into two general groups, Lyapunov-based 
and non-Lyapunov-based. The first group contains 
two main steps (Rapoport, 1999; Barreiro et al., 2002; 
Rapoport and Morozov, 2008; Zhai et al., 2009; 
Topcu et al., 2010; Matallana et al., 2011; Haghig-
hatnia and Moghaddam, 2012): (1) A suitable Lya-
punov function (LF) is suggested based on the struc-
ture of the system; (2) DA is estimated based on the 
suggested LF.  

Lyapunov-based methods usually have some 
limitations, such as the dependence of the size of the 
estimated DA on the chosen LF, and usage of usual 
optimization tools such as the linear matrix inequality 
(LMI) or moment matrices which are usually appli-
cable just for polynomial LFs (Li et al., 2009). In spite 

of these constraints, the simplicity of these methods 
leads to their wide applications in estimating the DA. 

Designing controllers to enlarge DA is another 
problem of interest. Bakhtiari and Yazdanpanah 
(2005) proposed an algorithm to design a nonlinear 
controller for polynomial systems, which maximizes 
the estimated DA using a predefined LF. The pro-
posed method finds an optimal quadratic LF that 
maximizes the volume of DA via LMI-based con-
vexification techniques. Chesi (2005) proposed a 
technique to compute static nonlinear output feedback 
controllers to enlarge the largest estimate of the DA 
defined by a given LF for polynomial systems. Spe-
cifically, the controller was supposed to be poly-
nomial in the measurable output with powers and 
coefficients range a priori selectable. A lower bound 
of the maximum achievable estimate of the DA and a 
corresponding controller were obtained through LMI 
optimization. By exploiting known relaxation based 
on sum of squares of polynomials, the lower bound is 
computed through a generalized eigenvalue problem, 
i.e., a quasi-convex LMI optimization whose solution 
is efficiently calculated.   

Real systems are often characterized by the 
presence of uncertain parameters, which cannot be 
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measured exactly or are subject to variations. This 
means that DA is uncertain as well, since in general, it 
depends on such parameters. In such cases, one needs 
to consider the robust domain of attraction (RDA).  

Calculating the actual RDA remains an unsolved 
problem; however, the following solutions are sug-
gested: (1) estimating RDA via a parameter-  
dependent LF (Trofino, 2000; Chesi, 2004a); (2) 
finding a common LF to prove the robust local sta-
bility (Chesi, 2004a); (3) RDA estimation through a 
generalized Zubove method. These solutions all have 
limitations. Parameter-dependent LF is applicable 
only for time invariant uncertainties. In addition, 
there is no general LF structure. In most literature, 
quadratic LF is used leading to a conservative esti-
mation of DA. Although RDA of systems with time 
varying uncertainty can be estimated through a 
common LF, finding such a common LF in general is 
impossible. In the third method, the viscosity solution 
of straightforward generalization of the classical 
Zubove equation is used to characterize the RDA of a 
nonlinear system with time varying perturbations 
(Camilli et al., 2002). To solve Zubove’s equation, 
the method of characteristic is used. This method 
requires the solution of the nonlinear system, and in 
fact the knowledge of DA, which is in general im-
possible (Kaslik et al., 2005). 

Some LMI methods based on sum of squares 
relaxations were proposed by Chesi (2009) for esti-
mating the robust largest estimate of DA and LFs with 
a polynomial dependence on the state and with po-
lynomial dependence on the uncertainty which is 
supposed to vary in a polytope. Camilli et al. (2001) 
provided a generalized Zubov method to uncertain 
systems. Paice and Wirth (1998) investigated the 
robustness of DA under time-varying perturbations 
and proposed an iterative algorithm that asymptoti-
cally gives the RDA. Trofino (2000), Chesi (2004b), 
and Tan (2006) considered parametric uncertainties. 
Chesi (2009) focused on computing the largest sub-
level set of a given LF that can be certified to be an 
invariant subset of DA. Parameter-dependent LFs that 
lead to potentially less conservative results at the 
expense of increased computational complexity were 
proposed by Trofino (2000) and Tan (2006).   

While the estimation of RDA has been largely 
addressed, enlarging the RDA has been less studied. 
Chesi (2011) designed a polynomial output controller 

that enlarges the DA of the equilibrium point of in-
terest for all admissible uncertainties. For this prob-
lem, a strategy based on LMI optimizations and the 
square matrix representation of polynomials was 
proposed.  

In this paper, a new approach to enlarge RDA in 
uncertain systems with bounded parametric uncer-
tainty based on the design of controller is proposed. 
This method indicates an appropriate structure of 
nonlinear controller and finds optimal controlling 
parameters, such that they enlarge the intersection of 
sphere regions which are obtained from dependent 
quadratic LFs on parameters. The problem of en-
larging the RDA is defined in the form of a novel 
three-layer optimization problem that focuses on 
extending RDA. The optimal controlling parameters 
are found from this optimization problem such that 
the eigenvalues of the Jacobian matrix of the dynamic 
system are forced to belong to the left half of the 
complex space and the RDA is enlarged. The DA is 
estimated as the controlling parameter and the un-
certain parameter related function. This optimization 
problem finds the best controlling parameters which 
can effectively extend the RDA. Firstly, the RDA is 
found for a specific value controlling parameter, and 
then the best value of the controlling parameter which 
leads to the maximum radius of the RDA sphere 
shaped region is calculated. 
 
 

2  Preliminaries 

2.1  Definitions 

Consider the following system: 
 

( ), 1, 2, ..., ,i ix h i n  X   Xeú
n,  X(t0)=X0.     (1) 

 
Definition 1 (Equilibrium point) (Khalil, 2002)    A 
point Xeú

n is called an equilibrium point of Eq. (1) 
if i hi(Xe)=0. The equilibrium points of Eq. (1) 
correspond to the intersection of the nullclines of the 
system, meaning the curves given by H(X)=0, where 
H=[h1, h2, …, hn]

T.  
In the sequel, without loss of generality, we as-

sume that the equilibrium point under study coincides 
with the origin of the state space of ún, Xe=0. 
Definition 2 (Stability) (Hahn, 1967)    Let X(t, Xe) 
denote the solution of Eq. (1), which at the initial time 
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t0 passes through the initial point Xeú
n. The origin is 

defined as stable if ε>0 there exists a δ>0, such that  
 

0 e, ( , )t t t ε  X X
 
is valid whenever e .X  

(2) 
 
Definition 3 (Asymptotic stability) (Hahn, 1967)     
The origin is defined as asymptotically stable if: it is 
stable; there exists an η>0 having the property; 

0lim ( , )
t

t


 0X X  whenever 0 .ηX   

Definition 4 (Positive and negative definite functions) 
(La Salle and Lefschetz, 1961; Hahn, 1967)    Let 
Dún. A function V(X): D→ú is positive definite 
(positive semidefinite) on D if V(0)=0 and V(X)>0 
(V(X)≥0) XD\{0}. V(X) is negative definite (nega-
tive semidefinite) if −V(X) is positive definite (posi-
tive semidefinite). 
Definition 5 (Lyapunov function) (Khalil, 2002)      
Let V(X) be a continuously differentiable real-valued 
function defined on a domain Dún containing the 
equilibrium Xe=0. The function V(X) is called an LF 
of equilibrium X=0 of Eq. (1) if the following condi-
tions hold: V(X) is positive definite on D; the time 
derivative of V(X) is along the trajectories of Eq. (1); 

T

( ) ( )
V

V
    

 X H X
X

 is negative definite on D. 

Definition 6 (Domain of attraction) (Khalil, 2002)     
The DA of the origin is given by  

 

0 0DA { | lim ( , ) }.n

t
t


   0X X X             (3) 

 
Definition 7 (Robust domain of attraction)    Consider 
an uncertain nonlinear system with an isolated equi-
librium state Xe, of the following form:  

 

1 2 0 0

( , ), ,

[ , , ..., ], , ( ) ,

n

m
mθ θ θ t

 

   

 


X H X Θ X

Θ Θ B X X
 
(4) 

 

where Θ is the uncertain parameter vector, B is a 
bounded set in úm, and m is the number of uncertain 
parameters.   
 

0 0RDA { | lim ( , , ) }.n

t
t


    0X X X Θ Θ B  

(5) 

In this paper, we just consider a class of nonli-
near systems with an independent equilibrium point 
of uncertainty.  

2.2  Theorems 

Theorem 1 (Estimation of the domain of attraction) 
(Khalil, 2002)    Let V(X) be an LF for the equilibrium 
X=0 of Eq. (1). 

Consider that 
d ( )

d

V

t

X
 is negative definite in the 

region  
 

( ) { ( ) , 0 }.S V c c  0 X X              (6) 

 
Hence, every trajectory initiated within region S(0) 
tends to X=0 as time tends to infinity. 
Theorem 2 (Jacobian’s eigenvalues and local 
asymptotic stability) (Hahn, 1967)    Let A 

=
( )





0X

H

X X
 be the Jacobian of Eq. (1) at the origin. 

Then the origin is asymptotically stable if all eigen-
values of A have negative real parts; the origin is 
unstable if one or more eigenvalues of A have positive 
real parts.  

Moreover, assume that Ωc is bounded and con-

tains the origin. If ( )V x  is negative definite in Ωc, 

then the origin is asymptotically stable and every 
solution in Ωc tends to the origin as t converges to 
infinity.  
Theorem 3 (Lyapunov identity) (Khalil, 2002)    If 
the equilibrium X=0 of Eq. (1) is asymptotically sta-
ble, then there exists an LF of the quadratic type, 
V(X)=XTPX, where P is a positive definite matrix that 
can be calculated from the so-called Lyapunov  
identity: 
 

T .  A P PA Q                          (7) 

 
A common choice is to set Q=I, where I is the iden-
tity matrix. 
Theorem 4    Consider the following representation 
of Eq. (1):  
 

H(X)=AX+H1(X), 
 
where H1(X) comprises the nonlinear part of function 
H(X). It can be shown that if the following condition 
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holds (Vidyasagar, 1993) 
 

1 min

max

( ) ( )
,

2 ( ) r

λ
B

λ
  

H X Q
X

X P
            (8) 

 
V(X) and its time derivatives are positive and negative 
definite respectively within the ball Br of radius r. It is 
clear that the larger the ratio of

 
 min max( )/ 2 ( ) ,λ λQ P  

the wider the possible choice of r. 
 
 
3  Main method 

 
Consider Eq. (1) with the controlling input u and 

the uncertain parameter vector Θ as follows: 
 

T
1 2 0 0

( , ) ( ) , ,

[ , , ..., ] , , ( ) ,

n

m
mθ θ θ t

  

   

 


X H X Θ G X u X

Θ Θ B X X
 

(9) 
 
where ( ) ( , ) ( , , ),g g G X u A Θ K X F X Θ K  ( , )H X Θ  

( ) ( , ),h h A Θ X F X Θ  Ag and Ah express the linear 

part of G and H, respectively, Fg and Fh denote their 
nonlinear components, and vector K=[KlKn] contains 
Kl and Kn, which are controlling parameters for the 
linear and nonlinear parts of the controller, respec-
tively. Therefore, Eq. (9) can be shown as follows:  
 

   
( , ) ( )

( , ) ( ) ( , , ) ( , , ) .g h g h



   

H x Θ G x u

A Θ K A Θ x F x Θ K F x Θ K

 
Hence, 
 

( , ) ( ) ( , ) ( , , ),  H X Θ G X u A Θ K X F X Θ K   (10) 

 
where F(X, Θ, K) indicates the nonlinear part of 
Eq. (9).   
Proposition 1    Consider the quadratic LF below 
which depends on the uncertain parameters as follows: 
 

T( , ) ( ) .V X Θ X P Θ X                   (11) 

 
It can be shown that if the following condition holds 
for a special vector Θ, then there is the ball Br of 
radius r which is the estimate of DA:   

 
min

max

( , ) ( )
.

2 ( ) r

λ
B

λ
  

F X Θ Q
X

X P Θ          (12) 

 
Proof    The proof is clear considering Theorem 4 
where H1 is replaced with F, P is replaced with P(Θ), 
and Θ is a determined vector. 
Proposition 2    The RDA of nonlinear Eq. (9) with 
the uncertain parameter vector Θ is as follows: 
 

RDA ( ).rB


 
Θ B

Θ                      (13) 

 
Proof    According to Proposition 1 for a special 
vector of Θ, Br(Θ) obtained from Eq. (12) is an es-
timate of DA, which means Br(Θ)DA ΘB. In 
addition, considering Definition 7, RDA= 

0 e{ ( ) | lim ( , , ) },
t

t


  0X X X Θ X Θ B  so one can 

imply that RDA=∩Br(Θ) ΘB which is the largest 
region with guaranteed stability for every ΘB.   
Proposition 3    The RDA can be enlarged by 
choosing the appropriate values of controlling  
parameters.   
Proof    Considering Eqs. (12) and (13), the larger 
estimate of Br(Θ) for each Θ vector leads to the larger 
estimated RDA. Thus, choosing the controlling pa-
rameters through the following steps leads to the 
extended RDA (ERDA).   

Considering RDA of Eq. (10), it is estimated 
with intersection of the spheres obtained using Lya-
punov quadratic functions. Lyapunov funtions are 
dependent on the controlling parameters vector and 
the uncertain parameters as follows:  

 
T( , , ) ( , ) ,V X Θ K X P Θ K X               (14) 

 
where P is positive definite, and as P is calculated 
from Eq. (15) and A in Eq. (15) is a function of Θ and 
K, solving Eq. (15) leads to a matrix P which is de-
pendent on K and Θ. Thus, in Eq. (14), we indicate P 
as a function of Θ and K.  

 
T ( , ) ( , ) ,  A Θ K P PA Θ K Q              (15) 

 
where Q is supposed to be an arbitrary positive defi-
nite matrix. The time derivative of the quadratic LF 
along the system’s trajectory is defined as  
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


T

T

( , , )

( , , ) ( , )

( , ) ( , , )

2 ( , ) ( , , ).

V










X Θ K

X A X Θ K P Θ K

P Θ K A X Θ K X

X P Θ K F X Θ K

            (16a) 

 

Since 
 

2T
min ( ) ,λ  x Qx Q X

                 
(16b) 

 

T

max

( , ) ( , , )

( , ) ( , , ) ,λ 

X P Θ K F X Θ K

P Θ K X F X Θ K
       (16c) 

 
we have 
 

 

2

min max

max min

( , , )

( ) 2 ( ) ( , , )

2 ( ) ( , , ) ( ) .

V

λ λ

λ λ

   

    

 X Θ K

Q X P X F X Θ K

X P Θ,K F X Θ K Q X

 

 

To obtain 0,V   it is sufficient to choose r>0 as  

 

 
min

max

( , , ) ( )
.

2 ( , ) r

λ
B

λ
  

F X Θ K Q
X

X P Θ K
 

 
It is clear that the RDA can be enlarged by choosing 
appropriate values of controlling parameters.  

According to Propositions 1–3, the following 
three-layer optimization algorithm can be employed 
to find the best values of controlling parameters 
which extend RDA. According to Eq. (6), the larger 
level set of V(X, Θ, K) leads to the better estimated 
DA. To find the maximum level set of LF which is 
fully contained in the region of negative definiteness 

of 
d

,
d

V

t
 a single point in the state space should be 

found. This point corresponds to a tangential contact 

of level sets V(X, Θ, K)=c and 
d

.
d

V

t
 In other words, 

the largest level set which satisfies the condition of 
Theorem 1 turns to be the smallest sphere contained 

in 
d

=0.
d

V

t
 If LF is considered as Eq. (11), finding the 

largest level set for estimating DA can be reformu-
lated as the third layer of Eq. (17). The desired solu-

tion of the third layer in Eq. (17) is also a single point 
in the state space, which corresponds to a contact of 
the ball Br of radius r and the surface.  

 

 
min

max

( , , ) ( )
0.

2 ( , )

λ

λ
 

F X Θ K Q

X P Θ K
 

 

In the second layer, the intersection of spheres ob-
tained from quadratic LFs dependent on uncertain 
parameters is considered as RDA. Finally, to calcu-
late ERDA in the outer layer, the optimal controlling 
parameters are found. Thus, the three-layer optimi-
zation problem is as follows:  
 

 

max
,

e

,

, ,

T
e

e

min

max

max ,

Re{ [ ( , , )]} 0,

min( ),

min ,

1st
0,

( , , ) ( , )2nd
3rd ( , ) ( , , ) ,

( , , ) ( )
0.

2 ( , )

θk

k

θ

θk

k
K R

k R

θ
R

θk

θ

R R

λ

R R

R R

R

λ

λ



 






 
         

   
 
     

Θ

X P

A X Θ K

X

A X Θ K P Θ K

P Θ K A X Θ K Q

F X Θ K Q

X P Θ K

 

(17) 
 

Note that the constraints of the third layer in Eq. (17) 
may have many local solutions. To avoid dummy 
solutions, they have to be solved to global optimality; 
therefore, in this contribution, a standard implemen-
tation of a genetic algorithm is employed.   

To clarify, the proposed algorithm for enlarging 
RDA is shown in Fig. 1. To decrease the complexity 
of Fig. 1, we consider Θ=θ and K=k, but it is obvious 
that without loss of generality, it can be extended for 
arbitrary Θ and K vectors.  

According to Proposition 3, we propose a non-
linear controller with the following structure: 
 

n l( , ) , u K G X Θ K X                  (18) 
 

where KnG defines the nonlinear part of the controller, 
KlX is the linear part, Kn and Kl are the controlling 
parameter vectors, and every element of K is bounded 
in [−1, 1]. The nonlinear structure of G is similar to F. 
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In the first layer of the optimization problem (17), 
we find the set of all admissible controlling parame-
ters which lead to a Hurwitz matrix A and the optimal 
controlling parameters which lead to the ERDA. 
 
 
4  Examples 
 

In this section, we apply the proposed method on 
two uncertain nonlinear systems. The solution results 
show that the three-layer optimization algorithm im-
plies an effective enlargement of RDA by calculating 
optimal values of controlling parameters. 

4.1  Example 1 

Consider the following nonlinear system: 
 

2
1 2 2 1 1 2, (1 ) ,x x x x θ x x u       

 
where θ is the controlling parameter and θ[1, 3]. The 
analyzed equilibrium is (0, 0). The proposed structure 
of the desired controller is as follows:  
 

2
n 1 2 l 1(1 ) ,u k θ x x k x    

where the proposed controller has the similar struc-
ture to that of the nonlinear system.  

Using the optimization algorithm in Eq. (16), the 
optimal value of controlling parameters is obtained as 
K=[0.8, 0.2], and the related Rmax, which is the radius 
of the ERDA, is 0.9689. As shown in Fig. 2, choosing 
such controlling parameters leads to a significant 
increase in the radius of the ERDA. In the absence of 
controllers, the radius of the estimated RDA for the 
nonlinear system is 0.4671. The controlling parame-
ters are quantized with the step size equal to 0.1 and 
the uncertain parameters are quantized with the step 
size equal to 0.01.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

4.2  Example 2 

In this example, we consider a torque controlled 
unstable pendulum with viscous friction (Cruck et al., 
2001), and try to stabilize such a system using an 
appropriate controlling parameter. The structure of 
the uncertain system is as follows: 
 

1 2 2 1 2, sin ,x x x x x u θ       

 
where θ is the controlling parameter and θ[−0.05, 
0.05]. The analyzed equilibrium is (0, 0). According 
to Proposition 2, the desired controller that has a 
structure similar to the structure of the nonlinear 
system is as follows: 
 

1 l 1( sin ) .gu k x θ k x     

Fig. 1  The proposed algorithm for enlarging robust 
domain of attraction (RDA) for Θ=θ and K=k 

Enter k and θ bounds

Rel{λ(xe, θ, k)}<0

Quantize k and θ (Δk and Δθ)
k=kmin, θ=θmin

k=k+Δk

θ=θ+Δθ

Find Rθk, and store in Rθk an array

Is θ=θmax?

Find Rk from Rθk array, and 
store Rk in an array

k=kmax?

Find Rmax which is stored in Rθk array

End

No

Yes

No

No

Yes

Yes

Fig. 2  RDA, enlarged RDA, and DAs of the van der Pol 
oscillator for different values of uncertain parameters 
without the controller 
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In this example, in the absence of controllers and 
the presence of uncertainty, the system is unstable. 
Using the proposed controller stabilizes the system 
because the controlling parameters are designed such 
that the constrain in the first layer is satisfied. This 
inequality represents the asymptotic stability con-
straint of the equilibrium point Xe by imposing that 
the real part of the eigenvalues of the Jacobian matrix 
A be strictly negative. 

In Fig. 3, the approximated DA in the absence of 
uncertainty is illustrated by solid curves. The system 
considered in Example 2 becomes unstable when 
there are uncertainties (Cruck et al., 2001). In this 
paper, we apply the three-layer algorithm to stabilize 
the nonlinear uncertain systems.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the optimization algorithm in Eq. (17), the 
optimal value of the controlling vector is obtained as 
K=[1, −0.5], and the related Rmax, which is the radius 
of extended RDA, is 0.0434. In absence of controllers, 
the system is unstable. The controlling parameters are 
quantized with the step size equal to 0.1 and the un-
certain parameters are quantized with the step size 
equal to 0.01.   
 
 
5  Conclusions 
 

To enlarge RDA in uncertain systems, a new 
approach based on the design of a nonlinear controller 
is proposed in this paper. A three-layer optimization 
problem finds the optimal controlling parameters of 

this nonlinear controller to extend RDA. In the third 
layer of the optimization problem, the largest esti-
mated DA is found. In the second layer, intersection 
of DAs that are dependent on uncertain parameters is 
obtained. Finally, in the first layer, the optimal con-
trolling parameters leading to the largest RDA are 
found. The structure of the proposed nonlinear con-
troller is similar to the structure of the dynamic sys-
tem. The efficiency of the proposed methods is shown 
via simulations. 
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