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Abstract: We propose a robust scheme to achieve the synchronization of chaotic systems with modeling mismatches
and parametric variations. The proposed algorithm combines high-order sliding mode and feedback control. The
sliding mode is used to estimate the synchronization error between the master and the slave as well as its time
derivatives, while feedback control is used to drive the slave track the master. The stability of the proposed design
is proved theoretically, and its performance is verified by some numerical simulations. Compared with some existing
synchronization algorithms, the proposed algorithm shows faster convergence and stronger robustness to system
uncertainties.
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1 Introduction

Since the pioneering work of Pecora and Carroll
(1990), chaos synchronization has become an attract-
ing research topic in nonlinear science, and has been
widely used in many applications, such as secure
communications (Kocarev and Parlitz, 1995; Femat
et al., 2001; Feki, 2003), animal gaits (Collins and
Stewart, 1993), and biological oscillators (Wittmeier
et al., 2008; Mao et al., 2009). Consequently, various
synchronization schemes have been proposed, such
as drive-response synchronization (Pecora and Car-
roll, 1991), master-slave synchronization (Kocarev
and Parlitz, 1995), observer-based synchronization
(Nijmeijer and Ymareels, 1997; Grassi and Mascoio,
1999), adaptive synchronization (Besancon, 2000; Yu
and Parlitz, 2008; Liu et al., 2008; Liu and Tang,
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2009), and geometrical control (Freitas et al., 2005;
Chen and Kurths, 2007).

In some practical situations, system uncertain-
ties, such as parameter mismatches and structural
differences, unavoidably exist in nature, and hence
the structures of the master and the slave are not
exactly the same. For instance, biological oscillators
are found to be synchronous even if the considered
two oscillators have different dynamics (Collins and
Stewart, 1993). The model mismatches between the
master and the slave make the real control problem
much more complicated. Therefore, it is more desir-
able if a robust strategy can be designed such that
the synchronization between two chaotic systems can
be established.

To tackle this problem, many robust synchro-
nization schemes have been proposed in the litera-
ture (Karimi and Gao, 2010; Karimi, 2011; Trentel-
man et al., 2013; Youssef et al., 2013). H∞ theory
based on Lyapunov stability theory and linear ma-
trix inequality formulation is an efficient approach
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to handle such problems, which has been studied
in Karimi and Gao (2010) and Karimi (2011) and
the references therein. However, these synchroniza-
tion methods are usually specialized for a particular
chaotic system, and thus may not be applicable to
other chaotic systems. Considering this, Wang et
al. (2012) developed a systematic H∞ robust syn-
chronization approach for a class of chaotic systems
that can be transformed into the canonical form
through some topological transformation, such as the
Chen system, Lorenz system, Duffing oscillators, and
Hindmarsh-Rose neuronal model. To ensure global
convergence, this strategy requires that the informa-
tion of all the state variables should be available.
However, this condition may not be satisfied in prac-
tice due to the limitation in measuring conditions.
On the other hand, by lumping the system uncer-
tainties into a new state variable, an extended state
observer (ESO) (Han, 1995) together with a system-
atic robust asymptotic continuous feedback’s con-
troller has been proposed in Femat et al. (1999) and
Femat and Solis-Perales (2008). This method does
not require any priori information about the system
model, and only one state variable is required to de-
sign the controller, which makes the complex control
problem physically realizable. Yet, to achieve the ac-
ceptable performance of synchronization, a long time
is needed.

In addition to the aforementioned robust strate-
gies, the sliding mode method, which is insensitive
to system parameters or perturbations, is another
kind of robust synchronization strategy. Recently,
sliding mode based synchronization strategies have
aroused considerable interest and been widely used
in synchronization of complex high-order nonlinear
dynamic systems with some uncertainties, see Yang
and Shao (2002), Bowong (2004), Li et al. (2005), and
Karimi (2012) to name a few. However, the perfor-
mances of these methods are highly dependent on the
parameters for constructing the control surface. If
the design parameters are improper, the performance
of synchronization may become quite poor. To re-
duce the sensitivity to the parameters, a robust dif-
ferentiator estimator using a quasi-continuous high-
order sliding mode has been proposed in Levant
(2003), Levant and Pavlov (2008), and Rodríguez et
al. (2008) such that the finite-time synchronization
between two non-identical systems can be achieved.
Unfortunately, this design is of high computation

cost and thus the time for reaching synchronization
is intolerably long. So, it is computationally ineffi-
cient if the order of the sliding mode is higher, which
hampers its application to high-dimensional systems
and complex networks.

Considering this, in this paper, a synthesis of
high-order sliding mode and feedback control based
on ESO is proposed such that the advantages of these
two methods can be fully exploited. In the proposed
approach, the high-order sliding mode is used to ob-
tain the estimates for the output error and its time
derivatives, while the linearizing feedback control is
designed to drive the slave to follow the master. In
this way, the synchronization time as well as the
computational complexity can be reduced. The sta-
bility of the proposed design is proved mathemat-
ically, while its performance is verified numerically
by simulations.

2 Synchronization of chaotic systems
with uncertainties

2.1 Problem statement

Consider a master nonlinear system as follows:

{
ẋm = f(xm,p),

ym = h(xm) = Cmxm,
(1)

where xm ∈ R
n denotes the state vector, f : Rn →

R
n is a smooth function, p is the parametric vec-

tor, ym is the system output (measurable state), and
h(xm) = Cmxm is the output of the master with Cm

being a constant vector.
Let us now take a slave system with the same

order as system (1):

{
ẋs = f(xs, q) + g(xs)u,

ys = h(xs) = Csxs,
(2)

where xs ∈ R
n denotes the state vector of system (2),

g(xs) is a vector depending on xs, u ∈ R is a control
signal, q is the parametric vector, and p �= q. Cs

defines the measured state of the slave system, and
h(xs) = Csxs defines the output of the slave. Here,
we assume that Cm = Cs. Note that the subscripts
‘m’ and ‘s’ are used to present the master system and
the slave system, respectively.

Subtracting system (1) from (2), we have the
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error dynamics:{
ė = ẋs − ẋm = Δf(xm,xs,p, q) + g(xs)u,

y = h(e),
(3)

where ei = xis − xim for i = 1, 2, · · · , n, Δf =

f(xs, q)− f(xm,p) is a smooth vector, denoting the
differences between the master and the slave, and
y = h(e) is a smooth function defining their out-
put errors. Note that the synchronization between
systems (1) and (2) is equivalent to the stabiliza-
tion of system (3). In other words, the problem of
synchronization can be reduced to the design of suit-
able feedback control u such that lim

t→∞ e → 0, i.e.,
xs → xm.

2.2 Preliminaries

To illustrate the main results of this study, some
preliminaries are given first.
Theorem 1 (Isidori, 1989) Consider the following
system: {

ẋ = f(x) + g(x)u,

y = h(x),
(4)

where x ∈ R
n represents the state vector, f : Rn →

R
n is a smooth function, u is a control signal,

and y is the system output. It is assumed that
there exists the smallest integer ρ such that the
following conditions are satisfied: (1) LgL

i
fh(x) =

0, i = 1, 2, · · · , ρ − 2; (2) LgL
ρ−1
f h(x) �= 0, where

Lρ
fh(x) := Lf(L

ρ−1
f h(x)), L0

fh(x) := h(x), and

Lfh(x) :=
∂h(x)

∂x
f(x) is the Lie derivative of h(x)

along f(x). Then, it is always possible to find (n−ρ)
functions Φρ+1, Φρ+2, · · · , Φn with LgΦi �= 0, i =

ρ+1, ρ+2, · · · , n such that system (4) can be globally
transformed into the following canonical form:{

żi = zi+1, i = 1, 2, · · · , ρ− 1,

żρ = α(z, ζ) + β(z, ζ)u, β(z, ζ) �= 0,
(5a)

{
ζ̇ = Ψ(z, ζ), ζ ∈ R

n−ρ,

y = z1,
(5b)

where α(z, ζ) = Lρ
fh(x) and β(z, ζ) =

LgL
ρ−1
f h(x) �= 0, are uncertain. Ψ(z, ζ) =

[Φρ+1, Φρ+2, · · · , Φρ+n] is a matrix such
that the coordinate transformation Φ(x) =

[h(x), Lfh(x), · · · , Lρ−1
f h(x), Φρ+1, Φρ+2, · · · , Φρ+n]

is globally invertible. ζ̇ = Ψ(0, ζ) is called zero

dynamics of the system. Note that the system is
called fully linearizable when ρ = n, while it is called
partly linearizable when ρ < n.

Assumptions: Considering the dynamical sys-
tem (1), the following assumptions are required (Fe-
mat et al., 1999; Femat and Solis-Perales, 2008):
Assumption 1 There is only a single system state
as the output. Without loss of generality, one can let
ym = h(xm) = x1m; i.e., only the first system state
is measurable.
Assumption 2 There are some unknown model
mismatches between the master and the slave, i.e.,
Δf �= 0.
Assumption 3 The error dynamical system can be
transformed into a canonical form; i.e., there exists
a diffeomorphism transformation of coordinate for
system (3).
Assumption 4 System (3) is a minimum-phase
system.
Remark 1 It is noted that Assumption 1 is more
agreeable in practice. For example, in real commu-
nications, only a scalar time series is transmitted to
construct the synchronization between the master
and the slave for security (Femat et al., 2001; Feki,
2003), and for a biological neuronal model, due to
the limitation of the measuring condition, only the
membrane potential is obtainable for each neuron
(Yu and Parlitz, 2008).
Remark 2 As mentioned before, the mismatches
between the master and the slave unavoidably exist
in nature, and hence Δf always exists.
Remark 3 It is noted that many chaotic systems
can be transformed into a canonical form through
a mathematical transformation. Based on Lemma 1
given in Eq. (A1) in Appendix A, the error dynamical
system (3) can be changed into a canonical form as
given in Eq. (5).
Remark 4 The minimum phase implies that the
subsystem of the zero dynamics ζ̇ = Ψ(0, ζ) is
asymptotically stable. Although this condition is
strong, it can be satisfied for some chaotic systems,
such as the Lorenz system and Chen system.

2.3 Design of a robust synchronization
scheme

In this subsection, a new robust synchronization
scheme is proposed based on a combination of high-
order sliding mode and linearizing feedback control.
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According to Theorem 1, by lumping the uncer-
tainties into a new state variable, the error dynam-
ics (3) can be further rearranged into the following
canonical form:⎧⎪⎨

⎪⎩
żi = zi+1, i = 1, 2, · · · , ρ− 1,

żρ = zρ+1 + βE(z)u,

żρ+1 = Γ (z, zρ+1, ζ, u),

(6a)

{
ζ̇ = Ψ(z, ζ),

y = z1 = e1,
(6b)

where βE(z) is bounded, zρ+1 = Θ(z, ζ, u) =

α(z, ζ) + δ(z, ζ)u and δ(z, ζ) = β(z, ζ) − βE(z).
Γ (z, zρ+1, ζ, u) =

∑ρ−1
i=1 [zi+1∂iΘ(z, ζ, u)] + [zρ+1 +

βE(z)]∂ρΘ(z, ζ, u) + δ(z, ζ)u̇ + ∂tδ(z, ζ)u +

∂ζΘ(z, ζ, u)Ψ(z, ζ), where ∂iΘ(z, ζ, u) =

∂Θ(z, ζ, u)/∂xi, i = 1, 2, · · · , ρ.
From system (6), it can be seen that the mis-

matches between the master and the slave have been
lumped into a nonlinear function Θ(z, ζ, u), which
can be interpreted as an augmented state variable
zρ+1. Then, the problem of synchronization between
systems (1) and (2) can be considered as the stabi-
lization of error dynamics (6). To achieve this goal, a
suitable feedback controller u must be designed. To
simplify the design, a linearizing feedback controller
similar to that given in Femat et al. (1999) and Femat
and Solis-Perales (2008) is adopted in this work:

u =
−1

βE(z)

(
zρ+1 +KTz

)
, (7)

where z = [z1, z2, · · · , zρ], the feedback gains K are
designed such that all the roots of Hurwitz polyno-
mial P(ρ)(s) = sρ+Kρs

ρ−1+· · ·+K2s+K1 = 0 lie in
the left half complex plane, and βE(z) is the estimate
of β(z, ζ) satisfying sgn(βE(z)) = sgn(β(z, ζ)).

With such a feedback controller u, the stabi-
lization of system (6) can be ensured and the proof
is given in Lemma 2 in Appendix A. It is also re-
marked that the linear feedback controller (7) is a
typical design for achieving chaos synchronization
for many chaotic systems, including the Chen sys-
tem, Lorenz systems, Lü system, Duffing oscillators,
and Hindmarsh-Rose neuronal model. As these sys-
tems have been widely applied in practical applica-
tions (Femat et al., 1999; Xu et al., 2004; Haefner,
2005; Femat and Solis-Perales, 2008; Wang et al.,
2012), such as secure communication, system iden-
tification, physical systems, and biological systems,

the proposed linear feedback control is desirable in
practice.

As shown in Eq. (7), the control signal u is deter-
mined by the time derivatives of the observable state
error, denoted as zi. However, the exact values of
zi are unknown. To estimate them, some strategies
have been developed, such as the linearizing feed-
back based estimator (Han, 1995; Femat et al., 1999;
Femat and Solis-Perales, 2008), and the nonlinear
geometric based estimator (Li et al., 2005). In this
study, based on the methods proposed by Levant
(2003) and Levant and Pavlov (2008), a high-order
sliding mode based estimation strategy is proposed,
which is more robust to system uncertainties owing
to the adoption of sliding mode.
Theorem 2 Considering the master system (1),
there exists a slave system (2) together with the lin-
earizing feedback controller (7) and a high-order slid-
ing mode based time differentiator estimator⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 − Lλ1|ẑ1 − z1|
ρ

ρ+1 sgn(ẑ1 − z1),

˙̂zi = ẑi+1 − Liλi|ẑ1 − z1|
ρ−i+1
ρ−i+2 sgn(ẑ1 − z1),

˙̂zρ = ẑρ+1−Lρλρ|ẑ1 − z1| 12 sgn(ẑ1 − z1) + βE(ẑ)u,

˙̂zρ+1 = −Lρ+1λρ+1sgn(ẑ1 − z1),

(8)
such that system (2) asymptotically synchronizes to
system (1), where 1 < i < ρ, L > 0 is the so-called
high-gain parameter, interpreted as the uncertain-
ties estimation rate and often chosen as a constant
(Femat et al., 2000; Yang and Shao, 2002), and λi

and βE(ẑ) are some positive constants.
Proof Subtracting system (1) from (2), we have
the error dynamics (3). Then, the problem of syn-
chronization is reduced to the stabilization of system
(3). Based on Assumption 3 and Theorem 1, (3) can
be further rearranged into a canonical form (6).

Let � ∈ R
ρ+1 denote the vector of the es-

timation error and its components are defined as
�i = ẑi − zi, i = 1, 2, · · · , ρ + 1. Subtracting the
(ρ+ 1)th subsystem of (6a) from (8), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇1 = �2 − Lλ1|�1|
ρ

ρ+1 sgn(�1),

�̇i = �i+1 − Liλi|�1|ρ− i + 1

ρ− i + 2
sgn(�1),

2 ≤ i ≤ ρ− 1,

�̇ρ = �ρ+1 − Lρλρ|�1| 12 sgn(�1),

�̇ρ+1 = −Lρ+1λρ+1sgn(�1)− Γ (z, zρ+1, ζ, u).

(9)
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Define the following variables:⎧⎪⎪⎨
⎪⎪⎩

v1 = Lρ|�1|
ρ

ρ+1 sgn(�1),

vi = Lρ+1−i|�1|
ρ

ρ+1− ρ−i+1
ρ−i+2�i, 2 ≤ i ≤ ρ,

vρ+1 = �ρ+1.

(10)

Note that v̇1 = Lρ[|�1|
ρ

ρ+1 sgn(�1)]�̇1, where
‘·’ denotes the first derivative of time. Due to
the boundedness of chaotic systems, z1 is bounded.
Therefore, to track the dynamics of z1, ẑ1 must
be bounded too. Then, it can be derived that
[|�1|

ρ
ρ+1− ρ−i+1

ρ−i+2 sgn(�1)] is also bounded by a suffi-
ciently large value, denoted as χ. Consequently, we
have v̇1 ≤ Lρχ�̇1. Iteratively, we have the following
‘estimating error system’:

v̇ = LD(χ, λ1, . . . , λρ+1)v +Ω(·), (11)

where v = (v1, v2, · · · , vρ+1)
T, Ω(·) =

[0, 0, · · · ,−Γ ]T, and

D(χ, λ1, · · · , λρ+1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ1χ χ 0 · · · 0

−λ2 0 1 · · · 0
...

...
...

...
−λρ 0 0 · · · 1

−λρ+1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

According to Assumption 4, the time deriva-
tive żρ is bounded and thus Γ (·) is also bounded.
By choosing suitable constants λi such that all the
eigenvalues of D(·) lie in the left-half complex plane,
we have vi → 0, 1 ≤ i ≤ ρ + 1. That is to say, the
estimating error system v is globally asymptotically
stable at zero, which implies �i → 0, i.e., ẑi → zi for
1 ≤ i ≤ ρ+ 1. Consequently, the estimates of zi can
be duly obtained.

Then, by substituting ẑi into the linearizing
feedback control signal u in Eq. (7), we have the
stabilization of error dynamics (6) based on Lemma
2 in Appendix A, i.e., e → 0, which implies that the
synchronization between systems (1) and (2) can be
achieved. The proof is completed.
Remark 5 Although the exact value of χ is un-
known in practice, it can be estimated based on the
prior information of the upper bound of the chaotic
systems. The parameters λi’s, as stated above, are
selected such that all the eigenvalues of D(·) lie in
the left-half complex plane. Referring to Li et al.
(2005) and Levant and Pavlov (2008), λi’s are usu-
ally selected within [1, 10]. The high-gain parameter

L is usually not very large, typically within [5, 20]

(Femat et al., 2000; Yang and Shao, 2002).
Remark 6 Compared to the sliding mode methods
given in Yang and Shao (2002) and Rodríguez et al.
(2008) (see Types II and III in Appendix C), a sim-
ple linear combination of the state error and its time
differentiator estimator is used and thus the com-
putation of complicated controller u is avoided. It is
also remarked that, although the proposed algorithm
takes more computation than the algorithm pro-
posed in Femat and Solis-Perales (2008) (see Type
I in Appendix C), its synchronization performance
can be significantly improved, owing to the combi-
nation of the sliding mode. This will be verified in
the simulation section.

3 Numerical simulations

In this section, some simulation examples are
presented to show the performance of the proposed
robust synchronization strategy.

3.1 Example 1: synchronization of two Lorenz
systems

The Lorenz system, which has been frequently
studied in the context of chaos synchronization, is
taken as our first example. It is a typical chaotic os-
cillator with its dynamics governed by the following
equation:⎧⎪⎨

⎪⎩
ẋ1m = p1(x2m − x1m),

ẋ2m = p2x1m − x2m − x1mx3m,

ẋ3m = x1mx2m − p3x3m.

(12)

Then, the slave system can be constructed as⎧⎪⎨
⎪⎩

ẋ1s = q1(x2s − x1s) + βE(ẑ)u,

ẋ2s = q2x1s − x2s − x1sx3s,

ẋ3s = x1sx2s − q3x3s.

(13)

Let zi = ei = xis − xim. Subtracting system (12)
from (13), we have the error dynamics

⎧⎪⎨
⎪⎩

ė1 = Δf1 + βE(ẑ)u,

ė2 = Δf2,

ė3 = Δf3,

(14)

where Δfi denotes the uncertainties between the
master and the slave. Based on Theorem 1, sys-
tem (14) can be changed into the following canonical
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form: ⎧⎪⎪⎨
⎪⎪⎩

ż1 = z2 + βE(ẑ)u,

ż2 = Γ (z1, z2, ζ, u),

ζ̇ = Ψ(z1, ζ),

(15)

where βE(ẑ) is generally selected as a constant, and
ζ = (e2, e3).

Following the design given in Section 2, a ro-
bust synchronization scheme based on a combination
of high-order sliding mode and linearizing feedback
control can be designed as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂z1 = ẑ2 − Lλ1|ẑ1 − z1| 12 sgn(ẑ1 − z1) + βE(ẑ)u,

˙̂z2 = −L2λ2sgn(ẑ1 − z1),

u =
−1

βE(ẑ)

(
ẑ2 +K1ẑ1

)
.

(16)
Using the controller (16) and according to The-

orem 2, we have zi → 0. Then, it is concluded that
the error dynamics (15) asymptotically converges to
zero, as the subsystem Ψ(0, ζ) is a minimum-phase
system (The proof is shown in Appendix B).

In the simulation, the initial conditions are ran-
domly selected from [0, 1] and the initial estimates
are set as zeros, i.e., ẑ1 = ẑ2 = 0. The true parame-
ter values are p1 = 10, p2 = 28, p3 = 8/3, while the
auxiliary parameter values are q1 = 9.5, q2 = 26.6,
q3 = 2.533, and q1 = 9.0, q2 = 25.2, q3 = 2.4, corre-
sponding to 5% and 10% of parameter mismatches,
respectively. βE(ẑ) is set as 20, and the other con-
stants are chosen as χ = 4, L = 20, λ1 = 1, λ2 = 5,
and K1 = 10. The control signal is activated at
t = 2 s. For comparison, the simulation results with
different designs proposed in Yang and Shao (2002),
Femat and Solis-Perales (2008), and Rodríguez et
al. (2008) are also demonstrated, which are named
Types I, II, and III, respectively, while our proposed
design is referred to as Type IV. The designs of Types
I, II, and III are listed in Appendix C.

Fig. 1 depicts the synchronization error between
the master and the slave for different approaches.
Note that our proposed scheme shows the strongest
robustness and the fastest convergence among these
four schemes. Such peculiarities are reasoned by
the insensitivity of the high-order sliding mode to
the system uncertainties and the simplicity of linear
feedback control. The performances of Types I and
II are similar, while Type III shows the worst perfor-
mance. The reason is that Type III uses a sign-form
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Fig. 1 The synchronization errors between the mas-
ter and the slave of different methods with 5% (a)
and 10% (b) of parameter mismatches. References to
color refer to the online version of this figure

control signal, which is a discrete-time control func-
tion. Therefore, a high control energy and a large
oscillation are experienced due to the switching phe-
nomenon of the control surface.

Note that the controller u is not equal to zero
even when the synchronization between the master
and the slave is established, since the controller must
pay the cost of the synchronization with dynamic
compensation.

3.2 Example 2: synchronization of Duffing
and van der Pol oscillators

In the second example, the synchronization
of two systems with different structures is consid-
ered. The master is the Duffing system expressed as
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follows:{
ẋ1m = x2m,

ẋ2m = x1m − p1x2m − x3
1m + p2cos(ωmt),

(17)

where x1m is measured.
The slave system is a van der Pol oscillator with

its dynamics governed by{
ẋ1s = x2s,

ẋ2s = q1(1 − x2
1s)x2s − x3

1s + q2cos(ωst) + βE(ẑ)u.

(18)
Subtracting system (17) from (18), we have the

following error dynamics:{
ė1 = e2,

ė2 = Δf + βE(ẑ)u,
(19)

where Δf = x1m−p1x2m−x3
1m+p2cos(ωmt)−[q1(1−

x2
1s)x2s − x3

1s + q2 cos(ωst)] denotes the uncertainty
between the master and the slave.

To achieve the synchronization between systems
(17) and (18), a robust control strategy can be de-
signed as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 − Lλ1|ẑ1 − z1|2/3sgn(ẑ1 − z1),

˙̂z2 = ẑ3 − L2λ2|ẑ1 − z1|1/2sgn(ẑ1 − z1) + βE(ẑ)u,

˙̂z3 = −L3λ3sgn(ẑ1 − z1),

u =
−1

βE(ẑ)

(
ẑ3 +K2ẑ2 +K1ẑ1

)
.

(20)
In the simulation, the initial states of the master

and the slave are randomly selected from [0, 1], while
the initial values of ẑi are set as zeros. It is letting
p1 = 0.15, p2 = 1.75, ωm = 0.5 for the master, while
q1 = 0.1, q2 = 1.0, ωs = 1.0 and βE(ẑ) = 1 for
the slave. The other parameters are set as χ = 10,
L = 10, λ1 = 2, λ2 = 3, λ3 = 4. The feedback gains
are set as K1 = K2 = 50 such that the characteristic
polynomial equation P(ρ)(s) = s2 +K2s+K1 = 0 is
Hurwitz. The control signal is activated at t = 10 s.

The synchronization errors between Duffing and
van der Pol oscillators are shown in Fig. 2. It is ob-
served that, the robust synchronization between the
slave system (18) and the master system (17) can be
established in general, although their structures are
totally different. As shown in Fig. 2, Type III is still
inferior to the others due to the same reason men-
tioned in Section 3.1. However, benefitting from the
design of the recursive linearizing feedback control
law, our proposed Type IV design can significantly
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Fig. 2 The synchronization errors between Duffing
and van der Pol oscillators with different methods.
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reduce the high frequency oscillation and hence out-
perform the others from the viewpoints of accuracy
and convergence rate. These numerical simulations
suggest that our proposed Type IV design is more ro-
bust to both parametric and structural mismatches.
Therefore, it is recommended and used as the sole
design in the following simulations.

3.3 Synchronization of biological neuronal
networks

Synchronization plays an important role in in-
formation processing for large ensembles of neurons
(Wang et al., 2000; Mao, 2009). Therefore, under-
standing the mechanism underlying synchronization
is more meaningful in neuroscience and thus has been
receiving more and more attention in the last two
decades. As we all know, human brain is composed
of a large number of neurons. On one hand, it is
very difficult, if not impossible, to get all the infor-
mation of a whole neuronal network. On the other
hand, we are usually interested in a small portion of
neurons. Therefore, it is unrealistic and uneconomic
to measure all the state information of a biological
neuronal network. Instead, the synchronization of a
sub-network is more preferable and is thus studied
for this example.

The diagram of the considered biological neu-
ronal network is depicted in Fig. 3. The whole net-
work can be regarded as two sub-networks connected
via neurons 1 and 7. Since synchronization typically
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Fig. 3 The diagram of a biological neuronal network

exists between different biological oscillators, it is
assumed that neurons in subnets I and II are mod-
eled by the Hindmarsh-Rose model and FitzHugh-
Nagumo model, respectively, which are expressed in
the following.

Subnet I:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋim = pi1x
2
im − x3

im − yim − wim

+ c

7∑
j=1

Hij(xjm − xim),

ẏim = (pi1 + pi2)x
2
im − yim,

ẇim = pi3(pi4xim + pi5 − wim),

i = 1, 2, 3, 4,

(21)

where xim is the membrane potential, and yim and
wim are the recovery variables with respect to the
fast and slow currents, respectively. The last term in
the first equation of Eq. (21) indicates the coupling
between the ith neuron and the others in the net-
work, where c is the coupling coefficient, and H is
the connection matrix of the system, where Hij = 1

if neurons i and j are connected, and Hij = 0 oth-
erwise. It is also assumed that Hij = Hji and
Hii = −∑7

j=1,i�=j Hij .

Subnet II:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋim = pi6(yim + xim − x3
im

3
+ 3γ)

+ c
7∑

j=1

Hij(xjm − xim),

ẏim = −(xim − pi7 + pi8yim)/3, i = 5, 6, 7,
(22)

where 1 − 2pi8/3 < pi7 < 1, 0 < pi8 < 1, pi8 < p2i6,
γ = −0.4 is the stimulus intensity, xim shares the
properties of both membrane potential and excitabil-
ity, and yim is responsible for accommodation. Sim-
ilar to subnet I, the last term in the first equation of
Eq. (22) denotes the coupling effect with the same
definition as Eq. (21).

We focus on the dynamics of subnet I. Assum-
ing that only the states of subnet I are measurable, a

subsystem for subnet I is constructed such that the
trajectories of neurons 1–4 are tracked. Since only
the membrane potential of the electrical biological
model can be easily measured in the experiment, it
is assumed that only xim, i = 1, 2, 3, 4 are measur-
able, and the other system states are assumed to be
unknown. Following the design proposed in Section
2, the slave system can be designed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋis = qi1x
2
is − x3

is − yis − wis + c

7∑
j=1

Hij(xjs − xis)

+ βE(ẑ)ui,

ẏis = (qi1 + qi2)x
2
is − yis,

ẇis = qi3(qi4xis + qi5 − wis), i = 1, 2, 3, 4,

(23)
together with a robust control strategy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂zi1 = ẑi2−Lλ1|ẑi1−zi1|1/2sgn(ẑi1−zi1)+βE(ẑ)ui,

˙̂zi2 = −L2λ2sgn(ẑi1 − zi1),

ui =
−1

βE(ẑ)

(
ẑi2 +K1ẑi1

)
,

(24)
where zi1 = xis − xim. Since the Hindmarsh-Rose
model is a minimum-phase system, based on Theo-
rem 2, it can be easily concluded that the states of
the slave (23) converge to those of the master (21).

In the simulation, we set the coupling coefficient
c = 0.1. Parameters pij ’s of subnet I are randomly
selected within 5% of reference values p0i1 = 2.8,
p0i2 = 1.6, p0i3 = 0.001, p0i4 = 9, p0i5 = 5, p0i6 = 3,
p0i7 = 0.7, p0i8 = 0.8, and the parameters of the slave
system qij are uniformly set as the reference ones,
i.e., qij = p0ij . The other parameters are set as χ = 5,
L = 10, λ1 = 1, λ2 = 5, K1 = 10, βE(ẑ) = 10, and
the control signal is switched on at t = 10 s.

The simulation results are given in Fig. 4. Note
that a long time is needed for achieving synchro-
nization of the third state, as it evolves slowly com-
pared to the variables of the other two states. There-
fore, the simulation results for the third state vari-
able are omitted here, and only the synchroniza-
tion errors of the first and second state variables
are given. Figs. 4a and 4b show that although the
exact structure of the whole network is unknown, a
computational model can be constructed by combin-
ing the high-order sliding mode based information
reconstruction technique with linear feedback con-
trol, such that the trajectory of the original neuronal
network can be well tracked. This indicates that the
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proposed robust scheme provides a useful and phys-
ically realizable method to achieve synchronization
of biological neuronal networks.
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4 Conclusions

In this paper, a robust synchronization ap-
proach has been proposed, in which a high-order
sliding mode observer is proposed to estimate the
synchronization error and its time derivatives, while
a feedback control law constructed by a linear func-
tion of the estimated time differentiator is used to
drive the dynamics of the slave to follow that of the
master. The feasibility of the proposed design has
been verified and some examples have been simu-
lated. Simulation results show that the proposed
algorithm can achieve the synchronization of chaotic
systems even if there are some modeling and para-
metric mismatches. Note that although this work
considers only the case that only one system state
is observable, it provides a promising approach to
achieving synchronization of some practical systems
like real circuits. Some more complicated cases, for
example, a combination of the system state variables
is measurable, will be studied in the near future.
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Appendix A: Lemmas

Lemma 1 (Femat et al., 2001) Let us assume that
there exists a coordinate transformation z = Φ(x)

such that the following nonlinear system{
ẋ = f(x) + g(x)u,

y = h(x),
(A1)

can be transformed into the following canonical form:{
żi = zi+1, i = 1, 2, · · · , ρ− 1,

żρ = α(z, ζ) + β(z, ζ)u, β(z, ζ) �= 0,
(A2a)

{
ζ̇ = Ψ(z, ζ), ζ ∈ R

n−ρ,

y = z1.
(A2b)

Now suppose there is an estimate βE(z), defined
by the Lie derivative along an uncertain function
β(z, ζ) = LgL

ρ−1
f h(x) �= 0, such that sgn(βE(z)) =

sgn(β(z, ζ)). Define δ(z, ζ) = β(z, ζ) − βE(z),
Θ(z, ζ, u) = α(z, ζ) + δ(z, ζ)u, and zρ+1 =

Θ(z, ζ, u). Then, there exists an invariant manifold
such that the nonlinear system (A2) can be rewritten
in the following form:⎧⎪⎨

⎪⎩
żi = zi+1, i = 1, 2, · · · , ρ− 1,

żρ = zρ+1 + βE(z)u,

żρ+1 = Γ (z, zρ+1, ζ, u),

(A3a)

{
ζ̇ = Ψ(z, ζ),

y = z1,
(A3b)

where Γ (z, zρ+1, ζ, u) =
∑ρ−1

i=1 [zi+1∂iΘ(z, ζ, u)] +

δ(z, ζ)u̇+ ∂tδ(z, ζ)u+ [zρ+1 + βE(z)]∂ρΘ(z, ζ, u) +

∂ζΘ(z, ζ, u)Ψ(z, ζ), and ∂iΘ(z, ζ, u) =

∂Θ(z, ζ, u)/∂xi.
Proof By definition, we have δ(z, ζ) = β(z, ζ) −
βE(z), Θ(z, ζ, u) = α(z, ζ) + δ(z, ζ)u, and zρ+1 =

Θ(z, ζ, u). Under the trajectories of the sys-
tem (A3), we have a manifold Ξ(z, zρ+1, ζ, u) =
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zρ+1 − Θ(z, ζ, u) and dΞ(z, zρ+1, ζ, u)/dt = 0

(i.e., it is a time invariant manifold with bound-
ary) for the initial condition Ξ0 = 0. By
definition, Ξ(z, zρ+1, ζ, u) = zρ+1 − Θ(z, ζ, u)

and dΞ(z, zρ+1, ζ, u)/dt = 0, which means that
Ξ(z, zρ+1, ζ, u) is the first integral of the nonlinear
system (A2). Therefore, the solution of system (A3)
is a projection of the solution of system (A2). Since
system (A2) is a transformation of the uncertain non-
linear system (A1), system (A3) is also dynamically
equivalent to system (A1).

Lemma 2 (Femat et al., 2001) Let the state-
feedback control be u = −1

βE(z)

(
zρ+1 +KTz

)
, where

the feedback gains K are coefficients of the Hurwitz
polynomial P(ρ)(s) = sρ+K1s

ρ−1+· · ·+Kρ−1s+Kρ.
Then, the solution of (z(t), zρ+1(t), ζ(t)) in sys-
tem (A3) converges to the origin if the subsystem
ζ̇ = Ψ(z, ζ) in (A3) is a minimum-phase system and
the initial condition satisfies Ξ0 = 0.

Proof It is supposed that the initial conditions
satisfy Ξ0 = 0. Since Ξ(z, zρ+1, ζ, u) is an in-
variant manifold, we have zρ+1 = Θ(z, ζ, u) for all
t ≥ 0. Then, we have zρ+1 = α(z, ζ) + δ(z, ζ)u,
where δ(z, ζ) = β(z, ζ) − βE(z). Combining zρ+1

with the state feedback controller, we have u =
−1

β(z,ζ) [α(z, ζ)+KTz]. Since α(z, ζ) is also a smooth
function of its arguments, the augmented state
zρ+1(t) and the state feedback controller u = u(z)

are bounded. On the other hand, the convergence of
the states (z(t), zρ+1(t)) follows from the fact that
the subsystem (A3a) is in cascade form and the
corresponding characteristic polynomial is Hurwitz
under a state feedback controller. In addition, if
(z(t), zρ+1(t)) = 0, the subsystem ζ̇ = Ψ(0, ζ) con-
verges to the origin as it is a minimum-phase system.
Therefore, the state feedback is a practical stabilizer
for system (A3).

Appendix B: Internal stability of the
synchronization error dynamics of two
Lorenz systems

Let us consider two Lorenz systems, where the
master system is expressed as follows:

⎧⎪⎨
⎪⎩

ẋ1m = p1(x2m − x1m),

ẋ2m = p2x1m − x2m − x1mx3m,

ẋ3m = x1mx2m − p3x3m,

(B1)

and the slave system is
⎧⎪⎨
⎪⎩

ẋ1s = p1(x2s − x1s) + u,

ẋ2s = p2x1s − x2s − x1sx3s,

ẋ3s = x1sx2s − p3x3s.

(B2)

Let z1 = e1 = x1s −x1m be the only observable state
error. Based on Lemma 1, the error dynamics can
be changed into a canonical form as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż1 = Γ (·) + u,

ξ̇1 = p2z1 − ξ1 − z1ξ2,

ξ̇2 = z1ξ1 − p3ξ2,

y = z1,

(B3)

where z1 = e1, ξ = (ξ1, ξ2)
T = (e2, e3)

T, ρ = 1. So,
we have the following subsystem:

ξ̇ = Aξ +BS, (B4)

where A =

[ −1 −z1
z1 −p3

]
, B =

[
p2
0

]
, and S = z1.

For the Lorenz system, the polynomial P (s) =

λ2 + (p3 +1)λ+ (p3 + z21) is Hurwitz; i.e., the eigen-
values of matrix A lie in the left-half complex plane.
As the states of the Lorenz system are bounded in a
circle, the state error z1 is also bounded. Hence, sys-
tem Ψ(0, ζ) is asymptotically stable; consequently,
(B1) is a minimum-phase system.

Note that due to the characteristics of chaotic
attractors, we can draw the same conclusion for the
other chaotic systems, like Chua’s system and the
Hindmarsh-Rose neuronal model.

Appendix C: Design of other robust
synchronization schemes

Type I: linearizing feedback control scheme
Referring to Femat and Solis-Perales (2008), the

Type I observer is designed as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̂zi = ẑi+1 − Liki(ẑ1 − z1), i = 1, 2, · · · , ρ− 1,

˙̂zρ = ẑρ+1 − Lρkρ(ẑ1 − z1) + βE(ẑ)u,

˙̂zρ+1 = −Lρ+1kρ+1(ẑ1 − z1),

u =
−1

βE(ẑ)

(
ẑρ+1 +KTẑ

)
,

(C1)
where ẑi is the estimate of its corresponding state zi
and z1 = e1. The coefficients ki and Ki are chosen
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such that their corresponding characteristics of poly-
nomial, i.e., P(ρ+1)(s) = sρ+1 + k1s

ρ + · · · + kρs +

kρ+1 = 0 and P(ρ)(s) = sρ+K1s
ρ−1+ · · ·+Kρ−1s+

Kρ = 0, are Hurwitz. L is a high-gain estimation
parameter.

Type II: Yang’s sliding mode observer
Referring to Yang and Shao (2002), the Type II

observer is designed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 − Lλ1|ẑ1 − z1| 12 sgn(ẑ1 − z1),

˙̂zi = ẑi+1 − Liλi|ẑ1 − z1| 12 sgn(ẑ1 − z1), 2 ≤ i ≤ ρ,

˙̂zρ+1 = −Lρ+1λρ+1|ẑ1 − z1| 12 sgn(ẑ1 − z1),

S = ẑρ+1 +

∫ t

0

⎡
⎣ ρ∑
j=1

cj ẑj + cρ+1(ẑρ+1 + u)

⎤
⎦dt,

u =

∫ t

0

{
αS − βsgn(S)− ˙̂zρ+1

−
⎡
⎣ ρ∑
j=1

cj ẑj + cρ+1(ẑρ+1 + u)

⎤
⎦
⎫⎬
⎭dt,

(C2)

where 0 < α < 1, β > 0.

Type III: high-order sliding mode observer
Referring to Rodríguez et al. (2008), the Type

III observer is designed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂z1 = v1,

v1 = ẑ2 − λ1|ẑ1 − z1|
ρ

ρ+1 sgn(ẑ1 − z1),

˙̂zi = vi, 2 ≤ i ≤ ρ− 1,

vi = ẑi+1 − λi|ẑi − vi−1|
ρ−i+1
ρ−i+2 sgn(ẑi − vi−1),

2 ≤ i ≤ ρ− 1,

˙̂zρ = vρ,

vρ = ẑρ+1 − λρ|ẑρ − vρ−1| 12 sgn(ẑρ − vρ−1),

˙̂zρ+1 = −λρ+1sgn(ẑρ+1 − vρ),

(C3)
where u is a quasi-continuous controller designed as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0,ρ = e1, N0,ρ = |e1|,
Ψ0,ρ =

ϕ0,ρ

N0,ρ
= sgn(e1),

ϕi,ρ = e
(i)
1 + γiN

ρ−i
ρ−i+1

i=1,ρ Ψi−1,ρ,

Ni,ρ = |e(i)1 |+ γiN
ρ−i

ρ−i+1

i−1,ρ ,

Ψi,ρ =
ϕi,ρ

Ni,ρ
.


