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Abstract:    Spatio-temporal databases aim at appropriately managing moving objects so as to support various types of queries. 
While much research has been conducted on developing query processing techniques, less effort has been made to address the 
issue of when and how to update location information of moving objects. Previous work shifts the workload of processing updates 
to each object which usually has limited CPU and battery capacities. This results in a tremendous processing overhead for each 
moving object. In this paper, we focus on designing efficient update strategies for two important types of moving objects, 
free-moving objects (FMOs) and network-constrained objects (NCOs), which are classified based on object movement models. 
For FMOs, we develop a novel update strategy, namely the FMO update strategy (FMOUS), to explicitly indicate a time point at 
which the object needs to update location information. As each object knows in advance when to update (meaning that it does not 
have to continuously check), the processing overhead can be greatly reduced. In addition, the FMO update procedure (FMOUP) is 
designed to efficiently process the updates issued from moving objects. Similarly, for NCOs, we propose the NCO update strategy 
(NCOUS) and the NCO update procedure (NCOUP) to inform each object when and how to update location information. Exten-
sive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed update strategies. 
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1  Introduction 
 

With the fast advance of mobile and ubiquitous 
computing, spatio-temporal databases (Forlizzi et al., 
2000; Güting et al., 2000; Tao and Papadias, 2002; 
Huang and Lee, 2010) aiming at efficiently managing 
a large number of moving objects have become more 
realistic and attractive. Many applications, such as 
mobile communication systems, traffic monitoring 
systems, flight control systems, and geographical 
information systems, can benefit from the advent of 
spatio-temporal databases. We focus on the issue of 
managing two important types of moving objects in 

spatio-temporal databases. They are free-moving 
objects (FMOs) and network-constrained objects 
(NCOs), classified based on object movement models. 
Each FMO can move freely in any direction 
throughout the Euclidean space (e.g., a ship moving 
on the sea). In contrast, each NCO is constrained to 
move on a transportation network (e.g., a car or pe-
destrian moving on the roads). Due to the movement 
of objects (including FMOs and NCOs), the object 
information stored in spatio-temporal databases may 
be updated frequently, especially in a highly dynamic 
environment. As a result, how to effectively reduce 
the number of location updates from moving objects 
while appropriately maintaining their location in-
formation becomes a major challenge for spatio- 
temporal databases. 

Previous research on reducing the cost of up-
dating the location of moving objects can be classified 
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into three categories. Research in the first category 
(Song and Roussopoulos, 2001; Xiong et al., 2005; 
2006; Yu et al., 2005) tracks the object locations only. 
As an example, consider the case in Fig. 1a, in which 
objects move in the Euclidean space (i.e., objects 
correspond to FMOs) and the curves represent the 
trajectories of moving objects. One update strategy is 
that each FMO reports its location to the database 
server every t timestamps (e.g., FMO1), and the other 
strategy is to update the FMO location every d mov-
ing distance units (e.g., FMO2). If objects move in the 
transportation network (Fig. 1b), where the move-
ment of each object is constrained to the network and 
represented as a line segment, objects NCO1 and 
NCO2 correspond to the first and second update 
strategies, respectively. These two strategies are in-
efficient because the velocity, including speed and 
direction, of moving objects is not taken into consid-
eration. For instance, an object moving with high 
speed (e.g., a car driving along a highway) may incur 
a large number of location updates as the time re-
quired to move d distance units is short. 

In order to alleviate the problem of frequent 
updates, motion models are adopted in research of the 
second category (Sistla et al., 1997; Wolfson et al., 
1999; Wolfson and Yin, 2003; Tao et al., 2004) to 
predict the location of a moving object. As each ob-
ject is aware of its real location obtained from a 
Global Positioning System (GPS) device, a location 
update is issued to the database server only when the 
deviation between the real and predicted locations 
exceeds a given threshold T. Consider the object 
FMO3 in Fig. 1a. As long as the object’s real location 
is within a circle CT centered at the predicted location 
with radius T, its location information stored in the  
 

 
 
 
 
 
 
 
 
 
 
 
 

server does not need to be updated. For example, the 
solid line and dashed line refer to the real and pre-
dicted locations of object o, respectively. At time t1, 
the location information does not need to be updated 
because o is still inside circle CT. However, an update 
would occur at time t2 as the deviation begins to ex-
ceed threshold T. Similarly, in Fig. 1b, object NCO3 
does not update the location information if it is on the 
segment ST centered at the predicted location with 
length 2T. We define circle CT and segment ST with a 
fixed size as the possible region in which the object 
lies.  

To further reduce the update frequency, research 
in the third category (Cheng et al., 2004; Chung et al., 
2009; Huang et al., 2009; Chen et al., 2010) takes 
advantage of the object’s location, speed, and direc-
tion to construct a variable-size possible region, 
named the ‘spatio-temporal possible region’, whose 
location and size change as time progresses. As 
shown in Figs. 1a and 1b, objects FMO4 and NCO4 
show the different shapes of spatio-temporal possible 
regions, called the ‘sector-like region’ and ‘segment- 
bounded region’, for the Euclidean space and trans-
portation network, respectively. The sector-like re-
gion of moving object FMO4 in the Euclidean space is 
constructed by considering object FMO4’s start loca-
tion l(t0), and speed and direction varying within  
[so, So] and [θo, Θo], respectively. With l(t0), [so, So], 
and [θo, Θo], the sector-like region R(ti) of FMO4 at 
time ti can be computed and enclosed by four end-
points, two segments, and two arcs. The segment- 
bounded region R(ti) of object NCO4 at time ti is 
computed by considering only NCO4’s start location 
l(t0) and speed range [so, So], because NCO4’s moving 
direction is constrained by the underlying network  
 

 
 
 
 
 
 
 
 
 
 
 

 Fig. 1  Update strategies for moving objects: (a) free-moving objects (FMOs); (b) network-constrained objects (NCOs) 
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(i.e., fixed direction). In this paper, we adopt the 
sector-like region and segment-bounded region as 
both moving speed and direction are considered in 
these two types of regions. 

Allowing each object to move inside the spatio- 
temporal possible region can significantly reduce the 
cost of communication between each object and the 
database server. However, it raises other crucial issues 
affecting the system performance even more. These 
issues include (1) when to update the spatio-temporal 
possible region of each object and (2) how to update 
the spatio-temporal possible region when object up-
date occurs. To address these issues, previous studies 
(Wolfson and Yin, 2003; Cheng et al., 2004; Huang et 
al., 2009; Chen et al., 2010) shifted the workload of 
updating the spatio-temporal possible region to each 
object. That is, each object needs to continuously 
check whether its real location is inside the spatio- 
temporal possible region. This would result in a tre-
mendous processing overhead, especially for moving 
objects which usually have limited CPU and battery 
capacities. As such, we design two novel update 
strategies, namely the FMO update strategy (FMOUS) 
and the NCO update strategy (NCOUS), for each 
FMO in the Euclidean space and each NCO in the 
transportation network, respectively. The two update 
strategies can be used to explicitly indicate a time 
point tu for FMO and NCO, at which it has to update 
its spatio-temporal possible region. The time point tu 
is determined based on (1) whether the object’s real 
location is inside the spatio-temporal possible region 
and (2) the sizes of the spatio-temporal possible re-
gion including the area of the sector-like region and 
the length of the segment-bounded region. In addition, 
we develop the FMO update procedure (FMOUP) and 
the NCO update procedure (NCOUP) to efficiently 
handle the updates of FMOs and NCOs, respectively. 
By exploiting these update strategies and update 
procedures, the computation cost at the client side can 
be effectively reduced. 

This paper is an enhanced version of Huang et al. 
(2013), which focuses on FMOs only. The method is 
extended to be able to manage not only FMOs in the 
Euclidean space but also NCOs in the transportation 
network. In addition to the FMOUS and FMOUP in 
Huang et al. (2013), we design the NCOUS to give 
each NCO a time point at which its segment-bounded 
region needs to be updated, and develop the NCOUP 

to process the location updates of NCOs. A new and 
comprehensive empirical performance study of the 
proposed methods is reported. 

 
 

2  Spatio-temporal possible region 
 

In this section, we first discuss how to construct 
the spatio-temporal possible region of each FMO in 
the Euclidean space, in which the spatio-temporal 
possible region is represented as the sector-like region. 
Then, we describe the data structures used for repre-
senting the transportation network and how to derive 
the segment-bounded region of each NCO based on 
such data structures. 

2.1  Sector-like region in the Euclidean space 

For each FMO in the Euclidean space, its mov-
ing speed varies between a minimum and a maximum 
speed. Also, its moving direction lies in between a 
minimum and a maximum angle. Note that in our 
model, each angle is represented as a polar angle 
within [0, 2π]. For example, Fig. 2 shows that the 
speed and direction of an object o varies within [so, So] 
and [θo, Θo], respectively. When object o moves with 
the minimum speed so and minimum angle θo, its 
location at time t is computed as lα(t)=l(t0)+vα(t−t0), 
where l(t0)=(xo, yo) is the start location, vα=(socos θo, 
sosin θo) is the velocity, and t0 is the start time. When 
object o moves with the minimum speed so and 
maximum angle Θo, the location of object o at time t 
is lγ(t)=l(t0)+vγ(t−t0), where vγ=(socos Θo, sosinΘo). If 
the direction of o varies within [θo, Θo], all of its 
possible locations at time t would form an arc, de-
noted as ( )l l tα γ , in which lα(t) and lγ(t) are the two 
endpoints. That is, at time t object o is located at some  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Sector-like region 
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point on the arc ( )l l tα γ . Similarly, as the speed of 
object o is So and the direction is within [θo, Θo], the 
possible locations of o can be represented by another 
arc ( )l l tβ δ  whose two endpoints are lβ(t) and lδ(t). 
Hence, when the speed and direction are within [so, So] 
and [θo, Θo], respectively, all the possible locations of 
o form a sector-like region R(t) (Fig. 2), which is 
enclosed by four endpoints lα(t), lβ(t), lγ(t), and lδ(t), 
two segments ( )l l tα β  and ( ),l l tγ δ  and two arcs 
( )l l tα γ  (i.e., the nearest possible locations) and 
( )l l tβ δ  (i.e., the farthest possible locations). 

2.2  Segment-bounded region in the transportation 
network 

Each object NCO moves with a varying speed 
within [so, So] and a fixed direction in a transportation 
network, which is represented as an undirected 
weighted graph consisting of a set of nodes and edges. 
To efficiently represent the transportation network, 
we use three tables to store the information of edges, 
nodes, and NCOs of the network. The first is the edge 
table Te storing for each edge ei of the transportation 
network: (1) its start node ns and end node ne (where 
ns<ne), (2) its length len (i.e., the distance between ns 
and ne), and (3) a set Sobj of moving objects currently 
on ei. The second one is the node table Tn, which 
maintains for each node ni the set Sadj of edges con-
necting ni. The last one is the object table To main-
taining the information of each NCO. To stores for 
each NCO oi: (1) the edge ej containing it, (2) the 
reference time tr, (3) the distance dist between oi and 
the start node ns of edge ej (i.e., ej.ns) at tr, (4) its 
minimum moving speed so, and (5) its maximum  
 

 
 
 
 
 
 
 
 
 
 
 
 

speed So. The three tables are updated only when 
objects reach the network nodes. Take a transporta-
tion network consisting of nodes n1 to n6 and edges e1 
to e5 (Fig. 3a) to illustrate the information stored in 
the three tables Te, Tn, and To, where an edge label is 
followed by its len enclosed in parentheses. In this 
transportation network, each of objects o1 to o5 moves 
with a minimum speed of 1 m/s and a maximum 
speed of 2 m/s, and its moving direction is indicated 
by the corresponding arrow. Fig. 3b shows the de-
tailed information of tables Te, Tn, and To. Note that a 
positive speed value of an object in To (e.g., object o2) 
indicates that this object moves from the start node to 
the end node, and that a negative value (e.g., object o1) 
indicates that it moves in the opposite direction.  

Using these three tables, the segment-bounded 
region R(t) of each NCO in the transportation network 
can be computed. Consider an NCO o that moves with 
a speed within [so, So]. Having accessed tables To and 
Te, we know that object o is located on the edge ej 
whose start node and end node are ns and ne, respec-
tively. If object o moves with the minimum speed so, 
then its distance to node ns at time t can be computed 
as dm(t)=dist+so(t−tr). Conversely, if o moves with the 
maximum speed So, then its distance to node ns at time 
t is represented as dM(t)=dist+So(t−tr). When the speed 
of object o varies within [so, So], all the possible lo-
cations of o would be bounded by the line segment 

m M ( )d d t  whose length is equal to ||dM(t)−dm(t)||. 
Taking object o1 in Fig. 3a as an example, its mini-
mum speed so and maximum speed So are equal to −1 
and −2, respectively, because it moves toward the 
start node n1. The distance dm(t) of object o1 to node 
n1 at time 2 is computed as 8−1×2=6. Also, the dis-
tance dM(t) of o1 to n1 is equal to 8−2×2=4. Finally, 
 

 
 
 
 
 
 
 
 
 
 
 
 Fig. 3  Segment-bounded region: (a) a transportation network; (b) three tables 
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the segment-bounded region m M ( )d d t  of object o1 
(depicted as the shaded line) has a length of |4−6|=2. 
 
 
3  FMOUS and FMOUP in the Euclidean space 

 
In this section, we describe how FMOUS indi-

cates a time point at which each FMO needs to update 
location information and how to process such an up-
date using FMOUP. 

3.1  FMOUS 

Due to varying traffic conditions such as jams 
and accidents on the road, an object FMO may move 
out of its sector-like region at some time point t. As a 
result, the new location, speed, and direction of the 
FMO have to be updated at time t. Furthermore, be-
cause the scope of the sector-like region R(t) of an 
FMO grows as time progresses, the FMO has to up-
date its precise location information to decrease the 
number of possible locations. Thus, FMOUS is de-
signed to determine the time point tu at which the 
FMO needs to update its location information, ac-
cording to (1) time point tα at which the FMO moves 
out of its sector-like region R(tα) and (2) time point tβ 
at which the size of its sector-like region R(tβ) exceeds 
a system parameter Amax. In the following, we de-
scribe how to obtain tα and tβ. 

Assume that at time tc an object o whose location 
is (xo

c, yo
c) changes its moving speed to xo

c and/or 
moving angle to θo

c. As (xo
c, yo

c) is within the corre-
sponding sector-like region S(tc), o will be out of R(tα) 
at a future time tα when (1) o moves out from arc 
( ),l l tβ δ α  (2) o moves out from arc ( ),l l tα γ α  (3) o 

moves out from segment ( ),l l tα β α  or (4) o moves out 

from segment ( ).l l tγ δ α  
The first condition holds only for the case in 

which the moving speed so
c is greater than the max-

imum speed So. As shown in Fig. 4a, object o moves 
towards the direction indicated by the arrow and its so

c 
is larger than So. In this case, object o would move out 
from arc ( )l l tβ δ α  and tα can be estimated as follows: 

 

0( )o c
c

o
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The second condition is so

c<so. In this case, o 
will move out from arc ( )l l tα γ α  at time tα. Substitut-
ing so for So in Eq. (1) leads to the tα in this condition. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
The third condition is that object o changes its 

moving angle to θo
c at time tc which is less than the 

minimum angle θo. Therefore, o will move out from 
segment ( )l l tα β α  at time tα (Fig. 4b). Let (xr, yr) be the 

point on segment ( )l l tα β α  where object o moves out 
of region R(tα), computed as follows: 
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Then tα can be estimated as 
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The last condition holds only if θo

c is greater than 
the maximum angle Θo. This means that at time tα 
object o moves out from a point (xl, yl) on segment 

( ),l l tγ δ α  where 

Fig. 4  Determining the time point tα at which the object 
moves out from the arc (a) or the segment (b) 
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Also, tα can be determined by Eq. (3) after re-

placing xr and yr by xl and yl, respectively. 
To maintain the location information of moving 

objects, a system parameter Amax can be used to limit 
the number of possible locations inside the sector-like 
region of each FMO. For each object o, if the size of 
its sector-like region R(tβ) at time tβ exceeds Amax, 
then o needs to update the location, speed, and direc-
tion to the server. The time point tβ is computed as 
follows: 

 

max
0 2 2

360
.

π( )( )o o o o

At t
S sβ Θ θ

= +
− −

            (5) 

 
Thus, tα and tβ are both determined. The time 

point tu at which object o needs to update its location 
information is then determined by tu=min(tα, tβ). 
Benefiting from FMOUS, each FMO knows in ad-
vance when to update its location information. This 
means that the object does not have to continuously 
check its location within time interval [t0, tu], and thus 
the processing overhead can be greatly reduced. 

3.2  FMOUP 

Once an update of FMO occurs, FMOUP is 
adopted to rapidly renew the location information of 
the object in the database server and determine a new 
sector-like region for this FMO. Let us use the ex-
ample in Fig. 5 to illustrate how FMOUP works: 

Step 1: At time t0, FMO o sends its real location 
(xo, yo), moving speed s, and moving angle θ to the 
location-based database server. 

Step 2: At the server side, the sector-like region 
R(t) for FMO o is determined depending on factors 
such as the historical object information (e.g., loca-
tion, speed, and angle), the traffic condition, and the 
location update frequency. 

Step 3: The determined R(t) and the system pa-
rameter Amax are sent to FMO o. 

Step 4: Once FMO o changes its moving speed 
or direction at time tc, the time point tα is computed. 
Also, the time point tβ can be estimated. Then, the 
update time tu is set to min(tα, tβ). 

Step 5: At time tu at which FMO o needs to issue 
an update, the location (xu, yu), speed su, and angle θu 
are sent to the location server. 

Step 6: According to (xu, yu), su, and θu, the 
server determines a new sector-like region R(t) for 
FMO o. 

Step 7: The new R(t) is sent to FMO o. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
4  NCOUS and NCOUP in the transportation 
network 

4.1  NCOUS 

Compared to FMOUS for the Euclidean space, 
NCOUS for the transportation network is more com-
plex since the time point at which NCO reaches a 
node in the network would affect the update time tu. 
As a result, NCOUS is proposed to determine tu by 
considering (1) the time point tα at which NCO moves 
out of its segment-bounded region R(tα), (2) the time 
point tβ at which the length of the segment-bounded 
region R(tβ) is greater than a system parameter Lmax, 
and (3) the time point tδ at which the endpoint dM(tδ) 
of the segment-bounded region R(tδ) reaches a node in 
the network. The determination of tα, tβ, and tδ is de-
tailed in the following. 

Let object o be the NCO that changes its moving 
speed to so

c at time tc and distc be the distance of ob-
ject o to the start node ns at time tc. The time point tα is 
then determined based on whether so

c is (1) less than 
the minimum speed so, or (2) greater than the maxi-
mum speed So. If so

c<so, at time tα object o will be out 
of segment-bounded region R(tα) through endpoint 
dm(tα). For example, in Fig. 6a, the speed of object o 
(depicted as the white point) is changed to so

c at time 
tc and segment-bounded region R(tc) is represented as 

Fig. 5  Schematic of the free-moving object update pro-
cedure (FMOUP) 
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the shaded line segment. As so
c<so, object o will move 

out from dm(tα) at time tα. In this case, tα can be esti-
mated as  

 

r(dist dist) ( )c
o c

c c
o o

s t tt t
s sα

− − −
= +

−
,           (6) 

 
where tr is the reference time point and dist is the 
distance of o to node ns at tr. 
 

 
 
 
 
 
 
 
 
 
When so

c>So, at time tα object o will be out of 
segment-bounded region R(tα) through endpoint dM(tα) 
(Fig. 6b). Hence,  

 

r(dist dist ) ( )c
o c

c c
o o

S t tt t
s Sα

− − −
= +

−
.         (7) 

 
Given a system parameter Lmax, time point tβ is 

computed based on whether the length of segment- 
bounded region R(t) of NCO is greater than Lmax. That 
is, at tβ, Lmax=|dm(tβ)−dM(tβ)|. As dm(tβ)=dist+so(tβ−tr) 
and dM(tβ)=dist+So(tβ−tr), we have  

 
max

r .
| |o o

Lt t
s Sβ = +
−

                    (8) 

 
For an application in which the location infor-

mation of moving objects needs to be as precise as 
possible, Lmax will be set to a lower value. Otherwise, 
a higher value of Lmax is preferable. 

For each NCO o, if at time tδ the endpoint dM(t) 
of its segment-bounded region reaches a node in the 
transportation network, then o needs to update its 
information stored in tables Te and To. For example, in 
Fig. 3, if o moves from the previous edge ep to the 
next edge en at time tδ, it will be removed from the set 
Sobj of ep and then added into that of en. As for table To, 
the values of ej, tr, and dist are updated to en, tδ, and 0 

(or en.len), respectively, where dist=0 (or dist=en.len) 
as dM(tδ) reaches the start node ns (or end node ne) of 
edge en. 

The determination of the time point tδ depends 
on whether object o moves towards the start node ns 
or the end node ne. If o moves towards ns, then the 
time point tδ at which dM(tδ) reaches ns is computed as 

 

r
dist .

o

t t
Sd

−
= +                          (9) 

 
Otherwise, the time point tδ at which dM(tδ) reaches ne 
is computed as 
 

n
r

.len dist .
o

et t
Sd
−

= +                  (10) 

 
Having determined tα, tβ, and tδ, the time tu is 

then determined by tu=min(tα, tβ, tδ). 

4.2  NCOUP 

The main goal of NCOUP is to quickly evaluate 
the location update issued from each NCO and reas-
sign a new segment-bounded region for NCO. Similar 
to FMOUP (Section 3.2), NCOUP works as follows 
(Fig. 7): 

Step 1: At time t0, NCO o sends an update in the 
form of (e, dist, s, t0) to the location-based database 
server, which indicates that o moves on edge e at time 
t0 and its moving speed and distance to the start node 
of e are s and dist, respectively. 

Step 2: At the server side, the three tables Te, Tn, 
and To are modified according to the tuple (e, dist, s, t0) 
of NCO o. In addition, the minimum speed so and the 
maximum speed So in table To are determined, de-
pending on factors such as the historical object in-
formation, the traffic condition, and the location up-
date frequency, to construct the segment-bounded 
region R(t) for NCO o. 

Step 3: The determined R(t) and the system pa-
rameter Lmax are sent to NCO o. 

Step 4: When NCO o changes its moving speed 
to so

c at time tc, the time points tα, tβ, and tδ are cal-
culated. The update time tu is then set to min(tα, tβ, tδ). 

Step 5: At tu, the distance distu to the start node 
and the updated speed su of NCO o are sent to the 
location server. 

ns 

Fig. 6  Determining the time point tα at which the object 
moves out from dm(t) (a) or dM(t) (b) 
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Step 6: According to distu and su, the server de-
termines a new segment-bounded region R(t) for 
NCO o. 

Step 7: The new R(t) is sent to NCO o. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5  Performance evaluation 
 

In this section, we conducted two sets of ex-
periments for the proposed update strategies, i.e., 
FMOUS for the Euclidean space and NCOUS for the 
transportation network. In the first set of experiments, 
the efficiency of FMOUS was demonstrated based on 
comparison with other strategies in terms of (1) the 
number of updates issued from FMOs and (2) the 
processing overhead for the update strategies. The 
second set of experiments was aimed to investigate 
the performances of NCOUS and its competitors by 
measuring the number of object updates and the 
processing cost. 

5.1  Experimental settings 

All experiments were performed on a PC with 
Intel Core Duo 1.8 GHz CPU and 1 GB RAM. The 
algorithms were implemented in C++. One synthetic 
dataset and one real dataset were used in the simula-
tion for FMOUS. The synthetic dataset consisted of 
100k FMOs whose start locations were uniformly 
spread over a region of 1 000 km×1 000 km. As for the 
real dataset, we used the CA file (TIGER/Line, http:// 
www.census.gov/geo/www/tiger) which contains 62k 
FMOs distributed over a region of 25 000 km×25 000 
km. The minimum speed so and maximum speed So of 
an FMO o were randomly generated between 0 and 90 

m/s. For the moving direction of FMO o, the mini-
mum angle θo was randomly generated within [0, 2π], 
and the maximum angle Θo=θo+θ′, where θ′=π/6, π/3, 
or π/2. The initial speed (resp. angle) of an FMO was 
randomly assigned a value bounded by so and So (resp. 
θo and Θo). To evaluate the performance of NCOUS, 
we used two road maps and generated 100k NCOs 
using the generator proposed by Brinkhoff (2002). 
The first road map was Oldenburg, a city in Germany, 
consisting of about 6000 nodes and 7000 edges, and 
the second was the San Joaquin County with about 
18 200 nodes and 23 800 edges. The minimum speed 
so and maximum speed So of each NCO were uni-
formly distributed between 0 and 40 m/s. Then, the 
initial speed of each NCO was set to a value within  
[so, So]. When an NCO o reached a node n in the 
network, the next edge on which o moved was ran-
domly chosen among the edges connecting n. In the 
experimental space, a percentage Po of FMOs (resp. 
NCOs) would change the moving speed and/or di-
rection (resp. moving speed only) every To time units, 
where Po and To were equal to 5% and 10, respec-
tively, unless otherwise specified. The assignment of 
the new speed and angle was the same as that of the 
initial speed and angle. In this simulation, the evalu-
ation time interval had a default value of 100 time 
units, the default Amax for FMO was set to 0.1% of the 
entire space, and the default Lmax for NCO was set to 
0.1% of the entire network. 

The performance was measured by the number 
of object updates and the processing overhead for the 
proposed update strategies FMOUS and NCOUS. We 
compared FMOUS and NCOUS against the fixed 
time interval update strategy (FIUS for short) in 
which the location information of each object (in-
cluding FMO and NCO) was updated every To time 
units, and the circular region update strategy (CRUS 
for short) in which an update occurred if the location 
of FMO was not inside the circle CT whose size was 
the same as Amax or if the location of NCO was not 
inside the segment ST whose size was the same as 
Lmax. 

5.2  Efficiency of FMOUS 

We first compared the proposed FMOUS with 
FIUS and CRUS using the synthetic dataset and CA 
dataset. Four sets of experiments were conducted to 
investigate the effects of two important factors, Po and 

Fig. 7  Schematic of the network-constrained object update 
procedure (NCOUP) 
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To, on the number of object updates and the pro-
cessing overhead for these update strategies. 

Fig. 8 shows the number of object updates for 
FMOUS and its competitors under various Po. Note 
that hereafter a logarithmic scale is used for the y-axis 
of all figures. Figs. 8a and 8b illustrate the number of 
updates for the synthetic dataset and CA dataset, re-
spectively, by varying Po from 5% to 30%. FMOUS 
significantly outperformed FIUS, even for a large 
value of Po (e.g., 30%), which indicates that many of 
FMOs have changed their speeds and directions. The 
reason is that for FIUS each object has to update its 
location information every 10 time units even if its 
speed or direction does not change, whereas for 
FMOUS unnecessary updates can be avoided by al-
lowing each object to move within the sector-like 
region. Similarly, the performance gap between 
FMOUS and CRUS increased with the increase of Po. 
This is mainly due to the fact that, for CRUS some 
objects with varying speeds and directions could 
easily move out of the circle CT whose size is fixed 
and thus object update occurs while for FMOUS such 
objects are still inside their sector-like regions and 
thus object updates are not needed. 

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 9 shows the impact of To on the perfor-

mances of FMOUS, FIUS, and CRUS. In these ex-
periments, we varied the value of To from 5 to 50 time 
units and measured the number of object updates for 
FMOUS, FIUS, and CRUS. Figs. 9a and 9b show that 
for all update strategies, the number of object updates 
decreased with the increase of To. This is because a 
greater To (i.e., a longer time interval within which 
FMO does not change speed or direction) would al-
low more FMOs to delay their updates to the location 
server so that the total number of updates decreases. 

In both sets of experiments, FMOUS outperformed 
FIUS and CRUS in the entire range of To. The ex-
periments confirmed again that using FMOUS can 
dramatically reduce the number of object updates. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The following two sets of experiments demon-
strated the effectiveness of FMOUS by studying the 
effects of the number of objects changing their speeds 
or directions (i.e., Po) and the time interval within 
which the object’s speed and direction remained un-
changed (i.e., To) on the processing overhead of 
FMOUS, FIUS, and CRUS. For FIUS, the processing 
overhead is the number of time units of the time in-
terval within which the FMO needs to update its lo-
cation information. For FMOUS and CRUS, the 
processing overhead is the number of time units of the 
time interval within which the FMO has to check 
whether its real location is out of sector-like region 
R(t) and circle CT, respectively. 

Fig. 10 shows the processing overhead of 
FMOUS, CRUS, and FIUS as a function of Po vary-
ing from 5% to 30%. CRUS had the worst perfor-
mance among the three update strategies and its pro-
cessing overhead remained constant for different 
values of Po. The main reason is that in CRUS each 
FMO does not know when to update its location and 
thus it has to check its location at each time instant, 
regardless of whether the moving speed or direction 
changes. Similarly, FIUS had a constant overhead 
under various Po for both the synthetic dataset and CA 
dataset. This is because for FIUS all objects would 
process location updates every 10 time units. In both 
experiments, FMOUS outperformed its competitors 
significantly as using FMOUS to give each object a 
time point at which to update its location can effec-
tively reduce the processing overhead.  

Fig. 9  Number of object updates vs. To: (a) synthetic 
dataset; (b) CA dataset 
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Fig. 8  Number of object updates vs. Po: (a) synthetic 
dataset; (b) CA dataset 
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The last set of experiments shows the processing 
overhead of FMOUS, CRUS, and FIUS under various 
To (Fig. 11). Similar to the experiments demonstrated 
by Fig. 9, we varied the value of To from 5 to 50 time 
units to investigate the effect of the time interval 
within which FMO does not change speed or direction. 
When each FMO changed speed or direction fre-
quently (e.g., To=5), FMOUS outperformed CRUS or 
FIUS by a factor of about 100 or 20, respectively. 
When To>5, FMOUS reduced the processing over-
head by a factor of up to 200 compared to CRUS and 
a factor of 20 compared to FIUS. 

 
 
 
 
 
 
 
 
 
 
 
 

5.3  Efficiency of NCOUS 

To demonstrate the efficiency of NCOUS, we 
compared it with FIUS and CRUS in terms of the 
number of object updates and the processing over-
head. We studied the impacts of Po and To on the 
performances of NCOUS, FIUS, and CRUS. 

Fig. 12 shows the number of object updates for 
NCOUS, FIUS, and CRUS under various Po and To. 
As shown in Fig. 12a, FIUS had the worst perfor-
mance in all cases because of its simple update 
strategy in which the object reports the location in-

formation periodically. When Po increased, the 
number of object updates for NCOUS and CRUS 
increased, because (1) for NCOUS more NCOs could 
reach the network nodes or move out of the segment- 
bounded region R(t) and (2) for CRUS more NCOs 
are not inside their corresponding segment ST so that 
more updates occur. Fig. 12b shows the number of 
object updates under different values of To. The 
curves for all update strategies showed decreasing 
trend, following a similar reasoning for the experi-
ment demonstrated by Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 shows how the varying Po and To affect 

the processing overhead of NCOUS, FIUS, and 
CRUS. For CRUS, the processing overhead remained 
107. The reason for this high processing cost is that at 
each time unit, each NCO inevitably checks whether 
its real location is inside the segment ST. As for FIUS, 
its processing overhead is dominated by To and is 
insensitive to Po, because the processing cost is re-
quired only when NCO updates its location infor-
mation. The experimental results showed that 
NCOUS has a significantly better performance in 
terms of processing overhead compared to CRUS and 
FIUS. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10  Processing overhead vs. Po: (a) synthetic dataset; 
(b) CA dataset 
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Fig. 11  Processing overhead vs. To: (a) synthetic dataset; 
(b) CA dataset 
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The last experiment was aimed to study how 
well NCOUS, FIUS, and CRUS work for a larger 
transportation network, San Joaquin County.  
Figs. 14a and 14b show the number of object updates 
for the three strategies under various Po and To, re-
spectively. Compared to the experimental results in  
Fig. 12 for a small transportation network, Oldenburg, 
the number of object updates for NCOUS slightly 
increased. The reason for the higher update number is 
that the road connectivity of the larger network is 
more complicated so that more time points tδ at which 
NCO reaches a network node exist. Nevertheless, 
NCOUS still significantly outperformed FIUS and 
CRUS in all cases. Figs. 14c and 14d show that 
NCOUS had almost the same processing overhead in 
comparison with Fig. 13. From the experimental re-
sults, we know that NCOUS is also suitable for a 
transportation network with more complicated road 
connectivity. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
6  Conclusions 
 

This paper focuses on developing efficient up-
date strategies to process the location updates issued 
from moving objects (including FMOs and NCOs) 
with varying speeds and directions. Previous work 

shifted the workload of processing updates to each 
object whose CPU and battery capacity are limited, 
which would result in a tremendous processing 
overhead. To efficiently process object updates, for 
FMOs we designed FMOUS to explicitly give each 
FMO a time point at which to update its location 
information. In addition, FMOUP was used to process 
object updates. Similarly, for NCOs, we proposed 
NCOUS and NCOUP to inform each object when and 
how to update location information. Experimental 
results showed that the proposed update strategies can 
greatly reduce the processing overhead for each ob-
ject while maintaining the location information. 

There are several interesting avenues for future 
extensions of this work. Our next step is to properly 
represent the transportation network and conduct 
more experiments investigating the performances of 
different update strategies. An important research 
direction is how to efficiently answer the spatio- 
temporal queries, such as the range query and 
K-nearest neighbor query, on FMOs with sector-like 
regions and NCOs with segment-bounded regions. A 
further extension is to develop a specialized index 
structure for managing FMOs and NCOs. 
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