
Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686

675

Designing a location update strategy for free-moving and
network-constrained objects with varying velocity*#

Yuan-Ko HUANG, Lien-Fa LIN

(Department of Information Communication, Kao-Yuan University, Taiwan 821, Kaohsiung County)
E-mail: huangyk@cc.kyu.edu.tw; lienfa@cc.kyu.edu.tw

Received Nov. 24, 2013; Revision accepted Mar. 14, 2014; Crosschecked July 16, 2014

Abstract: Spatio-temporal databases aim at appropriately managing moving objects so as to support various types of queries.
While much research has been conducted on developing query processing techniques, less effort has been made to address the
issue of when and how to update location information of moving objects. Previous work shifts the workload of processing updates
to each object which usually has limited CPU and battery capacities. This results in a tremendous processing overhead for each
moving object. In this paper, we focus on designing efficient update strategies for two important types of moving objects,
free-moving objects (FMOs) and network-constrained objects (NCOs), which are classified based on object movement models.
For FMOs, we develop a novel update strategy, namely the FMO update strategy (FMOUS), to explicitly indicate a time point at
which the object needs to update location information. As each object knows in advance when to update (meaning that it does not
have to continuously check), the processing overhead can be greatly reduced. In addition, the FMO update procedure (FMOUP) is
designed to efficiently process the updates issued from moving objects. Similarly, for NCOs, we propose the NCO update strategy
(NCOUS) and the NCO update procedure (NCOUP) to inform each object when and how to update location information. Exten-
sive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed update strategies.

Key words: Spatio-temporal databases, Moving objects, Free-moving objects, Network-constrained objects
doi:10.1631/jzus.C1300337 Document code: A CLC number: TN929

1 Introduction

With the fast advance of mobile and ubiquitous
computing, spatio-temporal databases (Forlizzi et al.,
2000; Güting et al., 2000; Tao and Papadias, 2002;
Huang and Lee, 2010) aiming at efficiently managing
a large number of moving objects have become more
realistic and attractive. Many applications, such as
mobile communication systems, traffic monitoring
systems, flight control systems, and geographical
information systems, can benefit from the advent of
spatio-temporal databases. We focus on the issue of
managing two important types of moving objects in

spatio-temporal databases. They are free-moving
objects (FMOs) and network-constrained objects
(NCOs), classified based on object movement models.
Each FMO can move freely in any direction
throughout the Euclidean space (e.g., a ship moving
on the sea). In contrast, each NCO is constrained to
move on a transportation network (e.g., a car or pe-
destrian moving on the roads). Due to the movement
of objects (including FMOs and NCOs), the object
information stored in spatio-temporal databases may
be updated frequently, especially in a highly dynamic
environment. As a result, how to effectively reduce
the number of location updates from moving objects
while appropriately maintaining their location in-
formation becomes a major challenge for spatio-
temporal databases.

Previous research on reducing the cost of up-
dating the location of moving objects can be classified

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project supported by the National Science Council of Taiwan (Nos.
NSC-102-2119-M-244-001 and MOST-103-2119-M-244-001)
A preliminary version was presented at AINA, March 25–28, 2013,
Barcelona, Spain
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

http://www.zju.edu.cn/jzus/current.php%23c

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686 676

into three categories. Research in the first category
(Song and Roussopoulos, 2001; Xiong et al., 2005;
2006; Yu et al., 2005) tracks the object locations only.
As an example, consider the case in Fig. 1a, in which
objects move in the Euclidean space (i.e., objects
correspond to FMOs) and the curves represent the
trajectories of moving objects. One update strategy is
that each FMO reports its location to the database
server every t timestamps (e.g., FMO1), and the other
strategy is to update the FMO location every d mov-
ing distance units (e.g., FMO2). If objects move in the
transportation network (Fig. 1b), where the move-
ment of each object is constrained to the network and
represented as a line segment, objects NCO1 and
NCO2 correspond to the first and second update
strategies, respectively. These two strategies are in-
efficient because the velocity, including speed and
direction, of moving objects is not taken into consid-
eration. For instance, an object moving with high
speed (e.g., a car driving along a highway) may incur
a large number of location updates as the time re-
quired to move d distance units is short.

In order to alleviate the problem of frequent
updates, motion models are adopted in research of the
second category (Sistla et al., 1997; Wolfson et al.,
1999; Wolfson and Yin, 2003; Tao et al., 2004) to
predict the location of a moving object. As each ob-
ject is aware of its real location obtained from a
Global Positioning System (GPS) device, a location
update is issued to the database server only when the
deviation between the real and predicted locations
exceeds a given threshold T. Consider the object
FMO3 in Fig. 1a. As long as the object’s real location
is within a circle CT centered at the predicted location
with radius T, its location information stored in the

server does not need to be updated. For example, the
solid line and dashed line refer to the real and pre-
dicted locations of object o, respectively. At time t1,
the location information does not need to be updated
because o is still inside circle CT. However, an update
would occur at time t2 as the deviation begins to ex-
ceed threshold T. Similarly, in Fig. 1b, object NCO3
does not update the location information if it is on the
segment ST centered at the predicted location with
length 2T. We define circle CT and segment ST with a
fixed size as the possible region in which the object
lies.

To further reduce the update frequency, research
in the third category (Cheng et al., 2004; Chung et al.,
2009; Huang et al., 2009; Chen et al., 2010) takes
advantage of the object’s location, speed, and direc-
tion to construct a variable-size possible region,
named the ‘spatio-temporal possible region’, whose
location and size change as time progresses. As
shown in Figs. 1a and 1b, objects FMO4 and NCO4
show the different shapes of spatio-temporal possible
regions, called the ‘sector-like region’ and ‘segment-
bounded region’, for the Euclidean space and trans-
portation network, respectively. The sector-like re-
gion of moving object FMO4 in the Euclidean space is
constructed by considering object FMO4’s start loca-
tion l(t0), and speed and direction varying within
[so, So] and [θo, Θo], respectively. With l(t0), [so, So],
and [θo, Θo], the sector-like region R(ti) of FMO4 at
time ti can be computed and enclosed by four end-
points, two segments, and two arcs. The segment-
bounded region R(ti) of object NCO4 at time ti is
computed by considering only NCO4’s start location
l(t0) and speed range [so, So], because NCO4’s moving
direction is constrained by the underlying network

 Fig. 1 Update strategies for moving objects: (a) free-moving objects (FMOs); (b) network-constrained objects (NCOs)

n1
n2

n3 n4

n5

t

t1

t

t2

NCO1

d
d

NCO2

T NCO3

NCO4

R(t1)l(t0)

t t t

d
d

d d

Timet0 t1 t2

FMO3

T
CT

FMO1

FMO2 FMO4

(a) (b)

R(t2)

R(t3) R(t1)
R(t2)Time

Time

Time

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686

677

(i.e., fixed direction). In this paper, we adopt the
sector-like region and segment-bounded region as
both moving speed and direction are considered in
these two types of regions.

Allowing each object to move inside the spatio-
temporal possible region can significantly reduce the
cost of communication between each object and the
database server. However, it raises other crucial issues
affecting the system performance even more. These
issues include (1) when to update the spatio-temporal
possible region of each object and (2) how to update
the spatio-temporal possible region when object up-
date occurs. To address these issues, previous studies
(Wolfson and Yin, 2003; Cheng et al., 2004; Huang et
al., 2009; Chen et al., 2010) shifted the workload of
updating the spatio-temporal possible region to each
object. That is, each object needs to continuously
check whether its real location is inside the spatio-
temporal possible region. This would result in a tre-
mendous processing overhead, especially for moving
objects which usually have limited CPU and battery
capacities. As such, we design two novel update
strategies, namely the FMO update strategy (FMOUS)
and the NCO update strategy (NCOUS), for each
FMO in the Euclidean space and each NCO in the
transportation network, respectively. The two update
strategies can be used to explicitly indicate a time
point tu for FMO and NCO, at which it has to update
its spatio-temporal possible region. The time point tu
is determined based on (1) whether the object’s real
location is inside the spatio-temporal possible region
and (2) the sizes of the spatio-temporal possible re-
gion including the area of the sector-like region and
the length of the segment-bounded region. In addition,
we develop the FMO update procedure (FMOUP) and
the NCO update procedure (NCOUP) to efficiently
handle the updates of FMOs and NCOs, respectively.
By exploiting these update strategies and update
procedures, the computation cost at the client side can
be effectively reduced.

This paper is an enhanced version of Huang et al.
(2013), which focuses on FMOs only. The method is
extended to be able to manage not only FMOs in the
Euclidean space but also NCOs in the transportation
network. In addition to the FMOUS and FMOUP in
Huang et al. (2013), we design the NCOUS to give
each NCO a time point at which its segment-bounded
region needs to be updated, and develop the NCOUP

to process the location updates of NCOs. A new and
comprehensive empirical performance study of the
proposed methods is reported.

2 Spatio-temporal possible region

In this section, we first discuss how to construct
the spatio-temporal possible region of each FMO in
the Euclidean space, in which the spatio-temporal
possible region is represented as the sector-like region.
Then, we describe the data structures used for repre-
senting the transportation network and how to derive
the segment-bounded region of each NCO based on
such data structures.

2.1 Sector-like region in the Euclidean space

For each FMO in the Euclidean space, its mov-
ing speed varies between a minimum and a maximum
speed. Also, its moving direction lies in between a
minimum and a maximum angle. Note that in our
model, each angle is represented as a polar angle
within [0, 2π]. For example, Fig. 2 shows that the
speed and direction of an object o varies within [so, So]
and [θo, Θo], respectively. When object o moves with
the minimum speed so and minimum angle θo, its
location at time t is computed as lα(t)=l(t0)+vα(t−t0),
where l(t0)=(xo, yo) is the start location, vα=(socos θo,
sosin θo) is the velocity, and t0 is the start time. When
object o moves with the minimum speed so and
maximum angle Θo, the location of object o at time t
is lγ(t)=l(t0)+vγ(t−t0), where vγ=(socos Θo, sosinΘo). If
the direction of o varies within [θo, Θo], all of its
possible locations at time t would form an arc, de-
noted as ()l l tα γ , in which lα(t) and lγ(t) are the two
endpoints. That is, at time t object o is located at some

Fig. 2 Sector-like region

R(t)

x

y

l0(t)

()l l tα γ

()l l tβ δ

()l l tα β

()l l tγ δ

()l tβ

()l tδ

()l tγ

()l tα

θ
Θ

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686 678

point on the arc ()l l tα γ . Similarly, as the speed of
object o is So and the direction is within [θo, Θo], the
possible locations of o can be represented by another
arc ()l l tβ δ whose two endpoints are lβ(t) and lδ(t).
Hence, when the speed and direction are within [so, So]
and [θo, Θo], respectively, all the possible locations of
o form a sector-like region R(t) (Fig. 2), which is
enclosed by four endpoints lα(t), lβ(t), lγ(t), and lδ(t),
two segments ()l l tα β and (),l l tγ δ and two arcs
()l l tα γ (i.e., the nearest possible locations) and
()l l tβ δ (i.e., the farthest possible locations).

2.2 Segment-bounded region in the transportation
network

Each object NCO moves with a varying speed
within [so, So] and a fixed direction in a transportation
network, which is represented as an undirected
weighted graph consisting of a set of nodes and edges.
To efficiently represent the transportation network,
we use three tables to store the information of edges,
nodes, and NCOs of the network. The first is the edge
table Te storing for each edge ei of the transportation
network: (1) its start node ns and end node ne (where
ns<ne), (2) its length len (i.e., the distance between ns
and ne), and (3) a set Sobj of moving objects currently
on ei. The second one is the node table Tn, which
maintains for each node ni the set Sadj of edges con-
necting ni. The last one is the object table To main-
taining the information of each NCO. To stores for
each NCO oi: (1) the edge ej containing it, (2) the
reference time tr, (3) the distance dist between oi and
the start node ns of edge ej (i.e., ej.ns) at tr, (4) its
minimum moving speed so, and (5) its maximum

speed So. The three tables are updated only when
objects reach the network nodes. Take a transporta-
tion network consisting of nodes n1 to n6 and edges e1
to e5 (Fig. 3a) to illustrate the information stored in
the three tables Te, Tn, and To, where an edge label is
followed by its len enclosed in parentheses. In this
transportation network, each of objects o1 to o5 moves
with a minimum speed of 1 m/s and a maximum
speed of 2 m/s, and its moving direction is indicated
by the corresponding arrow. Fig. 3b shows the de-
tailed information of tables Te, Tn, and To. Note that a
positive speed value of an object in To (e.g., object o2)
indicates that this object moves from the start node to
the end node, and that a negative value (e.g., object o1)
indicates that it moves in the opposite direction.

Using these three tables, the segment-bounded
region R(t) of each NCO in the transportation network
can be computed. Consider an NCO o that moves with
a speed within [so, So]. Having accessed tables To and
Te, we know that object o is located on the edge ej
whose start node and end node are ns and ne, respec-
tively. If object o moves with the minimum speed so,
then its distance to node ns at time t can be computed
as dm(t)=dist+so(t−tr). Conversely, if o moves with the
maximum speed So, then its distance to node ns at time
t is represented as dM(t)=dist+So(t−tr). When the speed
of object o varies within [so, So], all the possible lo-
cations of o would be bounded by the line segment

m M ()d d t whose length is equal to ||dM(t)−dm(t)||.
Taking object o1 in Fig. 3a as an example, its mini-
mum speed so and maximum speed So are equal to −1
and −2, respectively, because it moves toward the
start node n1. The distance dm(t) of object o1 to node
n1 at time 2 is computed as 8−1×2=6. Also, the dis-
tance dM(t) of o1 to n1 is equal to 8−2×2=4. Finally,

 Fig. 3 Segment-bounded region: (a) a transportation network; (b) three tables

ei

e1

e2

e3

e4

e5

len

12

9

9

10

ns

n1

n2

n1

n1

n2

ne

n2

n3

n4

n5

n6

Sobj

{o1}

null

{o2}

Te Tn

ni

n1

n2

n3

n4

n5

Sadj

{e1, e3, e4}

{e2}

{e3}

n6

To

oi

o1

o2

o3

dist

8

2

2

so

-1

1

1

tr

0

0

0

e1

e4

e5

ej So

-2

2

2

10

null

{o3} {e4}

{e5}

o1

o2

o3 n1

n2

n4

n6

n3

n5

e2 (9)

e1 (12)

e3 (9)

e4 (10)

e5 (10)
2 dm(t)

(a) (b)

dM(t) {e1, e2, e5}

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686

679

the segment-bounded region m M ()d d t of object o1
(depicted as the shaded line) has a length of |4−6|=2.

3 FMOUS and FMOUP in the Euclidean space

In this section, we describe how FMOUS indi-

cates a time point at which each FMO needs to update
location information and how to process such an up-
date using FMOUP.

3.1 FMOUS

Due to varying traffic conditions such as jams
and accidents on the road, an object FMO may move
out of its sector-like region at some time point t. As a
result, the new location, speed, and direction of the
FMO have to be updated at time t. Furthermore, be-
cause the scope of the sector-like region R(t) of an
FMO grows as time progresses, the FMO has to up-
date its precise location information to decrease the
number of possible locations. Thus, FMOUS is de-
signed to determine the time point tu at which the
FMO needs to update its location information, ac-
cording to (1) time point tα at which the FMO moves
out of its sector-like region R(tα) and (2) time point tβ
at which the size of its sector-like region R(tβ) exceeds
a system parameter Amax. In the following, we de-
scribe how to obtain tα and tβ.

Assume that at time tc an object o whose location
is (xo

c, yo
c) changes its moving speed to xo

c and/or
moving angle to θo

c. As (xo
c, yo

c) is within the corre-
sponding sector-like region S(tc), o will be out of R(tα)
at a future time tα when (1) o moves out from arc
(),l l tβ δ α (2) o moves out from arc (),l l tα γ α (3) o

moves out from segment (),l l tα β α or (4) o moves out

from segment ().l l tγ δ α
The first condition holds only for the case in

which the moving speed so
c is greater than the max-

imum speed So. As shown in Fig. 4a, object o moves
towards the direction indicated by the arrow and its so

c
is larger than So. In this case, object o would move out
from arc ()l l tβ δ α and tα can be estimated as follows:

0()o c
c

o

S t t Ct t
A B C Sα

− −
= +

+ − −
, (1)

where
2

2

2 2

(cos) ,

(sin) ,

() () .

c c c
o o o o
c c c
o o o o
c c
o o o o

A x s x

B y s y

C x x y y

θ

θ

 = + −


= + −
 = − + −

The second condition is so

c<so. In this case, o
will move out from arc ()l l tα γ α at time tα. Substitut-
ing so for So in Eq. (1) leads to the tα in this condition.

The third condition is that object o changes its

moving angle to θo
c at time tc which is less than the

minimum angle θo. Therefore, o will move out from
segment ()l l tα β α at time tα (Fig. 4b). Let (xr, yr) be the

point on segment ()l l tα β α where object o moves out
of region R(tα), computed as follows:

r

r r

(tan) (tan)
,

tan tan
tan tan .

c c c
o o o o o o

c
o o

o o o o

y x y xx

y x y x

θ θ
θ θ

θ θ

 − − −
= −

 = + −

 (2)

Then tα can be estimated as

2 2
r r() ()c c

o o
c c

o

x x y y
t t

sα

− + −
= + . (3)

The last condition holds only if θo

c is greater than
the maximum angle Θo. This means that at time tα
object o moves out from a point (xl, yl) on segment

(),l l tγ δ α where

Fig. 4 Determining the time point tα at which the object
moves out from the arc (a) or the segment (b)

Time

l(t0)

tct0 Time
(a) (b)

tct0

()l tβ α

()l tδ α

()l tβ α

()l tα α

tαtα

Θ

θ

Θ

θ

c
os c

oθ

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686 680

l

l r

(tan) (tan)
,

tan tan
tan tan .

c c c
o o o o o o

c
o o

o o o o

y x y xx

y x y x

θ Θ
Θ θ

Θ Θ

 − − −
= −

 = + −

 (4)

Also, tα can be determined by Eq. (3) after re-

placing xr and yr by xl and yl, respectively.
To maintain the location information of moving

objects, a system parameter Amax can be used to limit
the number of possible locations inside the sector-like
region of each FMO. For each object o, if the size of
its sector-like region R(tβ) at time tβ exceeds Amax,
then o needs to update the location, speed, and direc-
tion to the server. The time point tβ is computed as
follows:

max
0 2 2

360
.

π()()o o o o

At t
S sβ Θ θ

= +
− −

 (5)

Thus, tα and tβ are both determined. The time

point tu at which object o needs to update its location
information is then determined by tu=min(tα, tβ).
Benefiting from FMOUS, each FMO knows in ad-
vance when to update its location information. This
means that the object does not have to continuously
check its location within time interval [t0, tu], and thus
the processing overhead can be greatly reduced.

3.2 FMOUP

Once an update of FMO occurs, FMOUP is
adopted to rapidly renew the location information of
the object in the database server and determine a new
sector-like region for this FMO. Let us use the ex-
ample in Fig. 5 to illustrate how FMOUP works:

Step 1: At time t0, FMO o sends its real location
(xo, yo), moving speed s, and moving angle θ to the
location-based database server.

Step 2: At the server side, the sector-like region
R(t) for FMO o is determined depending on factors
such as the historical object information (e.g., loca-
tion, speed, and angle), the traffic condition, and the
location update frequency.

Step 3: The determined R(t) and the system pa-
rameter Amax are sent to FMO o.

Step 4: Once FMO o changes its moving speed
or direction at time tc, the time point tα is computed.
Also, the time point tβ can be estimated. Then, the
update time tu is set to min(tα, tβ).

Step 5: At time tu at which FMO o needs to issue
an update, the location (xu, yu), speed su, and angle θu
are sent to the location server.

Step 6: According to (xu, yu), su, and θu, the
server determines a new sector-like region R(t) for
FMO o.

Step 7: The new R(t) is sent to FMO o.

4 NCOUS and NCOUP in the transportation
network

4.1 NCOUS

Compared to FMOUS for the Euclidean space,
NCOUS for the transportation network is more com-
plex since the time point at which NCO reaches a
node in the network would affect the update time tu.
As a result, NCOUS is proposed to determine tu by
considering (1) the time point tα at which NCO moves
out of its segment-bounded region R(tα), (2) the time
point tβ at which the length of the segment-bounded
region R(tβ) is greater than a system parameter Lmax,
and (3) the time point tδ at which the endpoint dM(tδ)
of the segment-bounded region R(tδ) reaches a node in
the network. The determination of tα, tβ, and tδ is de-
tailed in the following.

Let object o be the NCO that changes its moving
speed to so

c at time tc and distc be the distance of ob-
ject o to the start node ns at time tc. The time point tα is
then determined based on whether so

c is (1) less than
the minimum speed so, or (2) greater than the maxi-
mum speed So. If so

c<so, at time tα object o will be out
of segment-bounded region R(tα) through endpoint
dm(tα). For example, in Fig. 6a, the speed of object o
(depicted as the white point) is changed to so

c at time
tc and segment-bounded region R(tc) is represented as

Fig. 5 Schematic of the free-moving object update pro-
cedure (FMOUP)

Location-based
database server

An FMO o in the
Euclidean space

Step 1: send location,
speed, and angle

Step 3: report R(t)

Step 4:
compute time tu

Step 5: send new location,
speed, and angle

Step 7: report new R(t)

Step 2: determine R(t)

Step 6: update R(t)

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686

681

the shaded line segment. As so
c<so, object o will move

out from dm(tα) at time tα. In this case, tα can be esti-
mated as

r(dist dist) ()c
o c

c c
o o

s t tt t
s sα

− − −
= +

−
, (6)

where tr is the reference time point and dist is the
distance of o to node ns at tr.

When so

c>So, at time tα object o will be out of
segment-bounded region R(tα) through endpoint dM(tα)
(Fig. 6b). Hence,

r(dist dist) ()c
o c

c c
o o

S t tt t
s Sα

− − −
= +

−
. (7)

Given a system parameter Lmax, time point tβ is

computed based on whether the length of segment-
bounded region R(t) of NCO is greater than Lmax. That
is, at tβ, Lmax=|dm(tβ)−dM(tβ)|. As dm(tβ)=dist+so(tβ−tr)
and dM(tβ)=dist+So(tβ−tr), we have

max

r .
| |o o

Lt t
s Sβ = +
−

 (8)

For an application in which the location infor-

mation of moving objects needs to be as precise as
possible, Lmax will be set to a lower value. Otherwise,
a higher value of Lmax is preferable.

For each NCO o, if at time tδ the endpoint dM(t)
of its segment-bounded region reaches a node in the
transportation network, then o needs to update its
information stored in tables Te and To. For example, in
Fig. 3, if o moves from the previous edge ep to the
next edge en at time tδ, it will be removed from the set
Sobj of ep and then added into that of en. As for table To,
the values of ej, tr, and dist are updated to en, tδ, and 0

(or en.len), respectively, where dist=0 (or dist=en.len)
as dM(tδ) reaches the start node ns (or end node ne) of
edge en.

The determination of the time point tδ depends
on whether object o moves towards the start node ns
or the end node ne. If o moves towards ns, then the
time point tδ at which dM(tδ) reaches ns is computed as

r
dist .

o

t t
Sd

−
= + (9)

Otherwise, the time point tδ at which dM(tδ) reaches ne
is computed as

n
r

.len dist .
o

et t
Sd
−

= + (10)

Having determined tα, tβ, and tδ, the time tu is

then determined by tu=min(tα, tβ, tδ).

4.2 NCOUP

The main goal of NCOUP is to quickly evaluate
the location update issued from each NCO and reas-
sign a new segment-bounded region for NCO. Similar
to FMOUP (Section 3.2), NCOUP works as follows
(Fig. 7):

Step 1: At time t0, NCO o sends an update in the
form of (e, dist, s, t0) to the location-based database
server, which indicates that o moves on edge e at time
t0 and its moving speed and distance to the start node
of e are s and dist, respectively.

Step 2: At the server side, the three tables Te, Tn,
and To are modified according to the tuple (e, dist, s, t0)
of NCO o. In addition, the minimum speed so and the
maximum speed So in table To are determined, de-
pending on factors such as the historical object in-
formation, the traffic condition, and the location up-
date frequency, to construct the segment-bounded
region R(t) for NCO o.

Step 3: The determined R(t) and the system pa-
rameter Lmax are sent to NCO o.

Step 4: When NCO o changes its moving speed
to so

c at time tc, the time points tα, tβ, and tδ are cal-
culated. The update time tu is then set to min(tα, tβ, tδ).

Step 5: At tu, the distance distu to the start node
and the updated speed su of NCO o are sent to the
location server.

ns

Fig. 6 Determining the time point tα at which the object
moves out from dm(t) (a) or dM(t) (b)

dist

distc

dm(tc)

so so
c

ne

(a)

dist

distc

dM(tc)

So so
c

ns ne

(b)

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686 682

Step 6: According to distu and su, the server de-
termines a new segment-bounded region R(t) for
NCO o.

Step 7: The new R(t) is sent to NCO o.

5 Performance evaluation

In this section, we conducted two sets of ex-
periments for the proposed update strategies, i.e.,
FMOUS for the Euclidean space and NCOUS for the
transportation network. In the first set of experiments,
the efficiency of FMOUS was demonstrated based on
comparison with other strategies in terms of (1) the
number of updates issued from FMOs and (2) the
processing overhead for the update strategies. The
second set of experiments was aimed to investigate
the performances of NCOUS and its competitors by
measuring the number of object updates and the
processing cost.

5.1 Experimental settings

All experiments were performed on a PC with
Intel Core Duo 1.8 GHz CPU and 1 GB RAM. The
algorithms were implemented in C++. One synthetic
dataset and one real dataset were used in the simula-
tion for FMOUS. The synthetic dataset consisted of
100k FMOs whose start locations were uniformly
spread over a region of 1 000 km×1 000 km. As for the
real dataset, we used the CA file (TIGER/Line, http://
www.census.gov/geo/www/tiger) which contains 62k
FMOs distributed over a region of 25 000 km×25 000
km. The minimum speed so and maximum speed So of
an FMO o were randomly generated between 0 and 90

m/s. For the moving direction of FMO o, the mini-
mum angle θo was randomly generated within [0, 2π],
and the maximum angle Θo=θo+θ′, where θ′=π/6, π/3,
or π/2. The initial speed (resp. angle) of an FMO was
randomly assigned a value bounded by so and So (resp.
θo and Θo). To evaluate the performance of NCOUS,
we used two road maps and generated 100k NCOs
using the generator proposed by Brinkhoff (2002).
The first road map was Oldenburg, a city in Germany,
consisting of about 6000 nodes and 7000 edges, and
the second was the San Joaquin County with about
18 200 nodes and 23 800 edges. The minimum speed
so and maximum speed So of each NCO were uni-
formly distributed between 0 and 40 m/s. Then, the
initial speed of each NCO was set to a value within
[so, So]. When an NCO o reached a node n in the
network, the next edge on which o moved was ran-
domly chosen among the edges connecting n. In the
experimental space, a percentage Po of FMOs (resp.
NCOs) would change the moving speed and/or di-
rection (resp. moving speed only) every To time units,
where Po and To were equal to 5% and 10, respec-
tively, unless otherwise specified. The assignment of
the new speed and angle was the same as that of the
initial speed and angle. In this simulation, the evalu-
ation time interval had a default value of 100 time
units, the default Amax for FMO was set to 0.1% of the
entire space, and the default Lmax for NCO was set to
0.1% of the entire network.

The performance was measured by the number
of object updates and the processing overhead for the
proposed update strategies FMOUS and NCOUS. We
compared FMOUS and NCOUS against the fixed
time interval update strategy (FIUS for short) in
which the location information of each object (in-
cluding FMO and NCO) was updated every To time
units, and the circular region update strategy (CRUS
for short) in which an update occurred if the location
of FMO was not inside the circle CT whose size was
the same as Amax or if the location of NCO was not
inside the segment ST whose size was the same as
Lmax.

5.2 Efficiency of FMOUS

We first compared the proposed FMOUS with
FIUS and CRUS using the synthetic dataset and CA
dataset. Four sets of experiments were conducted to
investigate the effects of two important factors, Po and

Fig. 7 Schematic of the network-constrained object update
procedure (NCOUP)

Location-based
database server

An NCO o in the
transportation network

Step 1: send (e, dist, s, t0)

Step 3: report R(t)
and Lmax

Step 4:
compute time tu

Step 5: send new
(e, distu, su, tu)

Step 7: report new R(t)

Step 2: determine so and So

to construct R(t)

Step 6: update R(t)

Te

TnTo

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686

683

To, on the number of object updates and the pro-
cessing overhead for these update strategies.

Fig. 8 shows the number of object updates for
FMOUS and its competitors under various Po. Note
that hereafter a logarithmic scale is used for the y-axis
of all figures. Figs. 8a and 8b illustrate the number of
updates for the synthetic dataset and CA dataset, re-
spectively, by varying Po from 5% to 30%. FMOUS
significantly outperformed FIUS, even for a large
value of Po (e.g., 30%), which indicates that many of
FMOs have changed their speeds and directions. The
reason is that for FIUS each object has to update its
location information every 10 time units even if its
speed or direction does not change, whereas for
FMOUS unnecessary updates can be avoided by al-
lowing each object to move within the sector-like
region. Similarly, the performance gap between
FMOUS and CRUS increased with the increase of Po.
This is mainly due to the fact that, for CRUS some
objects with varying speeds and directions could
easily move out of the circle CT whose size is fixed
and thus object update occurs while for FMOUS such
objects are still inside their sector-like regions and
thus object updates are not needed.

Fig. 9 shows the impact of To on the perfor-

mances of FMOUS, FIUS, and CRUS. In these ex-
periments, we varied the value of To from 5 to 50 time
units and measured the number of object updates for
FMOUS, FIUS, and CRUS. Figs. 9a and 9b show that
for all update strategies, the number of object updates
decreased with the increase of To. This is because a
greater To (i.e., a longer time interval within which
FMO does not change speed or direction) would al-
low more FMOs to delay their updates to the location
server so that the total number of updates decreases.

In both sets of experiments, FMOUS outperformed
FIUS and CRUS in the entire range of To. The ex-
periments confirmed again that using FMOUS can
dramatically reduce the number of object updates.

The following two sets of experiments demon-
strated the effectiveness of FMOUS by studying the
effects of the number of objects changing their speeds
or directions (i.e., Po) and the time interval within
which the object’s speed and direction remained un-
changed (i.e., To) on the processing overhead of
FMOUS, FIUS, and CRUS. For FIUS, the processing
overhead is the number of time units of the time in-
terval within which the FMO needs to update its lo-
cation information. For FMOUS and CRUS, the
processing overhead is the number of time units of the
time interval within which the FMO has to check
whether its real location is out of sector-like region
R(t) and circle CT, respectively.

Fig. 10 shows the processing overhead of
FMOUS, CRUS, and FIUS as a function of Po vary-
ing from 5% to 30%. CRUS had the worst perfor-
mance among the three update strategies and its pro-
cessing overhead remained constant for different
values of Po. The main reason is that in CRUS each
FMO does not know when to update its location and
thus it has to check its location at each time instant,
regardless of whether the moving speed or direction
changes. Similarly, FIUS had a constant overhead
under various Po for both the synthetic dataset and CA
dataset. This is because for FIUS all objects would
process location updates every 10 time units. In both
experiments, FMOUS outperformed its competitors
significantly as using FMOUS to give each object a
time point at which to update its location can effec-
tively reduce the processing overhead.

Fig. 9 Number of object updates vs. To: (a) synthetic
dataset; (b) CA dataset

N
um

be
r o

f o
bj

ec
t u

pd
at

es

N
um

be
r o

f o
bj

ec
t u

pd
at

es

1e3
5 10 20 50

F MOUS CRUS FIUS

To

(a) (b)

1e4

1e5

1e6

1e7

1e3

1e4

1e5

1e6

1e7

5 10 20 50

To

Fig. 8 Number of object updates vs. Po: (a) synthetic
dataset; (b) CA dataset

N
um

be
r o

f o
bj

ec
t u

pd
at

es

FMOUS CRUS FIUS

(a) (b)

1e3

1e4

1e5

1e6

N
um

be
r o

f o
bj

ec
t u

pd
at

es

1e3

1e4

1e5

1e6

5% 10% 20% 30%

Po

% 10% 20% 30%

Po

5

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686 684

The last set of experiments shows the processing
overhead of FMOUS, CRUS, and FIUS under various
To (Fig. 11). Similar to the experiments demonstrated
by Fig. 9, we varied the value of To from 5 to 50 time
units to investigate the effect of the time interval
within which FMO does not change speed or direction.
When each FMO changed speed or direction fre-
quently (e.g., To=5), FMOUS outperformed CRUS or
FIUS by a factor of about 100 or 20, respectively.
When To>5, FMOUS reduced the processing over-
head by a factor of up to 200 compared to CRUS and
a factor of 20 compared to FIUS.

5.3 Efficiency of NCOUS

To demonstrate the efficiency of NCOUS, we
compared it with FIUS and CRUS in terms of the
number of object updates and the processing over-
head. We studied the impacts of Po and To on the
performances of NCOUS, FIUS, and CRUS.

Fig. 12 shows the number of object updates for
NCOUS, FIUS, and CRUS under various Po and To.
As shown in Fig. 12a, FIUS had the worst perfor-
mance in all cases because of its simple update
strategy in which the object reports the location in-

formation periodically. When Po increased, the
number of object updates for NCOUS and CRUS
increased, because (1) for NCOUS more NCOs could
reach the network nodes or move out of the segment-
bounded region R(t) and (2) for CRUS more NCOs
are not inside their corresponding segment ST so that
more updates occur. Fig. 12b shows the number of
object updates under different values of To. The
curves for all update strategies showed decreasing
trend, following a similar reasoning for the experi-
ment demonstrated by Fig. 9.

Fig. 13 shows how the varying Po and To affect

the processing overhead of NCOUS, FIUS, and
CRUS. For CRUS, the processing overhead remained
107. The reason for this high processing cost is that at
each time unit, each NCO inevitably checks whether
its real location is inside the segment ST. As for FIUS,
its processing overhead is dominated by To and is
insensitive to Po, because the processing cost is re-
quired only when NCO updates its location infor-
mation. The experimental results showed that
NCOUS has a significantly better performance in
terms of processing overhead compared to CRUS and
FIUS.

Fig. 10 Processing overhead vs. Po: (a) synthetic dataset;
(b) CA dataset

(a) (b)

FMOUS CRUS FIUS

5% 10% 20% 30%

P
ro

ce
ss

in
g

ov
er

he
ad

Po

1e4

1e5

1e6

1e7

P
ro

ce
ss

in
g

ov
e r

he
a d

1e4

1e5

1e6

1e7

5% 10% 20% 30%
Po

Fig. 11 Processing overhead vs. To: (a) synthetic dataset;
(b) CA dataset

(a) (b)

P
ro

ce
ss

in
g

ov
er

he
ad

P
ro

ce
ss

in
g

ov
er

he
ad

5 10 20 50
To

FMOUS CRUS FIUS

7e3

7e4

7e5

7e6

7e3

7e4

7e5

7e6

5 10 20 50
To

Fig. 12 Number of object updates with varying Po (a) and
varying To (b)

(a) (b)

N
um

be
r o

f o
bj

ec
t u

pd
at

es

1e3
5% 10% 20% 30%

Po

NCOUS CRUS FIUS

5 10 20 50N
um

be
r o

f o
bj

ec
t u

pd
at

es

To

1e4

1e5

1e6

1e3

1e4

1e5

1e6

1e7

P
ro

ce
ss

in
g

ov
er

he
ad

 1e7

1e6

1e5

1e4 P
ro

ce
ss

in
g

ov
er

he
ad

 1e7

1e6

1e5

1e4

Fig. 13 Processing overhead with varying Po (a) and var-
ying To (b)

5 1 0 2 0 5 0
T o

(a) (b)

5 % 1 0 % 2 0 % 3 0 %
P o

N C O U S C R U S F I U S

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686

685

The last experiment was aimed to study how
well NCOUS, FIUS, and CRUS work for a larger
transportation network, San Joaquin County.
Figs. 14a and 14b show the number of object updates
for the three strategies under various Po and To, re-
spectively. Compared to the experimental results in
Fig. 12 for a small transportation network, Oldenburg,
the number of object updates for NCOUS slightly
increased. The reason for the higher update number is
that the road connectivity of the larger network is
more complicated so that more time points tδ at which
NCO reaches a network node exist. Nevertheless,
NCOUS still significantly outperformed FIUS and
CRUS in all cases. Figs. 14c and 14d show that
NCOUS had almost the same processing overhead in
comparison with Fig. 13. From the experimental re-
sults, we know that NCOUS is also suitable for a
transportation network with more complicated road
connectivity.

6 Conclusions

This paper focuses on developing efficient up-
date strategies to process the location updates issued
from moving objects (including FMOs and NCOs)
with varying speeds and directions. Previous work

shifted the workload of processing updates to each
object whose CPU and battery capacity are limited,
which would result in a tremendous processing
overhead. To efficiently process object updates, for
FMOs we designed FMOUS to explicitly give each
FMO a time point at which to update its location
information. In addition, FMOUP was used to process
object updates. Similarly, for NCOs, we proposed
NCOUS and NCOUP to inform each object when and
how to update location information. Experimental
results showed that the proposed update strategies can
greatly reduce the processing overhead for each ob-
ject while maintaining the location information.

There are several interesting avenues for future
extensions of this work. Our next step is to properly
represent the transportation network and conduct
more experiments investigating the performances of
different update strategies. An important research
direction is how to efficiently answer the spatio-
temporal queries, such as the range query and
K-nearest neighbor query, on FMOs with sector-like
regions and NCOs with segment-bounded regions. A
further extension is to develop a specialized index
structure for managing FMOs and NCOs.

References
Brinkhoff, T., 2002. A framework for generating network-

based moving objects. GeoInformatica, 6(2):153-180.
[doi:10.1023/A:1015231126594]

Chen, S., Ooi, B.C., Zhang, Z., 2010. An adaptive updating
protocol for reducing moving object database workload.
Int. Conf. on Very Large Data Bases, p.735-746.

Cheng, R., Kalashnikov, D.V., Prabhakar, S., 2004. Querying
imprecise data in moving object environments. IEEE
Trans. Knowl. Data Eng., 16(9):1112-1127. [doi:10.1109/
TKDE.2004.46]

Chung, B.S.E., Lee, W.C., Chen, A.L.P., 2009. Processing
probabilistic spatio-temporal range queries over moving
objects with uncertainty. Int. Conf. on Extending Data-
base Technology, p.60-71.

Forlizzi, L., Güting, R.H., Nardelli, E., et al., 2000. A data
model and data structures for moving objects databases.
Int. Conf. on ACM Management of Data, p.319-330.

Güting, R.H., Bohlen, M.H., Erwig, M., et al., 2000. A foun-
dation for representing and querying moving objects.
ACM Trans. Database Syst., 25(1):1-42. [doi:10.1145/
352958.352963]

Huang, Y.K., Lee, C., 2010. Efficient evaluation of continuous
spatio-temporal queries on moving objects with uncertain
velocity. GeoInformatica, 14(2):163-200. [doi:10.1007/
s10707-009-0081-8]

Fig. 14 The performances of the three strategies for a
larger network, San Joaquin County
(a) Update number vs. Po; (b) Update number vs. To; (c)
Processing overhead vs. Po; (d) Processing overhead vs. To

P
ro

ce
ss

in
g

ov
er

he
ad

5% 10% 20% 30%
Po

NCO US CRUS FI US

5 10 20 50

5% 10% 20% 30% 5 10 20 50

N
um

be
r o

f o
bj

ec
t u

pd
at

es

Po

To

To

P
ro

ce
ss

in
g

ov
er

he
ad

N
um

be
r o

f o
bj

ec
t u

pd
at

es

1e3

1e4

1e5

1e6

1e3

1e4

1e5

1e6

1e7

1e4

1e5

1e6

1e7

1e4

1e5

1e6

1e7

(a)

(c)

(b)

(d)

http://dx.doi.org/10.1023/A:1015231126594
http://dx.doi.org/10.1023/A:1015231126594
http://dx.doi.org/10.1109/TKDE.2004.46
http://dx.doi.org/10.1109/TKDE.2004.46
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/10.1007/s10707-009-0081-8
http://dx.doi.org/10.1007/s10707-009-0081-8

Huang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):675-686 686

Huang, Y.K., Liao, S.J., Lee, C., 2009. Evaluating continuous
K-nearest neighbor query on moving objects with uncer-
tainty. Inform. Syst., 34(4-5):415-437. [doi:10.1016/j.is.
2009.01.001]

Huang, Y.K., Su, I.F., Lin, L.F., et al., 2013. Efficient pro-
cessing of updates for moving objects with varying speed
and direction. Int. Conf. on Advanced Information Net-
working and Applications, p.854-861.

Sistla, A.P., Wolfson, O., Chamberlain, S., et al., 1997. Mod-
eling and querying moving objects. Int. Conf. on Data
Engineering, p.422-432.

Song, Z., Roussopoulos, N., 2001. K-nearest neighbor search
for moving query point. Int. Conf. on Spatial and Tem-
poral Databases, p.79-96.

Tao, Y., Papadias, D., 2002. Time parameterized queries in
spatio-temporal databases. Int. Conf. on ACM Manage-
ment of Data, p.334-345.

Tao, Y., Faloutsos, C., Papadias, D., et al., 2004. Prediction and
indexing of moving objects with unknown motion patterns.
Int. Conf. on ACM Management of Data, p.611-622.

Wolfson, O., Yin, H., 2003. Accuracy and resource consump-
tion in tracking and location prediction. LNCS, 2750:325-
343. [doi:10.1007/978-3-540-45072-6_19]

Wolfson, O., Sistla, A.P., Chamberlain, S., et al., 1999. Up-
dating and querying databases that track mobile units.
Distr. Parall. Databases, 7(3):257-387. [doi:10.1023/A:
1008782710752]

Xiong, X., Mokbel, M.F., Aref, W.G., 2005. SEA-CNN: scal-
able processing of continuous K-nearest neighbor queries
in spatio-temporal databases. Int. Conf. on Data Engi-
neering, p.643-654.

Xiong, X., Mokbel, M.F., Aref, W.G., 2006. LUGrid: update-
tolerant grid-based indexing for moving object. Int. Conf.
on Mobile Data Management, p.13-20. [doi:10.1109/
MDM.2006.102]

Yu, X., Pu, K.Q., Koudas, N., 2005. Monitoring K-nearest
neighbor queries over moving objects. Int. Conf. on Data
Engineering, p.631-642.

http://dx.doi.org/10.1016/j.is.2009.01.001
http://dx.doi.org/10.1016/j.is.2009.01.001
http://dx.doi.org/10.1007/978-3-540-45072-6_19
http://dx.doi.org/10.1023/A:1008782710752
http://dx.doi.org/10.1023/A:1008782710752
http://dx.doi.org/10.1109/MDM.2006.102
http://dx.doi.org/10.1109/MDM.2006.102

	Yuan-Ko HUANG, Lien-Fa LIN
	Abstract: Spatio-temporal databases aim at appropriately managing moving objects so as to support various types of queries. While much research has been conducted on developing query processing techniques, less effort has been made to address the i...
	Key words: Spatio-temporal databases, Moving objects, Free-moving objects, Network-constrained objects
	4.1 NCOUS
	4.2 NCOUP
	Step 7: The new R(t) is sent to NCO o.
	5.1 Experimental settings
	5.2 Efficiency of FMOUS
	5.3 Efficiency of NCOUS

