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Abstract:    For a long time, trouble detection and maintenance of freight cars have been completed manually by inspectors. To 
realize the transition from manual to computer-based detection and maintenance, we focus on dust collector localization under 
complex conditions in the trouble of moving freight car detection system. Using mid-level features which are also named flexible 
edge arrangement (FEA) features, we first build the edge-based 2D model of the dust collectors, and then match target objects by 
a weighted Hausdorff distance method. The difference is that the constructed weighting function is generated by the FEA features 
other than specified subjectively, which can truly reflect the most basic property regions of the 3D object. Experimental results 
indicate that the proposed algorithm has better robustness to variable lighting, different viewing angle, and complex texture, and it 
shows a stronger adaptive performance. The localization correct rate of the target object is over 90%, which completely meets the 
need of practical applications.  
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1  Introduction 

1.1  Overview and motivation 

For a long time, trouble detection and mainten-
ance of freight cars have been accomplished manually 
by inspectors. The quality of detection and mainten-
ance was seriously limited by many factors, such as 
the weather and the subjective factors of inspectors. 
Gradually, the traditional detection method has be-
come unsuitable for security checking of high-speed, 
heavy and large density run of trains. The trouble of 
moving freight car detection system (TFDS) (Liu and 
Wang, 2005) greatly enhances the efficiency and 
reliability of trouble detection. In the development of 
the TFDS system, automatic trouble recognition plays 
an important role, which promotes the transition of 

work from manual operation to computerized auto-
matic recognition, and shows a great significance in 
railway safety.  

Visual detection in TFDS is as illustrated in 
Fig. 1, where C0 to C10 are magnet triggered sensor 
groups. Dynamic images are captured by high-speed 
cameras, and then transmitted to control rooms by 
special optical fiber networks and analyzed. The 
trouble detection is achieved by combining human 
recognition with computerized automatic recognition. 
Fig. 2 shows the front-end image capturing equipment 
that takes pictures of key parts of freight cars. In this 
context, the localization of the 3D object called ‘dust 
collectors’ is investigated as shown in Fig. 3, and the 
requirements are as follows:  

1. A dust collector is a rigid 3D object, and dif-
ferent views of the 3D object are shown in dynamic 
images owing to the high-speed motion of freight cars. 
The approach should not rely on a specific view of the 
object, and can detect instances of dust collectors 
from multiple views. 
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2. Texture changes on the dust collector surface 

due to wear and tear, surface scratches, and paint loss 
require non-appearance features to reliably detect the 
instances. 

3. Because image capturing equipment is in-
stalled outdoors, the proposed algorithm should 
adequately take into account dust collector recogni-
tion under various illuminations, so as to localize the 
instances of dust collectors accurately. 

1.2  Related works 

With the development of visual detection tech-
nology, many visual trouble detection systems have 
emerged. A visual trouble detection system developed 
by Marino et al. (2007) is used to automatically detect  

 
 
 
 
 
 
 
 
 
 

the absence of the fastening bolts that secure the rails 
to the sleepers. The images of the rail are first ob-
tained by a line scan camera, and then the real-time 
wavelet transform is applied for the extraction of 
features. The converted data are input into a multi- 
layer perceptron neural network to achieve classifi-
cation and identification. Zhang et al. (2011) used a 
structure light system and proposed a method based 
on dynamic structure light images to inspect missing 
fastening components in high-speed railway. Artifi-
cial neural networks are also used to recognize the 
absence of the fastening components. Yella et al. 
(2009) acquired sleeper images through a visual sys-
tem and used the support vector machine (SVM) 
classifier to classify the sleeper images. They 
achieved a classification accuracy of 90%. de Ruvo et 
al. (2009) presented a graphics processing unit (GPU) 
based vision system to recognize rail fastening ele-
ments performing approximately 287% faster than a 
quad core CPU implementation. Hart et al. (2008) 
proposed a multi-spectral visual trouble detection 
system, which could detect the disc brake condition 
and the bearing performance. So far as we know, there 
has been no literature on dust collector localization.  

In consideration of the object recognition tech-
nology requirements for dust collector localization, 
we divide object recognition into two categories: rigid 
and non-rigid. Rigid target recognition finds only the 
best pose parameters (Li and Hartley, 2007; Hartley 
and Kahl, 2009; Olsson et al., 2009), which is rela-
tively mature now. In recent years, non-rigid target 
recognition has been an important research field of 
computer vision. According to model formulations, it 
can also be divided into two categories: statistical and 
non-statistical model-based object recognition. An 
elastic template proposed by Grenander (1970) is a 
typical statistical model based method, and the tem-
plate is generated by a characteristic generator and a 

Fig. 3  Localizations of dust collectors 

Fig. 2  Dynamic image capturing 

Fig. 1  Sketch of the 
trouble of moving 
freight car detection 
system (TFDS) 
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series of specific constraints, which adequately de-
scribe the variability of object instances. The method 
obtains a statistical model of an object through de-
formable templates. The statistical model of the im-
age data and the prior are combined to define a post-
erior distribution on deformations given the image 
data. In subsequent work (Suk and Lee, 2013), a lot of 
theories were presented and applied to non-rigid ob-
ject recognition in biological and medical fields. 
However, in practical applications, an elastic template 
needs to be initialized; i.e., some basic pose parame-
ters must be set. In addition, the construction of a 
deformable template depends on a large number of 
elastic constraints among the characteristics (Amit et 
al., 1991; Amit, 1994; Zhu and Yuille, 1996; 
Chesnaud et al., 1999). Object recognition is achieved 
by maximizing the posterior distribution function. 
However, the deformation space is a multi- 
dimensional space, and there is still a very high 
computational cost even when pose parameters are 
known. The Bayesian model and Bernoulli model are 
often used in elastic template frameworks (Amit, 
2002). Meanwhile, non-statistical models have been 
suggested by some researchers, such as an active 
contour model proposed by Kass et al. (1988), which 
is associated with the energy function defined prop-
erly, and minimized to the extraction of significant 
features. Bajcsy and Kovacic (1989) considered ob-
ject deformation as image sequence analysis. Metaxas 
et al. (1997) first extracted feature points in the image, 
and then fitted the feature points to match curves or 
surfaces. This method shows the best performance 
only if the fitted curves or surfaces are smooth 
(Szeliski and Lavallée, 1996); however, curve or 
surface fitting is very difficult for complex shapes. 
The advantages of the method are that curve matching 
is easier than point matching. Chui and Rangarajan 
(2000) presented a non-rigid point matching algo-
rithm based on a thin-plate spline function, which 
minimizes the bending energy of the thin-plate spline 
function to obtain a joint solution of matching matrix 
and mapping parameters under one-to-one corres-
ponding constraints between point sets. These models 
use constraints instead of statistical models and their 
prior distributions, and the object deformation is 
evaluated by the cost function. The advantages of 
these non-rigid models are their strong adaptability, 
which has recently been introduced into 3D object 

recognition. It is suggested that 3D object recognition 
under different viewing angles should be treated as 
2D non-rigid object recognition (Riesenhuber and 
Poggio, 2000) and a 2D model should be built. The 
2D model should have some flexibility, which em-
bodies a range of view angles instead of the estab-
lishment of a 3D model library. The current work is 
partially inspired by Riesenhuber and Poggio (2000).  

In this paper, the problem of dust collector loca-
lization under complex conditions is researched. Due 
to the high-speed motion of a freight car and the fixed 
location of the image capturing equipment, the in-
stances of dust collectors in the captured images sig-
nificantly change in the viewing angle. In addition, to 
different types of freight cars, as well as to different 
parts of the same freight car, the locations and poses 
of dust collectors are also different (Fig. 3). We view 
the different poses and perspectives of the 3D target 
objects as a flexibility of 2D non-rigid objects. Fur-
thermore, dust collectors are slightly different in size 
and shape, which is viewed as another flexibility of 
2D non-rigid objects. Based on the above two kinds of 
flexibilities, flexible edge arrangement (FEA) fea-
tures are used to build an edge-based 2D model of a 
dust collector. We propose a novel weighted Haus-
dorff distance for dust collector localization under 
complex conditions. The Hausdorff distance is an 
effective similarity measure for binary image com-
parison, and introduction of a weighting function 
improves the robustness of Hausdorff distance 
matching. Our algorithm solves the problem of dust 
collector localization under variable lighting, changes 
in the viewing angle, and variable textures. Our con-
tribution is that the weighting function is built using 
FEA features. According to the frequency of each 
feature, the generated weighting function highlights 
the key features, which greatly improves the accuracy 
of Hausdorff distance matching and establishes a 
foundation for the following trouble detection.   

 
 

2  Proposed algorithm 
 

Using FEA features, we first build an edge-based 
2D model and a corresponding weighting function, 
and localize dust collectors by the new weighted 
Hausdorff distance. Different from low-level features, 
FEA features are mid-level features, which are  
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constructed not through hand-coding but through 
training. They capture all the important information 
that is useful for recognizing target objects. 

2.1  Edge-based 2D model 

In this section, the first stage of our approach 
will be described. We take the view-based approach in 
which different views of dust collectors are to be 
considered as different 2D objects that are linked 
together symbolically. The problem then is simplified 
for the recognition of a non-rigid 2D object. Given 
images of the 3D objects under different views, we 
wish to generate an edge-based 2D model. 

2.1.1  FEA features 

Each FEA feature (Amit, 2002) is defined in 
terms of a ‘central edge’ of some type e0, and a number 
nr of other edge types e1, e2, …, er, which are corres-
pondingly constrained in specific subregions R1, 
R2, …, Rnr, in the neighborhood of the location of the 
center edge. We refer to the number nr of additional 
edges as complexity of FEA features, and an FEA 
feature with nr=4 is shown in Fig. 4, which includes a 
central edge e0, and edges e1, e2, e3, and e4 in four 
subregions R1, R2, R3, and R4, respectively.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 

2.1.2  2D model construction 

FEA features are detected at a location if an in-
stance of e0 is found at that location and instances of 
nr additional edges are found in the corresponding 
region. The family of possible subregions is denoted 
by Φ. The sizes of the subregions are all approxi- 
mately the same, and their shape is wedge-shaped in 
the neighborhood of the center (Fig. 5). When the 
complexity of FEA features is higher (i.e., nr>1), the 

number of possible arrangements is very large. A 
greedy search is implemented instead to seek step- 
wise increments in the complexity of features with a 
high frequency on the object class. Edges are first 
detected on each training image and their locations 
are registered to the reference grid using the affine 
map Ap. In each disjoint c×c box of the reference grid, 
the nr=2 FEA features with the highest count are first 
found. All instances of the FEA features in the box are 
recorded for each image. Then, a loop over all possi-
ble additions of one edge pair selects the one with the 
highest count in the box, until the desired complexity 
nr edge pairs are found. More explicitly, we provide a 
summary of the training procedure as follows: 

 
Input:  
Complexity nr. 
Feature occurrence probability ρ. 
Family of wedge-shaped subregions Φ.  
Training set Ω. 
Output:  
FEA feature map. 
Initialization:  
Set feature counter i=0. 
Algorithm: 
1. Detect edges in all training images Ω. 
2. Register edge maps into a reference grid. 
3. Loop over disjoint c×c (c=3 or 5) boxes on the reference 

grid.  
4. For each such box C: 
(a) For each possible combination (e, e, R), where e, e are 

some type edges and RΦ, count the number of training 
images for which e, the central edge, is at some xC and 
ex+R.  
(e0, e1, R1)—combination with the highest count. 
Ω1—training images with an instance of (e0, e1, R1) in C. 
For dΩ1, xd, tC, t=1, 2, …, nd, t, locations of e0 for which 

combination was found. Set j=2. 
(b) For each possible combination (e, R), count the number of 

data images dΩj−1 for which there is an edge exd, t+R, for 
some t=1, 2, …, nd, j−1.  
(ej, Rj)—combination with the highest count. 
ΩjΩj−1—training images that have an instance of the 

combination (ej, Rj).  
For dΩj, xd, t, t=1, 2, …, nd, j instances of e0 for which (ej, Rj) 

was found.  
(c) j←j+1. If j<nr goto (b).  
5. If |Ωnr

|/|Ω|>ρ, record the feature  

Xi=(e0, e1, R1, …, enr
, Rnr

) at zi—center of C.  

All images in Ωnr
 have an instance of e0 at some xC and an 

instance of ek in x+Rk, for each k=1, 2, …, nr. 
6. Move to the next box i←i+1, goto 3.  

e2 R2

e1

R1

e4 R4

e3

R3

e0

Fig. 4  A flexible edge arrangement (FEA) feature with 
nr=4 
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Fig. 6b shows the final generated FEA feature 
map of a dust collector shown in Fig. 6a. Some 
training examples are shown in Fig. 7. We use 62 
sample images for training. To balance computational 
complexity and recognition performance, we adopt 
the FEA features with the complexity nr=3 (Fig. 6c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

2.2  Weighted Hausdorff distance matching 

3D object recognition under very different 
lighting conditions is a very challenging problem, and 
requires a robust image matching algorithm. The 
Hausdorff distance and its variants have been recog-
nized to provide an effective way for image matching 
mainly because feature correspondence is not required.  

2.2.1  Conventional Hausdorff distance 

For two finite point sets A={a1, a2, …, ap} and 
B={b1, b2, ..., bq}, the conventional Hausdorff dis-
tance (Shi et al., 2009) is defined as 

 

 ( , ) max ( , ), ( , ) , (1)H A B h A B h B A  

 
where ( , ) max min , and is the

BA
h A B


  

ba
a b a b

Euclidean distance between a and b. The function 
h(A, B) is called the forward Hausdorff distance from 
A to B. It represents the point aA that is farthest from 
any point of B and measures the distance from a to its 

nearest neighbor in B (using the given norm  ); that 

is, h(A, B) in effect ranks each point of A based on its 
distance to the nearest point of B, and then uses the 
largest ranked point as the distance (the most mis-
matched point of A). The reversed Hausdorff distance 
h(B, A) can be represented similarly. The Hausdorff 
distance H(A, B) is the maximum between h(A, B) 
and h(B, A).   

2.2.2  Weighted Hausdorff distance 

The robustness of the conventional Hausdorff 
distance measure is very poor. Many improvements 
have been proposed to obtain a more reliable and 
more robust distance measure. Dubuisson and Jain 
(1994) proposed a modified Hausdorff distance 
(MHD) measure as the object matching metric. Je-
sorsky et al. (2001) used MHD to localize face posi-
tion. The directed MHD is defined as 

 
1

( , ) min , (2)
B

A

h A B
N 



 
b

aa

a b  

 
where Na is the number of points in A. Lin et al. (2003) 
proposed the spatially weighted Hausdorff distance 
(SWHD) and spatially eigen-weighted Hausdorff 
distance (SEWHD) to reflect the importance of  

Fig. 5  Wedge-shaped subregions 

Fig. 6  Edge-based 2D model and weighting function 
(a) Rototype image; (b) FEA feature map; (c) FEA feature 
structure; (d) Weighting function; (e) Sparse template 

Fig. 7  Training examples 
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different regions in the human face. Both the same 
form of the two Hausdorff distances and the directed 
Hausdorff distance are expressed as 

 
1

( , ) ( )min , (3)
B

A

h A B w
N 



 
b

aa

b a b  

 
where w(b) is the weighting function. For SWHD, the 
weighting function is manually specified according to 
the space information of faces, and SEWHD gene-
rates the weighting function by the first eigenface of 
the training set. Tan and Zhang (2006) proposed to 
weight on the common area of faces. The weighting 
function embodies the common features of objects, 
which is introduced to Hausdorff distance metrics, 
and can significantly improve matching accuracy and 
robustness. However, a critical issue is how to build 
the weighting function. Face images have an intuitive 
view that the eyes, mouth, and face contour are the 
most common properties, and in these areas the pixels 
should have greater weights. For general 3D objects 
with little or no texture, it is more difficult to rea-
sonably and non-subjectively reflect the most crucial 
features of the 3D objects under different views and 
illumination variations. Generating the weighting 
function through FEA features is a good solution to 
this problem.   

2.2.3  Generating weighting function  

We generate a weighting function through FEA 
features, and the weight is obtained by the relative 
frequency of each feature in the training. That is, 

 

1
( , ) ( , ), (4)i

i N

w x y F x y
N 

   

 

where Fi(x, y) is the FEA feature of the ith training 
image in the position (x, y), and N is the total number 
of images in the training set. The weighting function 
generated of a dust collector is shown in Fig. 6d. The 
new weighted Hausdorff distance is called the flexible 
weighted Hausdorff distance (FWHD). 

2.2.4  FEA feature model matching 

Let the 2D point sets A and B denote the tested 
edge image and the 2D FEA feature model of the 3D 
object, respectively. The goal of matching is to find 
the transformation parameter p, such that the Haus-

dorff distance between the transformed model Tp(B) 
and A is minimized, which is expressed as 

 

 min , ( ) . (5)pp
d H A T B




P
 

 
Allowed transformations (scale, rotation, and trans-
lation), namely the parameter space P, depend on the 
specific practical application. Since the space P of 
affine transformations from the model shape is large, 
an efficient matching scheme was introduced by 
Rucklidge (1997), which examines only a small part 
of the space of the affine transformations. In practice, 
we adopt the method suggested by Rucklidge (1997). 
The transformation space P is discretized to ap-
proximate the search for the exact minimizing trans-
formation. The flowchart of the algorithm of dust 
collector localization is shown in Fig. 8. Note that a 
sliding window based method is used to locate a dust 
collector. Each image is densely scanned from the top 
left to the bottom right with rectangular sliding win-
dows. We search all windows of the image with di-
mensions u×v, which may represent the template B in 
the m×n dimension image to find which window has 
the minimum distance to the template. In experiments, 
the size of the image is 260×194 and that of the tem-
plate is 30×42.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3  Experimental results and analysis 
 

To test the effectiveness of the algorithm, we 
apply the proposed method to localize dust collectors 
with various viewing angles in real images. Consi-
dering that the FEA features are mid-level features, 

Fig. 8  Flowchart of the proposed algorithm 

Construct 2D model

Generate weighting function

Weighted Hausdorff distance matching

Extract FEA features

Input training images

Locate 3D object

Input tested images
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the structure of the model can be relatively simple, 
without using all the FEA features. In this study, we 
randomly select the FEA features to generate a sparse 
model template, which reduces the computational 
cost. For dust collectors, the algorithm extracts a total 
of 78 FEA features, and randomly selects 40 FEA 
features to build sparse models (Fig. 6e). The FEA 
features reflect the most essential common features of 
the 3D object, which makes it possible to overcome 
the disadvantageous effects of viewing angle changes 
by combining the FEA features with the weighting 
function, and exactly match the target object. Fig. 9 
shows the localization results of the experiments 
under different views. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 shows the test results under texture 
changes. The algorithm can still accurately localize 
the dust collectors, which is immune to a variety of 
bright spot distribution. The reason is that FEA fea-
tures are mid-level features with complex structures. 
Mid-level features have a relatively good discrimina-
tion performance, and a weighting function generated 
by the mid-level features strengthens its anti-noise 
performance. The results show that our algorithm can 
accomplish dust collector localization in complex 
conditions. 

In addition, FEA features are contour features, 
which are robust to direction changes of illumination. 
Moreover, the weighting function can effectively 
suppress fake contours generated by illumination 
variations, and enhance the real contour, which en-
sures reliable localization. Fig. 11 shows the locali-
zation results of our algorithm under different illu-
mination directions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

× 
 
 
 
 
 
 
 

 
To further test the performance of the proposed 

algorithm, we obtain image samples in three different 
sites to create three image databases. Since the pur-
pose of our algorithm is to localize the dust collectors 
exactly, what we primarily care about is the correct-
ness of dust collector localization in this experiment. 
We randomly select more than 200 real image sam-
ples from each database, which is referred to as da-
taset D1, D2, or D3, and test the localization perfor-
mance of our algorithm. We carry out the experiment 
under the PC condition of Intel Pentium 4 CPU 
3.00 GHz, memory 1 GB, Win7 OS, and the  

Fig. 10  Localization results under texture changes 

Fig. 9  Localization results under different views 

Fig. 11  Localization results under different illumina-
tion directions 
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MATLAB 2009b programming environment. Its time 
consumption is 384 ms for a 260×194 image. The 
localization results are summarized in Table 1. Note 
that the proposed algorithm has good localization 
performance, which completely meets the need of 
practical applications.The fault localization images 
are shown in Fig. 12. They are mainly due to too large 
inclination angles and extreme overexposure. With 
respect to a few images under uneven lighting, errors 
are sometimes generated by the algorithm.   

The matching accuracy of our algorithm is also 
tested. We select 27 real image samples that can be 
correctly localized by two measures, including 
FWHD and MHD, and calculate the distances be-
tween our 2D model and testing images. The norma-
lized matching distance errors are shown in Fig. 13. 
From the experimental results, the proposed FWHD 
can localize the dust collectors in the image more 
accurately than others.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Conclusions 
 

The inspection of key parts of freight cars is very 
important for railway safety. In this paper, we focus 
on the localization of dust collectors under complex 
conditions. We first construct a 2D FEA feature model 
of dust collectors, and apply the weighted Hausdorff 
distance measure to match the 3D target objects, 
which achieves accurate localizations of the dust 
collectors. In the matching process, the weighting 
function is introduced to improve the robustness and 
localization accuracy of the algorithm. Experimental 
results have proved the effectiveness of our algorithm. 
Our contributions are: 

1. Introduce 2D recognition ideas for a 3D object 
and use FEA features to generate a 2D model, only by 
applying a template to the localization of the dust 
collectors.  

2. Propose the idea of using FEA features to 
build the weighting function, and effectively express 
the common properties of the general 3D object with 
different views.  

3. Combine the FEA features with a weighting 
function to successfully resolve the problems of dif-
ferent illumination and texture changes, which ex-
pands the application.  

In short, the proposed algorithm based on a sin-
gle template has low computational complexity and 
immunity to noise. It has strong adaptability to poor 
quality images.  
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