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Abstract: We describe the design of a multiple maneuvering targets tracking algorithm under the framework of
Gaussian mixture probability hypothesis density (PHD) filter. First, a variation of the generalized pseudo-Bayesian
estimator of first order (VGPB1) is designed to adapt to the Gaussian mixture PHD filter for jump Markov system
models (JMS-PHD). The probability of each kinematic model, which is used in the JMS-PHD filter, is updated
with VGPB1. The weighted sum of state, associated covariance, and weights for Gaussian components are then
calculated. Pruning and merging techniques are also adopted in this algorithm to increase efficiency. Performance of
the proposed algorithm is compared with that of the JMS-PHD filter. Monte-Carlo simulation results demonstrate
that the optimal subpattern assignment (OSPA) distances of the proposed algorithm are lower than those of the
JMS-PHD filter for maneuvering targets tracking.
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1 Introduction

Multi-target tracking is important and difficult
in radar, sonar, and navigation systems. Not only
does the number of targets need to be estimated
from cluttered measurements, but also the states and
trajectories of targets need to be provided with the
tracking algorithm. Furthermore, the time-varying
number of targets and the uncertainty of target ma-
neuvers increase the complexity in practical applica-
tions. Therefore, more theoretical and experimental
studies are ongoing to deal with this task.
* Project supported by the National Natural Science Foundation
of China (Nos. 61175008, 60935001, and 61104210), the Aviation
Foundation (No. 20112057005), and the National Basic Research
Program (973) of China (No. 2009CB824900)
# A preliminary version was presented at the 7th IEEE Con-
ference on Industrial Electronics and Applications, July 18–20,
2012, Singapore
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Recently, a probability hypothesis density
(PHD) filter has been presented by Mahler (2003;
2007) based on finite set statistics (FISST), and is
an active method (Zhang et al., 2009; Wu et al.,
2010; Pollard et al., 2011; Vo et al., 2012) for multi-
target tracking. Gaussian mixture PHD filter is a
closed-form solution for implementation of PHD re-
cursion, which uses weighted Gaussian components
to propagate an intensity of target using PHD recur-
sion (Vo and Ma, 2006). The mean and covariance of
each Gaussian component can be propagated analyt-
ically using the extended Kalman filter or unscented
Kalman filter.

How to extend the PHD filter to the interacting
multiple model (IMM) remains a challenging and
interesting problem (Vo et al., 2006). A Gaussian
jump Markov system can be combined flexibly with
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other tracking algorithms to estimate maneuvering
target states (Blom and Bar-Shalom, 1988; Bar-
Shalom et al., 1989); e.g., combining jump Markov
system models with the Gaussian mixture PHD fil-
ter forms the JMS-PHD filter (Pasha et al., 2009).
In the JMS-PHD filter, jump Markov system models
are adopted to manage the transition among differ-
ent models. However, the Gaussian component with
the largest weight among models is chosen as the out-
put of the JMS-PHD filter, which may result in the
degradation of the tracking performance. Actually,
the target maneuvering mode cannot be represented
appropriately with one model, which has the largest
weight, at each time step. The level of measurement
noise, tracking delay, parameter non-adaptivity, and
missing detection could result in the wrong selection
of the model in the JMS-PHD filter. In fact, each
model in the model set has a certain likelihood in the
multiple model estimation system. Therefore, target
parameters are more suitable to be estimated under
the joint action of different models.

The generalized pseudo-Bayesian estimator of
first order (GPB1) has been proven an effective
method for target estimation in a multiple model
estimation system. Motivated by this, a modified
algorithm for the JMS-PHD filter is presented in
this paper. Variation of GPB1 (VGPB1) under the
framework of the JMS-PHD filter is described and
the mathematical proof is also given. Then it is com-
bined with the JMS-PHD filter to update the model
probability of each kinematic model. The weighted
sum state, associated covariances, and weights of
Gaussian components are then calculated. Prun-
ing and merging techniques are also adopted in the
presented algorithm for effectively reducing the com-
bined explosion about the Gaussian components.

2 Background

In this section, the Gaussian mixture PHD fil-
ter for jump Markov system models is summarized.
Furthermore, the generalized pseudo-Bayesian esti-
mator is introduced.

2.1 JMS-PHD filter

A jump Markov system can be described as a
stochastic process that transmits from one state to
another according to a finite state Markov chain. Let
ξk ∈ R

n and zk ∈ R
m denote the kinematic state

and observation at time k, respectively. The ob-
servation likelihood is denoted by gk(zk|ξk, rlk) and
the transition density of state dynamics is denoted
by f̃k|k−1(ξk|ξk−1, r

l
k). rlk denotes model rl in the

model set at time step k.
A linear Gaussian jump Markov system is a

Gaussian jump Markov system with linear Gaussian
models, which is listed as follows:

f̃k|k−1(ξk|ξk−1, r
l
k)

= N (
ξk;Fk−1(r

l
k)ξk−1,Qk−1(r

l
k)
)
, (1)

gk(zk|ξk, rlk) = N (
zk;Hk(r

l
k)ξ,Rk(r

l
k)
)
, (2)

where N (·;μ, σ) is a Gaussian density function with
mean μ and covariance σ. Fk−1(r

l
k) is the state tran-

sition matrix and Hk(r
l
k) is the measurement matrix

for target dynamic model rl. Qk−1(r
l
k) and Rk(r

l
k)

are the process noise covariance matrix and measure-
ment noise covariance matrix, respectively.

The PHD filter proposed by Mahler (2003; 2007)
to solve a multi-target tracking problem is based on
finite set statistics. The first-order intensity moment
is utilized to approximate the PHD of the target
in this filter. Combining Gaussian mixture proper-
ties with PHD recursion forms the Gaussian mixture
PHD filter, which is a closed-form solution for imple-
menting the PHD filter (Vo and Ma, 2006).

Unfortunately, a single model in the Gaussian
mixture PHD filter would be inappropriate to accom-
modate maneuvering targets that switch between
several kinematic modes. A JMS-PHD filter (Pasha
et al., 2009) was designed to overcome this limitation.
The main idea of the filter is to utilize a jump Markov
system to manage the Gaussian components, which
are generated with the different kinematic models.
Two propositions are proven during the deviated pro-
cess. One is for the prediction step and the other for
the update step. These two propositions are given
under the framework of the linear Gaussian jump
Markov system. The prediction and update steps
are summarized as follows.

It is assumed that the posterior intensity vk−1

at time k − 1 has the form vk−1(ξk−1, r
l
k). Then the

predicted intensity vk|k−1 is given by

vk|k−1(ξk−1, r
l
k)=γk(ξk−1, r

l
k)

+vf,k|k−1(ξk−1, r
l
k)+vβ,k|k−1(ξk−1, r

l
k), (3)

where γk(ξk−1, r
l
k) denotes the intensity of the birth

target at time k, and vβ,k|k−1(ξk−1, r
l
k) denotes the
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intensity of the spawn target at time k. Similarly,
the posterior intensity vk|k−1(ξk−1, r

l
k) is given as

vk(ξk−1, r
l
k)=

(
1−pD,k(r

l
k)
)
vk|k−1(ξk−1, r

l
k)

+
∑

z∈Zk

vg,k(ξk−1, r
l
k; z). (4)

Details of Eqs. (3) and (4) and the JMS-PHD filter
can be found in Pasha et al. (2009).

2.2 Generalized pseudo-Bayesian estimator

The generalized pseudo-Bayesian estimator is a
fusion technique based on total probability Bayesian
theory. Two estimators are included in this kind of
technology: generalized pseudo-Bayesian estimator
of first order (GPB1) and of second order (GPB2).
A total of n hypotheses are needed in GPB1 while
n2 in GPB2, where n is the number of models in the
model set. Details can be found in Bar-Shalom et al.
(2001). The main steps of GPB1 are listed as follows.

Step 1: model-matched filtering
Initial target states ξ̂k−1|k−1 and corresponding

covariances Pk−1|k−1 are given in this step; running
of each model-matched filter is also performed in this
step. Target states, associated covariances, and like-
lihood of each model in the model set, are calculated
based on Bayesian recursion. The likelihood of model
j is calculated as follows:

λj
k = p[zk|rjk,Zk−1]. (5)

Step 2: model probability update
The updated model probability at time k is

μj
k � p[rjk|Zk]

= p[rjk|zk,Zk−1]

=
1

c
p[zk|rjk,Zk−1]p[r

j
k|Zk−1]

=
1

c
λj
k

n∑

i=1

pijμ
i
k−1, (6)

where c =
∑n

j=1 λ
j
k

∑n
i=1 pijμ

i
k−1 is the generalized

factor, μi
k−1 is the probability of model i at time

k− 1, and pij is the ith row and jth column element
of the model probability transition matrix.

Step 3: fusion of target states and covariances
Target states are integrated as

ξ̂k|k =

n∑

j=1

ξ̂jk|kμ
j
k. (7)

And the associated covariances are

Pk|k=
n∑

j=1

μj
k[P

j
k|k+(ξ̂jk|k−ξ̂k|k)(ξ̂

j
k|k−ξ̂k|k)T], (8)

where P j
k|k and ξ̂jk|k are covariances and states of

model j at time step k, respectively.

3 Improved JMS-PHD filter

3.1 Target and measurement model

Consider a case for M targets tracking, and as-
sume that the dynamics of the jth target is modeled
as a jump Markov system:

ξjk = F jξjk−1 + ajωj
k−1, j = 1, 2, ...,M, (9)

where ξjk is a d× 1 target state vector, F j is a d× d

target state transition matrix, aj is a d× d′ matrix,
and ωj

k−1 is a sequence of independent identically
distributed (i.i.d.) standard Gaussian variables with
dimension d′.

It is assumed that the measurement correspond-
ing to state ξjk is also modeled as a jump Markov
system:

zj
k = Hjξjk + bjvj

k, j = 1, 2, ...,M, (10)

where zj
k is an m × 1 target measurement vector,

Hj is an m× d target measurement matrix, bj is an
m×m matrix, and vj

k is a sequence of i.i.d. standard
Gaussian variables with dimension m.

The aim of multi-target tracking is to estimate
the number and states of targets. The key factor
to the accuracy of target state estimation is the
adaptivity of the target dynamic model. It has
been verified that the GPB estimator is an effective
method for the multiple model estimation system.
Therefore, it can be combined with the PHD filter.

3.2 Mathematical justification

States of the target at time k are weighted ac-
cording to the probabilities, which are generated
with different models, according to the theory of
GPB1. The total probability theorem is listed as
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follows:

p[ξ̂k|Zk]=

n∑

l=1

p[ξ̂k|rlk,Zk]p[r
l
k|Zk]

=
n∑

l=1

p[ξ̂k|rlk, zk,Zk−1]μk(r
l
k)

≈
n∑

l=1

p[ξ̂k|rlk, zk, ξ̂k−1, P̂k−1]μk(r
l
k). (11)

Considering the case of the JMS-PHD filter, if
there are Jk Gaussian components at time step k,
then the variation of GPB1 is described as follows:
Theorem 1 If the states of the jth Gaussian
component are updated with the ith measurement,
then the probability of the jth component under the
update of the ith measurement is

p[ξ̂
i,j

k |Zk] ≈
n∑

l=1

p[ξ̂
j

k|rlk, zi
k, ξ̂

j

k−1, P̂
j
k−1]μ

i
k(r

l
k),

where i ∈ {
1, 2, ..., |zk|

}
, j ∈ {1, 2, ..., Jk}. |zk| is the

cardinality of the set of measurements at time step
k, μi

k(r
l
k) denotes the likelihood of model rl on the

condition of measurement i, and Jk is the number of
Gaussian components at time step k.
Proof From Eq. (11), it can be seen that

p[ξ̂
i,j

k |Zk] =
n∑

l=1

p[ξ̂
j

k|rlk,Zk]p[r
l
k|Zk]

=

n∑

l=1

p[ξ̂
j

k|rlk, zi
k,Zk−1]μ

i
k(r

l
k)

≈
n∑

l=1

p[ξ̂
j

k|rlk, zi
k, ξ̂

j

k−1, P̂
j
k−1]μ

i
k(r

l
k).

(12)

This theorem demonstrates that target states,
covariances, and the weight of Gaussian component j
updated by the ith measurement are weighted sums,
using outputs of the different models according to
their probabilities.

After the update step of the JMS-PHD filter,
the total n2 hypotheses for the same Gaussian com-
ponent are merged into one single combined hypothe-
sis, which is similar to using an integral target model
to approximate target kinematics based on GPB1.

3.3 Algorithm

After the update step of the JMS-PHD filter,
several Gaussian components are generated with dif-

ferent models for the same measurement, which re-
sembles the update step in the GPB1 estimator.
Thus, the variated GPB1 technology is adopted to
manage Gaussian components generated by differ-
ent models in this work. One cycle of the proposed
Gaussian mixture PHD filter for multiple maneuver-
ing targets tracking, which is an extension of the
one proposed by Zhang et al. (2012), is described as
follows.

Step 1: initialization
Assume the posterior intensity vk−1(ξ̂k−1, r

l
k−1)

at time k−1 is a Gaussian mixture for each rlk−1, i.e.,

vk−1(ξ̂k−1, r
l
k−1) =

Jk−1(r
l
k−1)∑

i=1

ωi
k−1(r

l
k−1)

· N
(
ξ̂k−1; m̂

i
k−1(r

l
k−1), P̂

i
k−1(r

l
k−1)

)
, (13)

where rlk−1 denotes that model rl is active at
time step k − 1, ξ̂k−1 is its estimated state, and
m̂i

k−1(r
l
k−1) and P̂ i

k−1(r
l
k−1) are the mean and co-

variance of the ith Gaussian component for model rl

at time k − 1, respectively.
Step 2: prediction
The predicted intensity vk|k−1(ξ̂k|k−1, r

l
k−1) is

also a Gaussian mixture for each model rl:

vk|k−1(ξ̂k|k−1, r
l
k−1)

=
n∑

r=1

J
rlk−1
k−1∑

i=1

ωi
k|k−1(r

l
k−1)

[
p(s,k)(r

l
k−1)τk|k−1(r

l
k|rl

′
k−1)

· N
(
ξ̂k|k−1; m̂

i
k|k−1(r

l
k, r

l′
k−1), P̂

i
k|k−1(r

l
k, r

l′
k−1)

)

+

Jβ,k|k−1(r
l
k,r

l′
k−1)∑

j=1

ωβ,k|k−1(r
l
k, r

l′
k−1)πk|k−1(r

l
k|rl

′
k−1)

· N
(
ξ̂; m̂i,j

k|k−1(r
l
k, r

l′
k−1), P̂

i
k−1(r

l′
k−1)

)]

+ γk(ξ̂k|k−1, r
l
k−1), (14)

where τk|k−1(r
l
k|rl

′
k−1) is the probability of a tran-

sition from model rl
′
k−1 at time k − 1 to model rlk

at time k, πk|k−1(r
l
k|rl

′
k−1) is the probability distri-

bution of model rlk at time k spawned from model
rl

′
k−1 at time k − 1, p(s,k)(r

l′
k−1) is the probability

of survival for model rl
′
k−1 at time k, J

rl
′

k−1

k−1 is the
Gaussian component number for model rl

′
k−1, and
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γk(ξ̂k|k−1, r
l
k−1) is the intensity of the birth target.

m̂i
k|k−1(r

l
k, r

l′
k−1) = F

rlk
k m̂i

k−1(r
l′
k−1), (15)

P̂ i
k|k−1(r

l
k, r

l′
k−1)

= F
rlk
k P̂ i

k−1(r
l′
k−1)

(
F

rlk
k

)T

(rlk−1) +Q
rlk−1

k−1 , (16)

m̂i,j
k|k−1(r

l
k, r

l′
k−1)

= F j
β,k−1(r

l
k, r

l′
k−1)m̂

i
k−1(r

l′
k−1)+djβ,k−1(r

l
k, r

l′
k−1),

(17)

where F
rlk−1

k−1 is the state transition matrix for tar-

get dynamic model rl at time k − 1, and Q
rlk−1

k−1 is
the corresponding process noise covariance matrix.
ωj
β,k|k−1(r

l
k, r

l′
k−1), F

(j)
β,k−1, d

j
β,k−1(r

l
k, r

l′
k−1), Q

j
β,k−1,

and Jβ,k|k−1(r
l
k−1, r

l′
k−1) determine the shape of the

spawning intensity of a target with previous state
ξ̂k|k−1. The intensity of the birth random finite set
(RFS) can be expressed as Gaussian mixtures of the
form

γk(ξ̂k|k−1, r
l
k−1) = πk(r

l
k−1)

Jγ,k(r
l
k−1)∑

j=1

[
ωj
γ,k(r

l
k−1)

· N
(
ξ̂k|k−1; m̂

j
γ,k(r

l
k−1), P̂

j
γ,k(r

l
k−1)

)]
. (18)

Similar to the posterior intensity at time k −
1, it is assumed that the predicted intensity
vk|k−1(ξ̂k|k−1, r

l
k−1) is a Gaussian mixture:

vk|k−1(ξ̂k|k−1, r
l
k−1) =

Jk|k−1∑

i=1

[
ωi
k|k−1(r

l
k−1)

· N
(
ξ̂k|k−1; m̂

i
k|k−1(r

l
k−1), P̂

i
k|k−1(r

l
k−1)

)]
. (19)

Step 3: update
The posterior intensity vk(ξ̂k, r

l
k) at time k is

still a Gaussian mixture for each model rl:

vk(ξ̂k, r
l
k) =

(
1− pD,k(r

l
k)
)
vk|k−1(ξ̂k, r

l
k)

+
∑

z∈Zk

vD,k(ξ̂k, z), (20)

where

vD,k(ξ̂k, z)

=

Jk|k−1∑

j=1

ωj
k(z)N

(
ξ̂k; m̂

j
k|k(z, r

l
k), P̂

j
k|k(r

l
k)
)
, (21)

with

ωj
k =

(
pD,k(r

l
k)ω

j
k|k−1q

j
k(z, r

l
k)
)
/
(
κk(z)

+
∑

rl
′

k

pD,k(r
l′
k )

Jk|k−1(r
l′
k )∑

�=1

ω�
k|k−1(r

l′
k )q

�
k(z, r

l′
k )

)
,

(22)

and

m̂j
k|k = m̂j

k|k−1(r
l
k) +Kj

k

(
z −Hk(r

l
k)m̂

j
k|k−1(r

l
k)
)
,

(23)

P̂ j
k|k(r

l
k) =

(
I −Kj

k(r
l
k)Hk(r)

)
P̂ j

k|k−1(r
l
k), (24)

Kj
k(r

l
k) = P̂ j

k|k−1(r
l
k)H

T
k (r

l
k)

·
(
Hk(r

l
k)P̂

j
k|k−1(r

l
k)H

T
k (r

l
k) +Rk(r

l
k)
)−1

, (25)

qjk(z, r
l
k) = N

(
z;Hk(r

l
k)m̂

j
k|k−1(r

l
k),

Hk(r
l
k)P̂

j
k|k−1(r

l
k)H

T
k (r

l
k) +Rk(r

l
k)
)
. (26)

pD,k(r
l
k) is the probability of target detection at time

k for model rl, and z is multi-target observation.
Step 4: model probability update
If the existing probability of Gaussian compo-

nent j at time k for model rl is

λj
k(r

l
k) = p[zk|rlk,Zk−1]

= p[Cj
k(r

l
k)|z(�)

k ,Zk−1], (27)

where rlk = 1, 2, ..., n, j = 1, 2, ..., Jk, Cj
k(r

l
k) is the

jth component for model rl at time k, then the up-
dated probabilities of the component for model rl are
evaluated as

μ
�g+j
k (rlk) = p[rlk|Zk]

=
1

c
λj
k(r

l
k)

n∑

l′=1

p[rlk|rl
′
k ,Zk−1]

· p[Cj
k(r

l
k)|z�

k,Zk−1], (28)

where z�
k is the 	th measurement at time k, and c is

the normalization constant:

c =

n∑

rl=1

λj
k(r

l
k)

n∑

rl′=1

prl′k rlk
λj
k(r

l
k). (29)

Step 5: fusion
The combined Gaussian weight, mean, and co-

variance of the target are estimated as

ωj
k =

n∑

rlk=1

μj
k(r

l
k)ω

j
k(r

l
k)/n. (30)
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If the Gaussian weight is ωj
k(r

l
k) for model rl

after update time step k for Gaussian component j,
then the Gaussian weight should be ωj

k(r
l
k)/n before

the pruning and merging step.
Proof of Eq. (30) From Eq. (14), it is evident that
n Gaussian components would be generated with one
Gaussian component under the management of the
jump Markov system. Therefore, if there are n mod-
els, n2 components would be generated. Under the
condition of GPB1, n components are combined into
a unit. Thus, the Gaussian weight is n times the
original one and should be normalized by n.

ξ̂
j

k =

n∑

rlk=1

m̂j
k(r

l
k)μ

j
k(r

l
k), (31)

P̂ j
k =

n∑

rlk=1

μj
k(r

l
k)
[
P̂ j

k (r
l
k) +

(
m̂j

k(r
l
k)− ξ̂

j

k

)

·
(
m̂j

k(r
l
k)− ξ̂

j

k

)T ]
. (32)

Step 6: pruning and merging
Pruning is a heuristic technique used in this

proposed filter to restrict the increasing number of
Gaussian components during the recursive process.
After pruning, if the weight is larger than the preset
threshold, it will be retained; otherwise, it will be
deleted.

S =
{
Γi|ωi

k ≥ ΓTh, i = 1, 2, ..., n
}
. (33)

Merging is another heuristic technique to re-
duce the computation. Adjacent components will
be merged into one Gaussian component if they are
subject to

(
ξ̂
i

k − ξ̂
j

k

)T

(P̂ i
k)

−1
(
ξ̂
i

k − ξ̂
j

k

)
≤ Umerge, (34)

where Γi, Γj ∈ S, i �= j, ΓTh, Umerge, Γi are the prun-
ing threshold, merging threshold, Gaussian compo-
nent, respectively.

Step 7: state extraction
The mean of the Gaussian component, whose

weight is larger than a certain threshold ΓGate, acts
as the final output of the target state.

4 Simulation

Targets spawn and birth are not considered in
this paper due to space limitations. Performance of
the proposed algorithm is analyzed by comparison
with the JMS-PHD filter.

4.1 Simulation initialization

In this simulation scenario, there are five targets
at the beginning, including three maneuvering tar-
gets and two non-maneuvering targets in the field of
view. Then one target disappears after time step 140.
All measurements are received in range, azimuth, ele-
vation, and velocity, which can be obtained by radar.
The initial mean ξ̂0 = [x̂0, ˆ̇x0, ˆ̈x0, ŷ0, ˆ̇y0, ˆ̈y0, ẑ0, ˆ̇z0, ˆ̈z0].
The first target begins to maneuver at constant ac-
celeration with Ax = −10 m/s2, Ay = 15 m/s2

from 80th to 120th time step, the second with
Ax = −10 m/s2, Ay = 15 m/s2, Az = 3 m/s2 from
90th to 120th time step. The third target maneuvers
with different accelerations during different stages,
with Ax = −5m/s

2
, Ay = 5m/s

2 from the beginning
to the 40th time step, with Ax = −10 m/s

2
, Ay =

−20 m/s2 from the 41th time step to the 80th time
step, while with Ax = 6 m/s

2
, Ay = −6 m/s

2 from
the 81th time step to the 140th time step, which is
the end of this target. The other two targets move
uniformly at all time steps. The initial number of
targets in the simulation program is unknown and
presumed to be 50 in this scenario; the radar is lo-
cated at the origin of the coordinates.

The methods of adding measurement noise and
the clutter are as follows.

First, the target states are converted from
Cartesian to polar, and noise is added in range, azi-
muth, elevation, and velocity. The level of the noise
standard is δr = 150m in range, δaz = δel = 0.005 rad

in azimuth, elevation, and δv = 3 m/s in velocity.
Then, clutters are added uniformly in range,

azimuth, elevation, and velocity. The clutters are
subject to Poisson RFS with the intensity function

κk(z) = λcV u(z). (35)

Clutter number λc = 1.8 × 10−8, which gives about
60 measurements for every time step.

The scope for the range is [16 000, 53 000]m, azi-
muth [0.87, 1.48] rad, elevation [0.08, 0.32] rad, and
velocity [−400, 600] m/s. Three-dimensional trajec-
tories of targets are shown in Fig. 1, and the two-
dimensional ones are shown in Fig. 2. Fig. 3 displays
the measurements of the received observation. Prun-
ing parameter threshold ΓTh = 10−5, Gaussian com-
ponent merging threshold Umerge = 4, weight thresh-
old ΓGate = 0.5, detection probability pD,k = 0.98,
survival probability ps = 0.99, and sampling time
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Ts = 0.5 s are adopted in this simulation.
Three models are adopted in both algorithms,

including one constant velocity (CV) model and two
constant acceleration (CA) models with different
process noise coefficients. Detailed model set infor-
mation can be found in Li and Jilkov (2003); the
Markov transition probability is

τk|k−1 =

⎡

⎣
0.98 0.01 0.01
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Fig. 3 Measurements obtained for tracking algo-
rithms

4.2 Simulation results and analysis

To evaluate the performance of the proposed al-
gorithm, 200 runs of Monte-Carlo simulations are
executed, and the optimal subpattern assignment
(OSPA) metric (Schuhmacher et al., 2008) is adopted
in this simulation. The OSPA metric has been
proven a reasonable and intuitive interpretation of
the localization and cardinality errors in the multi-
target tracking scenario.

The parameters of order p = 2 and cut-off e =

400 are set. Details on the definition of the OSPA
metric can be found in Schuhmacher et al. (2008).

The average OSPA distances of the 200 runs of
Monte Carlo simulations are shown in Fig. 4. In
the first several steps in Fig. 5, it can be seen that
the target number estimation errors of the two algo-
rithms are large, which results in the OSPA distances
being close to the constant value of cut-off e. During
the benign flight or flight stage with weak maneu-
verability, which begins at the 80th time step, OSPA
distances in the proposed algorithm are slightly lower
than those of the JMS-PHD filter (Fig. 6). After the
benign flight, the OSPA distances of the proposed
algorithm are lower than those of the JMS-PHD
filter.
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tances for two algorithms
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Fig. 5 Target number estimation for two algorithms
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Fig. 6 Optimal subpattern assignment (OSPA) dis-
tances during little maneuver flight for two algorithms

Among the components generated with differ-
ent models, the Gaussian component with the largest
weight is selected as the output of the filter in the
original JMS-PHD filter. In fact, the dynamic model
with the largest Gaussian component weight could
not denote the actual target mode at all time steps
because the intensity of measurement noise, track-
ing delay, non-adaptivity of model parameters in the
model set, and missing detection would impact the
Gaussian component weight in the JMS-PHD filter.
In the presented algorithm, VGPB1 is used to man-
age different Gaussian components. Therefore, com-
ponents updated with each model make contribu-
tions to target parameters, such as states, covari-
ances, and Gaussian weights. This technique may
avoid the risk of wrong model selection, which re-
sults in the improvement of tracking performance
for the proposed algorithm.

5 Conclusions

In this paper, the development of a multiple
maneuvering targets tracking algorithm under the
framework of the Gaussian mixture PHD filter is
described. First, the variation of GPB1 was de-
rived under the framework of the JMS-PHD filter.
Then, based on GPB1, a modified Gaussian mixture
PHD filter was provided. The proposed algorithm
was evaluated and compared with the JMS-PHD fil-
ter. Monte-Carlo simulation results showed that the
OSPA distances of the proposed algorithm are lower
than those of the JMS-PHD filter for maneuvering
target tracking.
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