# Designing a location update strategy for free-moving and network-constrained objects with varying velocity ${ }^{* \#}$ 

Yuan-Ko HUANG, Lien-Fa LIN<br>(Department of Information Communication, Kao-Yuan University, Taiwan 821, Kaohsiung County)<br>E-mail: huangyk@cc.kyu.edu.tw; lienfa@cc.kyu.edu.tw<br>Received Nov. 24, 2013; Revision accepted Mar. 14, 2014; Crosschecked July 16, 2014


#### Abstract

Spatio-temporal databases aim at appropriately managing moving objects so as to support various types of queries. While much research has been conducted on developing query processing techniques, less effort has been made to address the issue of when and how to update location information of moving objects. Previous work shifts the workload of processing updates to each object which usually has limited CPU and battery capacities. This results in a tremendous processing overhead for each moving object. In this paper, we focus on designing efficient update strategies for two important types of moving objects, free-moving objects (FMOs) and network-constrained objects (NCOs), which are classified based on object movement models. For FMOs, we develop a novel update strategy, namely the FMO update strategy (FMOUS), to explicitly indicate a time point at which the object needs to update location information. As each object knows in advance when to update (meaning that it does not have to continuously check), the processing overhead can be greatly reduced. In addition, the FMO update procedure (FMOUP) is designed to efficiently process the updates issued from moving objects. Similarly, for NCOs, we propose the NCO update strategy (NCOUS) and the NCO update procedure (NCOUP) to inform each object when and how to update location information. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed update strategies.


Key words: Spatio-temporal databases, Moving objects, Free-moving objects, Network-constrained objects
doi:10.1631/jzus.C1300337
Document code: A
CLC number: TN929

## 1 Introduction

With the fast advance of mobile and ubiquitous computing, spatio-temporal databases (Forlizzi et al., 2000; Güting et al., 2000; Tao and Papadias, 2002; Huang and Lee, 2010) aiming at efficiently managing a large number of moving objects have become more realistic and attractive. Many applications, such as mobile communication systems, traffic monitoring systems, flight control systems, and geographical information systems, can benefit from the advent of spatio-temporal databases. We focus on the issue of managing two important types of moving objects in

[^0]spatio-temporal databases. They are free-moving objects (FMOs) and network-constrained objects (NCOs), classified based on object movement models. Each FMO can move freely in any direction throughout the Euclidean space (e.g., a ship moving on the sea). In contrast, each NCO is constrained to move on a transportation network (e.g., a car or pedestrian moving on the roads). Due to the movement of objects (including FMOs and NCOs), the object information stored in spatio-temporal databases may be updated frequently, especially in a highly dynamic environment. As a result, how to effectively reduce the number of location updates from moving objects while appropriately maintaining their location information becomes a major challenge for spatiotemporal databases.

Previous research on reducing the cost of updating the location of moving objects can be classified
into three categories. Research in the first category (Song and Roussopoulos, 2001; Xiong et al., 2005; 2006; Yu et al., 2005) tracks the object locations only. As an example, consider the case in Fig. 1a, in which objects move in the Euclidean space (i.e., objects correspond to FMOs) and the curves represent the trajectories of moving objects. One update strategy is that each FMO reports its location to the database server every $t$ timestamps (e.g., $\mathrm{FMO}_{1}$ ), and the other strategy is to update the FMO location every $d$ moving distance units (e.g., $\mathrm{FMO}_{2}$ ). If objects move in the transportation network (Fig. 1b), where the movement of each object is constrained to the network and represented as a line segment, objects $\mathrm{NCO}_{1}$ and $\mathrm{NCO}_{2}$ correspond to the first and second update strategies, respectively. These two strategies are inefficient because the velocity, including speed and direction, of moving objects is not taken into consideration. For instance, an object moving with high speed (e.g., a car driving along a highway) may incur a large number of location updates as the time required to move $d$ distance units is short.

In order to alleviate the problem of frequent updates, motion models are adopted in research of the second category (Sistla et al., 1997; Wolfson et al., 1999; Wolfson and Yin, 2003; Tao et al., 2004) to predict the location of a moving object. As each object is aware of its real location obtained from a Global Positioning System (GPS) device, a location update is issued to the database server only when the deviation between the real and predicted locations exceeds a given threshold $T$. Consider the object $\mathrm{FMO}_{3}$ in Fig. 1a. As long as the object's real location is within a circle $C_{T}$ centered at the predicted location with radius $T$, its location information stored in the
server does not need to be updated. For example, the solid line and dashed line refer to the real and predicted locations of object $o$, respectively. At time $t_{1}$, the location information does not need to be updated because $o$ is still inside circle $C_{T}$. However, an update would occur at time $t_{2}$ as the deviation begins to exceed threshold $T$. Similarly, in Fig. 1b, object $\mathrm{NCO}_{3}$ does not update the location information if it is on the segment $S_{T}$ centered at the predicted location with length $2 T$. We define circle $C_{T}$ and segment $S_{T}$ with a fixed size as the possible region in which the object lies.

To further reduce the update frequency, research in the third category (Cheng et al., 2004; Chung et al., 2009; Huang et al., 2009; Chen et al., 2010) takes advantage of the object's location, speed, and direction to construct a variable-size possible region, named the 'spatio-temporal possible region', whose location and size change as time progresses. As shown in Figs. 1a and 1b, objects $\mathrm{FMO}_{4}$ and $\mathrm{NCO}_{4}$ show the different shapes of spatio-temporal possible regions, called the 'sector-like region' and 'segmentbounded region', for the Euclidean space and transportation network, respectively. The sector-like region of moving object $\mathrm{FMO}_{4}$ in the Euclidean space is constructed by considering object $\mathrm{FMO}_{4}$ 's start location $l\left(t_{0}\right)$, and speed and direction varying within [ $s_{o}, S_{o}$ ] and $\left[\theta_{o}, \Theta_{o}\right.$ ], respectively. With $l\left(t_{0}\right),\left[s_{o}, S_{o}\right]$, and $\left[\theta_{o}, \Theta_{o}\right.$ ], the sector-like region $R\left(t_{i}\right)$ of $\mathrm{FMO}_{4}$ at time $t_{i}$ can be computed and enclosed by four endpoints, two segments, and two arcs. The segmentbounded region $R\left(t_{i}\right)$ of object $\mathrm{NCO}_{4}$ at time $t_{i}$ is computed by considering only $\mathrm{NCO}_{4}$ 's start location $l\left(t_{0}\right)$ and speed range $\left[s_{o}, S_{o}\right.$ ], because $\mathrm{NCO}_{4}$ 's moving direction is constrained by the underlying network


Fig. 1 Update strategies for moving objects: (a) free-moving objects (FMOs); (b) network-constrained objects (NCOs)
(i.e., fixed direction). In this paper, we adopt the sector-like region and segment-bounded region as both moving speed and direction are considered in these two types of regions.

Allowing each object to move inside the spatiotemporal possible region can significantly reduce the cost of communication between each object and the database server. However, it raises other crucial issues affecting the system performance even more. These issues include (1) when to update the spatio-temporal possible region of each object and (2) how to update the spatio-temporal possible region when object update occurs. To address these issues, previous studies (Wolfson and Yin, 2003; Cheng et al., 2004; Huang et al., 2009; Chen et al., 2010) shifted the workload of updating the spatio-temporal possible region to each object. That is, each object needs to continuously check whether its real location is inside the spatiotemporal possible region. This would result in a tremendous processing overhead, especially for moving objects which usually have limited CPU and battery capacities. As such, we design two novel update strategies, namely the FMO update strategy (FMOUS) and the NCO update strategy (NCOUS), for each FMO in the Euclidean space and each NCO in the transportation network, respectively. The two update strategies can be used to explicitly indicate a time point $t_{\mathrm{u}}$ for FMO and NCO, at which it has to update its spatio-temporal possible region. The time point $t_{\mathrm{u}}$ is determined based on (1) whether the object's real location is inside the spatio-temporal possible region and (2) the sizes of the spatio-temporal possible region including the area of the sector-like region and the length of the segment-bounded region. In addition, we develop the FMO update procedure (FMOUP) and the NCO update procedure (NCOUP) to efficiently handle the updates of FMOs and NCOs, respectively. By exploiting these update strategies and update procedures, the computation cost at the client side can be effectively reduced.

This paper is an enhanced version of Huang et al. (2013), which focuses on FMOs only. The method is extended to be able to manage not only FMOs in the Euclidean space but also NCOs in the transportation network. In addition to the FMOUS and FMOUP in Huang et al. (2013), we design the NCOUS to give each NCO a time point at which its segment-bounded region needs to be updated, and develop the NCOUP
to process the location updates of NCOs. A new and comprehensive empirical performance study of the proposed methods is reported.

## 2 Spatio-temporal possible region

In this section, we first discuss how to construct the spatio-temporal possible region of each FMO in the Euclidean space, in which the spatio-temporal possible region is represented as the sector-like region. Then, we describe the data structures used for representing the transportation network and how to derive the segment-bounded region of each NCO based on such data structures.

### 2.1 Sector-like region in the Euclidean space

For each FMO in the Euclidean space, its moving speed varies between a minimum and a maximum speed. Also, its moving direction lies in between a minimum and a maximum angle. Note that in our model, each angle is represented as a polar angle within $[0,2 \pi]$. For example, Fig. 2 shows that the speed and direction of an object $o$ varies within $\left[s_{o}, S_{o}\right.$ ] and $\left[\theta_{o}, \Theta_{o}\right]$, respectively. When object $o$ moves with the minimum speed $s_{o}$ and minimum angle $\theta_{o}$, its location at time $t$ is computed as $l_{\alpha}(t)=l\left(t_{0}\right)+v_{\alpha}\left(t-t_{0}\right)$, where $l\left(t_{0}\right)=\left(x_{o}, y_{o}\right)$ is the start location, $v_{\alpha}=\left(s_{o} \cos \theta_{o}\right.$, $\left.s_{o} \sin \theta_{o}\right)$ is the velocity, and $t_{0}$ is the start time. When object $o$ moves with the minimum speed $s_{o}$ and maximum angle $\Theta_{o}$, the location of object $o$ at time $t$ is $l_{\gamma}(t)=l\left(t_{0}\right)+v_{\gamma}\left(t-t_{0}\right)$, where $v_{\gamma}=\left(s_{o} \cos \Theta_{o}, s_{o} \sin \Theta_{o}\right)$. If the direction of $o$ varies within $\left[\theta_{o}, \Theta_{o}\right]$, all of its possible locations at time $t$ would form an arc, denoted as $\overparen{l_{\alpha} l_{\gamma}}(t)$, in which $l_{\alpha}(t)$ and $l_{\gamma}(t)$ are the two endpoints. That is, at time $t$ object $o$ is located at some


Fig. 2 Sector-like region
point on the arc $\overparen{l}_{\alpha} l_{\gamma}(t)$. Similarly, as the speed of object $o$ is $S_{o}$ and the direction is within $\left[\theta_{o}, \Theta_{o}\right.$ ], the possible locations of $o$ can be represented by another $\operatorname{arc} \overparen{l_{\beta} l_{\delta}}(t)$ whose two endpoints are $l_{\beta}(t)$ and $l_{\delta}(t)$. Hence, when the speed and direction are within $\left[s_{o}, S_{o}\right.$ ] and $\left[\theta_{o}, \Theta_{o}\right]$, respectively, all the possible locations of $o$ form a sector-like region $R(t)$ (Fig. 2), which is enclosed by four endpoints $l_{\alpha}(t), l_{\beta}(t), l_{\gamma}(t)$, and $l_{\delta}(t)$, two segments $\overline{l_{\alpha} l_{\beta}}(t)$ and $\overline{l_{\gamma} l_{\delta}}(t)$, and two arcs $\overparen{l_{\alpha} l_{\gamma}}(t)$ (i.e., the nearest possible locations) and $\overparen{l_{\beta} l_{\delta}}(t)$ (i.e., the farthest possible locations).

### 2.2 Segment-bounded region in the transportation network

Each object NCO moves with a varying speed within $\left[s_{o}, S_{o}\right]$ and a fixed direction in a transportation network, which is represented as an undirected weighted graph consisting of a set of nodes and edges. To efficiently represent the transportation network, we use three tables to store the information of edges, nodes, and NCOs of the network. The first is the edge table $T_{\mathrm{e}}$ storing for each edge $e_{i}$ of the transportation network: (1) its start node $n_{\mathrm{s}}$ and end node $n_{\mathrm{e}}$ (where $n_{\mathrm{s}}<n_{\mathrm{e}}$ ), (2) its length len (i.e., the distance between $n_{\mathrm{s}}$ and $n_{\mathrm{e}}$ ), and (3) a set $S_{\text {obj }}$ of moving objects currently on $e_{i}$. The second one is the node table $T_{\mathrm{n}}$, which maintains for each node $n_{i}$ the set $S_{\text {adj }}$ of edges connecting $n_{i}$. The last one is the object table $T_{\mathrm{o}}$ maintaining the information of each NCO. $T_{\mathrm{o}}$ stores for each NCO $o_{i}$ : (1) the edge $e_{j}$ containing it, (2) the reference time $t_{\mathrm{r}}$, (3) the distance dist between $o_{i}$ and the start node $n_{\mathrm{s}}$ of edge $e_{j}$ (i.e., $e_{j} . n_{\mathrm{s}}$ ) at $t_{\mathrm{r}}$, (4) its minimum moving speed $s_{o}$, and (5) its maximum
speed $S_{o}$. The three tables are updated only when objects reach the network nodes. Take a transportation network consisting of nodes $n_{1}$ to $n_{6}$ and edges $e_{1}$ to $e_{5}$ (Fig. 3a) to illustrate the information stored in the three tables $T_{\mathrm{e}}, T_{\mathrm{n}}$, and $T_{\mathrm{o}}$, where an edge label is followed by its len enclosed in parentheses. In this transportation network, each of objects $o_{1}$ to $o_{5}$ moves with a minimum speed of $1 \mathrm{~m} / \mathrm{s}$ and a maximum speed of $2 \mathrm{~m} / \mathrm{s}$, and its moving direction is indicated by the corresponding arrow. Fig. 3b shows the detailed information of tables $T_{\mathrm{e}}, T_{\mathrm{n}}$, and $T_{\mathrm{o}}$. Note that a positive speed value of an object in $T_{\mathrm{o}}$ (e.g., object $o_{2}$ ) indicates that this object moves from the start node to the end node, and that a negative value (e.g., object $o_{1}$ ) indicates that it moves in the opposite direction.

Using these three tables, the segment-bounded region $R(t)$ of each NCO in the transportation network can be computed. Consider an NCO $o$ that moves with a speed within $\left[s_{o}, S_{o}\right.$ ]. Having accessed tables $T_{\mathrm{o}}$ and $T_{\mathrm{e}}$, we know that object $o$ is located on the edge $e_{j}$ whose start node and end node are $n_{\mathrm{s}}$ and $n_{\mathrm{e}}$, respectively. If object $o$ moves with the minimum speed $s_{o}$, then its distance to node $n_{\mathrm{s}}$ at time $t$ can be computed as $d_{\mathrm{m}}(t)=\operatorname{dist}+s_{o}\left(t-t_{\mathrm{r}}\right)$. Conversely, if $o$ moves with the maximum speed $S_{o}$, then its distance to node $n_{\mathrm{s}}$ at time $t$ is represented as $d_{\mathrm{M}}(t)=\operatorname{dist}+S_{o}\left(t-t_{\mathrm{r}}\right)$. When the speed of object $o$ varies within $\left[s_{o}, S_{o}\right.$ ], all the possible locations of $o$ would be bounded by the line segment $\overline{d_{\mathrm{m}} d_{\mathrm{M}}}(t)$ whose length is equal to $\left\|d_{\mathrm{M}}(t)-d_{\mathrm{m}}(t)\right\|$. Taking object $o_{1}$ in Fig. 3a as an example, its minimum speed $s_{o}$ and maximum speed $S_{o}$ are equal to -1 and -2 , respectively, because it moves toward the start node $n_{1}$. The distance $d_{\mathrm{m}}(t)$ of object $o_{1}$ to node $n_{1}$ at time 2 is computed as $8-1 \times 2=6$. Also, the distance $d_{\mathrm{M}}(t)$ of $o_{1}$ to $n_{1}$ is equal to $8-2 \times 2=4$. Finally,


Fig. 3 Segment-bounded region: (a) a transportation network; (b) three tables
the segment-bounded region $\overline{d_{\mathrm{m}} d_{\mathrm{M}}}(t)$ of object $o_{1}$ (depicted as the shaded line) has a length of $|4-6|=2$.

## 3 FMOUS and FMOUP in the Euclidean space

In this section, we describe how FMOUS indicates a time point at which each FMO needs to update location information and how to process such an update using FMOUP.

### 3.1 FMOUS

Due to varying traffic conditions such as jams and accidents on the road, an object FMO may move out of its sector-like region at some time point $t$. As a result, the new location, speed, and direction of the FMO have to be updated at time $t$. Furthermore, because the scope of the sector-like region $R(t)$ of an FMO grows as time progresses, the FMO has to update its precise location information to decrease the number of possible locations. Thus, FMOUS is designed to determine the time point $t_{\mathrm{u}}$ at which the FMO needs to update its location information, according to (1) time point $t_{\alpha}$ at which the FMO moves out of its sector-like region $R\left(t_{\alpha}\right)$ and (2) time point $t_{\beta}$ at which the size of its sector-like region $R\left(t_{\beta}\right)$ exceeds a system parameter $A_{\text {max }}$. In the following, we describe how to obtain $t_{\alpha}$ and $t_{\beta}$.

Assume that at time $t_{c}$ an object $o$ whose location is $\left(x_{o}{ }^{c}, y_{o}{ }^{c}\right)$ changes its moving speed to $x_{o}{ }^{c}$ and/or moving angle to $\theta_{o}{ }^{c}$. As $\left(x_{o}{ }^{c}, y_{o}{ }^{c}\right)$ is within the corresponding sector-like region $S\left(t_{c}\right)$, $o$ will be out of $R\left(t_{\alpha}\right)$ at a future time $t_{\alpha}$ when (1) $o$ moves out from arc $\overparen{l_{\beta} l_{\delta}}\left(t_{\alpha}\right)$, (2) $o$ moves out from arc $\overparen{l_{\alpha} l_{\gamma}}\left(t_{\alpha}\right)$, (3) o moves out from segment $\overline{l_{\alpha} l_{\beta}}\left(t_{\alpha}\right)$, or (4) o moves out from segment $\overline{l_{\gamma} l_{\delta}}\left(t_{\alpha}\right)$.

The first condition holds only for the case in which the moving speed $s_{o}{ }^{c}$ is greater than the maximum speed $S_{o}$. As shown in Fig. 4a, object $o$ moves towards the direction indicated by the arrow and its $s_{o}{ }^{c}$ is larger than $S_{o}$. In this case, object $o$ would move out from arc $\overparen{l_{\beta} l_{\delta}}\left(t_{\alpha}\right)$ and $t_{\alpha}$ can be estimated as follows:

$$
\begin{equation*}
t_{\alpha}=t_{c}+\frac{S_{o}\left(t_{c}-t_{0}\right)-\sqrt{C}}{\sqrt{A+B}-\sqrt{C}-S_{o}} \tag{1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
A=\left(x_{o}^{c}+s_{o}^{c} \cos \theta_{o}^{c}-x_{o}\right)^{2}, \\
B=\left(y_{o}^{c}+s_{o}^{c} \sin \theta_{o}^{c}-y_{o}\right)^{2}, \\
C=\left(x_{o}^{c}-x_{o}\right)^{2}+\left(y_{o}^{c}-y_{o}\right)^{2} .
\end{array}\right.
$$

The second condition is $s_{o}{ }^{c}<s_{o}$. In this case, $o$ will move out from arc $\overparen{l_{\alpha} l_{\gamma}}\left(t_{\alpha}\right)$ at time $t_{\alpha}$. Substituting $s_{o}$ for $S_{o}$ in Eq. (1) leads to the $t_{\alpha}$ in this condition.


Fig. 4 Determining the time point $t_{\alpha}$ at which the object moves out from the arc (a) or the segment (b)

The third condition is that object $o$ changes its moving angle to $\theta_{o}{ }^{c}$ at time $t_{c}$ which is less than the minimum angle $\theta_{o}$. Therefore, $o$ will move out from segment $\overline{l_{\alpha} l_{\beta}}\left(t_{\alpha}\right)$ at time $t_{\alpha}$ (Fig. 4b). Let $\left(x_{\mathrm{r}}, y_{\mathrm{r}}\right)$ be the point on segment $\overline{l_{\alpha} l_{\beta}}\left(t_{\alpha}\right)$ where object $o$ moves out of region $R\left(t_{\alpha}\right)$, computed as follows:

$$
\left\{\begin{array}{l}
x_{\mathrm{r}}=\frac{\left(y_{o}^{c}-x_{o}^{c} \tan \theta_{o}^{c}\right)-\left(y_{o}-x_{o} \tan \theta_{o}\right)}{\tan \theta_{o}-\tan \theta_{o}^{c}}  \tag{2}\\
y_{\mathrm{r}}=x_{\mathrm{r}} \tan \theta_{o}+y_{o}-x_{o} \tan \theta_{o}
\end{array}\right.
$$

Then $t_{\alpha}$ can be estimated as

$$
\begin{equation*}
t_{\alpha}=t_{c}+\frac{\sqrt{\left(x_{o}^{c}-x_{\mathrm{r}}\right)^{2}+\left(y_{o}^{c}-y_{\mathrm{r}}\right)^{2}}}{s_{o}^{c}} \tag{3}
\end{equation*}
$$

The last condition holds only if $\theta_{o}{ }^{c}$ is greater than the maximum angle $\Theta_{o}$. This means that at time $t_{\alpha}$ object $o$ moves out from a point $\left(x_{1}, y_{1}\right)$ on segment $\overline{l_{\gamma} l_{\delta}}\left(t_{\alpha}\right)$, where

$$
\left\{\begin{array}{l}
x_{1}=\frac{\left(y_{o}^{c}-x_{o}^{c} \tan \theta_{o}^{c}\right)-\left(y_{o}-x_{o} \tan \Theta_{o}\right)}{\tan \Theta_{o}-\tan \theta_{o}^{c}},  \tag{4}\\
y_{1}=x_{\mathrm{r}} \tan \Theta_{o}+y_{o}-x_{o} \tan \Theta_{o} .
\end{array}\right.
$$

Also, $t_{\alpha}$ can be determined by Eq. (3) after replacing $x_{\mathrm{r}}$ and $y_{\mathrm{r}}$ by $x_{1}$ and $y_{1}$, respectively.

To maintain the location information of moving objects, a system parameter $A_{\text {max }}$ can be used to limit the number of possible locations inside the sector-like region of each FMO. For each object $o$, if the size of its sector-like region $R\left(t_{\beta}\right)$ at time $t_{\beta}$ exceeds $A_{\max }$, then $o$ needs to update the location, speed, and direction to the server. The time point $t_{\beta}$ is computed as follows:

$$
\begin{equation*}
t_{\beta}=t_{0}+\sqrt{\frac{360 A_{\max }}{\pi\left(\Theta_{o}-\theta_{o}\right)\left(S_{o}^{2}-s_{o}^{2}\right)}} . \tag{5}
\end{equation*}
$$

Thus, $t_{\alpha}$ and $t_{\beta}$ are both determined. The time point $t_{\mathrm{u}}$ at which object $o$ needs to update its location information is then determined by $t_{\mathrm{u}}=\min \left(t_{\alpha}, t_{\beta}\right)$. Benefiting from FMOUS, each FMO knows in advance when to update its location information. This means that the object does not have to continuously check its location within time interval $\left[t_{0}, t_{\mathrm{u}}\right]$, and thus the processing overhead can be greatly reduced.

### 3.2 FMOUP

Once an update of FMO occurs, FMOUP is adopted to rapidly renew the location information of the object in the database server and determine a new sector-like region for this FMO. Let us use the example in Fig. 5 to illustrate how FMOUP works:

Step 1: At time $t_{0}$, FMO $o$ sends its real location $\left(x_{o}, y_{o}\right)$, moving speed $s$, and moving angle $\theta$ to the location-based database server.

Step 2: At the server side, the sector-like region $R(t)$ for FMO $o$ is determined depending on factors such as the historical object information (e.g., location, speed, and angle), the traffic condition, and the location update frequency.

Step 3: The determined $R(t)$ and the system parameter $A_{\max }$ are sent to $\mathrm{FMO} o$.

Step 4: Once FMO $o$ changes its moving speed or direction at time $t_{c}$, the time point $t_{\alpha}$ is computed. Also, the time point $t_{\beta}$ can be estimated. Then, the update time $t_{\mathrm{u}}$ is set to $\min \left(t_{\alpha}, t_{\beta}\right)$.

Step 5: At time $t_{\mathrm{u}}$ at which FMO $o$ needs to issue an update, the location $\left(x_{\mathrm{u}}, y_{\mathrm{u}}\right)$, speed $s_{\mathrm{u}}$, and angle $\theta_{\mathrm{u}}$ are sent to the location server.

Step 6: According to $\left(x_{\mathrm{u}}, y_{\mathrm{u}}\right), s_{\mathrm{u}}$, and $\theta_{\mathrm{u}}$, the server determines a new sector-like region $R(t)$ for FMO $o$.

Step 7: The new $R(t)$ is sent to FMO $o$.


Fig. 5 Schematic of the free-moving object update procedure (FMOUP)

## 4 NCOUS and NCOUP in the transportation network

### 4.1 NCOUS

Compared to FMOUS for the Euclidean space, NCOUS for the transportation network is more complex since the time point at which NCO reaches a node in the network would affect the update time $t_{\mathrm{u}}$. As a result, NCOUS is proposed to determine $t_{\mathrm{u}}$ by considering (1) the time point $t_{\alpha}$ at which NCO moves out of its segment-bounded region $R\left(t_{\alpha}\right)$, (2) the time point $t_{\beta}$ at which the length of the segment-bounded region $R\left(t_{\beta}\right)$ is greater than a system parameter $L_{\text {max }}$, and (3) the time point $t_{\delta}$ at which the endpoint $d_{\mathrm{M}}\left(t_{\delta}\right)$ of the segment-bounded region $R\left(t_{\delta}\right)$ reaches a node in the network. The determination of $t_{\alpha}, t_{\beta}$, and $t_{\delta}$ is detailed in the following.

Let object $o$ be the NCO that changes its moving speed to $s_{o}{ }^{c}$ at time $t_{c}$ and dist ${ }^{c}$ be the distance of object $o$ to the start node $n_{\mathrm{s}}$ at time $t_{c}$. The time point $t_{\alpha}$ is then determined based on whether $s_{o}{ }^{c}$ is (1) less than the minimum speed $s_{o}$, or (2) greater than the maximum speed $S_{o}$. If $s_{o}{ }^{c}<s_{o}$, at time $t_{\alpha}$ object $o$ will be out of segment-bounded region $R\left(t_{\alpha}\right)$ through endpoint $d_{\mathrm{m}}\left(t_{\alpha}\right)$. For example, in Fig. 6a, the speed of object $o$ (depicted as the white point) is changed to $s_{o}{ }^{c}$ at time $t_{c}$ and segment-bounded region $R\left(t_{c}\right)$ is represented as
the shaded line segment. As $s_{o}{ }^{c}<s_{o}$, object $o$ will move out from $d_{\mathrm{m}}\left(t_{\alpha}\right)$ at time $t_{\alpha}$. In this case, $t_{\alpha}$ can be estimated as

$$
\begin{equation*}
t_{\alpha}=t_{c}+\frac{\left(\mathrm{dist}^{c}-\mathrm{dist}\right)-s_{o}\left(t_{c}-t_{\mathrm{r}}\right)}{s_{o}-s_{o}^{c}} \tag{6}
\end{equation*}
$$

where $t_{\mathrm{r}}$ is the reference time point and dist is the distance of $o$ to node $n_{\mathrm{s}}$ at $t_{\mathrm{r}}$.


Fig. 6 Determining the time point $t_{\alpha}$ at which the object moves out from $d_{\mathrm{m}}(t)(\mathrm{a})$ or $d_{\mathrm{M}}(t)(\mathrm{b})$

When $s_{o}{ }^{c}>S_{o}$, at time $t_{\alpha}$ object $o$ will be out of segment-bounded region $R\left(t_{\alpha}\right)$ through endpoint $d_{\mathrm{M}}\left(t_{\alpha}\right)$ (Fig. 6b). Hence,

$$
\begin{equation*}
t_{\alpha}=t_{c}+\frac{\left(\operatorname{dist}-\operatorname{dist}^{c}\right)-S_{o}\left(t_{c}-t_{\mathrm{r}}\right)}{s_{o}{ }^{c}-S_{o}} \tag{7}
\end{equation*}
$$

Given a system parameter $L_{\text {max }}$, time point $t_{\beta}$ is computed based on whether the length of segmentbounded region $R(t)$ of NCO is greater than $L_{\max }$. That is, at $t_{\beta}, L_{\text {max }}=\left|d_{\mathrm{m}}\left(t_{\beta}\right)-d_{\mathrm{M}}\left(t_{\beta}\right)\right|$. As $d_{\mathrm{m}}\left(t_{\beta}\right)=\operatorname{dist}+s_{o}\left(t_{\beta}-t_{\mathrm{r}}\right)$ and $d_{\mathrm{M}}\left(t_{\beta}\right)=\operatorname{dist}+S_{o}\left(t_{\beta}-t_{\mathrm{r}}\right)$, we have

$$
\begin{equation*}
t_{\beta}=t_{\mathrm{r}}+\frac{L_{\max }}{\left|S_{o}-S_{o}\right|} . \tag{8}
\end{equation*}
$$

For an application in which the location information of moving objects needs to be as precise as possible, $L_{\max }$ will be set to a lower value. Otherwise, a higher value of $L_{\text {max }}$ is preferable.

For each NCO $o$, if at time $t_{\delta}$ the endpoint $d_{\mathrm{M}}(t)$ of its segment-bounded region reaches a node in the transportation network, then $o$ needs to update its information stored in tables $T_{\mathrm{e}}$ and $T_{\mathrm{o}}$. For example, in Fig. 3, if $o$ moves from the previous edge $e_{\mathrm{p}}$ to the next edge $e_{\mathrm{n}}$ at time $t_{\delta}$, it will be removed from the set $S_{\mathrm{obj}}$ of $e_{\mathrm{p}}$ and then added into that of $e_{\mathrm{n}}$. As for table $T_{\mathrm{o}}$, the values of $e_{j}, t_{\mathrm{r}}$, and dist are updated to $e_{\mathrm{n}}, t_{\delta}$, and 0
(or $e_{\mathrm{n}}$. len), respectively, where dist $=0$ (or dist $=e_{\mathrm{n}}$. len) as $d_{\mathrm{M}}\left(t_{\delta}\right)$ reaches the start node $n_{\mathrm{s}}$ (or end node $n_{\mathrm{e}}$ ) of edge $e_{\mathrm{n}}$.

The determination of the time point $t_{\delta}$ depends on whether object $o$ moves towards the start node $n_{\text {s }}$ or the end node $n_{\mathrm{e}}$. If $o$ moves towards $n_{\mathrm{s}}$, then the time point $t_{\delta}$ at which $d_{\mathrm{M}}\left(t_{\delta}\right)$ reaches $n_{\mathrm{s}}$ is computed as

$$
\begin{equation*}
t_{\delta}=t_{\mathrm{r}}+\frac{-\mathrm{dist}}{S_{o}} \tag{9}
\end{equation*}
$$

Otherwise, the time point $t_{\delta}$ at which $d_{\mathrm{M}}\left(t_{\delta}\right)$ reaches $n_{\mathrm{e}}$ is computed as

$$
\begin{equation*}
t_{\delta}=t_{\mathrm{r}}+\frac{e_{\mathrm{n}} \cdot \mathrm{len}-\text { dist }}{S_{o}} \tag{10}
\end{equation*}
$$

Having determined $t_{\alpha}, t_{\beta}$, and $t_{\delta}$, the time $t_{\mathrm{u}}$ is then determined by $t_{\mathrm{u}}=\min \left(t_{\alpha}, t_{\beta}, t_{\delta}\right)$.

### 4.2 NCOUP

The main goal of NCOUP is to quickly evaluate the location update issued from each NCO and reassign a new segment-bounded region for NCO. Similar to FMOUP (Section 3.2), NCOUP works as follows (Fig. 7):

Step 1: At time $t_{0}$, NCO $o$ sends an update in the form of ( $e$, dist, $s, t_{0}$ ) to the location-based database server, which indicates that $o$ moves on edge $e$ at time $t_{0}$ and its moving speed and distance to the start node of $e$ are $s$ and dist, respectively.

Step 2: At the server side, the three tables $T_{\mathrm{e}}, T_{\mathrm{n}}$, and $T_{\mathrm{o}}$ are modified according to the tuple ( $e$, dist, $s, t_{0}$ ) of NCO $o$. In addition, the minimum speed $s_{o}$ and the maximum speed $S_{o}$ in table $T_{\mathrm{o}}$ are determined, depending on factors such as the historical object information, the traffic condition, and the location update frequency, to construct the segment-bounded region $R(t)$ for $\mathrm{NCO} o$.

Step 3: The determined $R(t)$ and the system parameter $L_{\max }$ are sent to $\mathrm{NCO} o$.

Step 4: When NCO $o$ changes its moving speed to $s_{o}{ }^{c}$ at time $t_{c}$, the time points $t_{\alpha}, t_{\beta}$, and $t_{\delta}$ are calculated. The update time $t_{\mathrm{u}}$ is then set to $\min \left(t_{\alpha}, t_{\beta}, t_{\delta}\right)$.

Step 5: At $t_{\mathrm{u}}$, the distance dist $_{\mathrm{u}}$ to the start node and the updated speed $s_{\mathrm{u}}$ of NCO $o$ are sent to the location server.

Step 6: According to dist $_{u}$ and $s_{\mathrm{u}}$, the server determines a new segment-bounded region $R(t)$ for NCO o.

Step 7: The new $R(t)$ is sent to $\mathrm{NCO} o$.


Fig. 7 Schematic of the network-constrained object update procedure (NCOUP)

## 5 Performance evaluation

In this section, we conducted two sets of experiments for the proposed update strategies, i.e., FMOUS for the Euclidean space and NCOUS for the transportation network. In the first set of experiments, the efficiency of FMOUS was demonstrated based on comparison with other strategies in terms of (1) the number of updates issued from FMOs and (2) the processing overhead for the update strategies. The second set of experiments was aimed to investigate the performances of NCOUS and its competitors by measuring the number of object updates and the processing cost.

### 5.1 Experimental settings

All experiments were performed on a PC with Intel Core Duo 1.8 GHz CPU and 1 GB RAM. The algorithms were implemented in $\mathrm{C}++$. One synthetic dataset and one real dataset were used in the simulation for FMOUS. The synthetic dataset consisted of 100k FMOs whose start locations were uniformly spread over a region of $1000 \mathrm{~km} \times 1000 \mathrm{~km}$. As for the real dataset, we used the CA file (TIGER/Line, http:// www.census.gov/geo/www/tiger) which contains 62 k FMOs distributed over a region of $25000 \mathrm{~km} \times 25000$ km . The minimum speed $s_{o}$ and maximum speed $S_{o}$ of an FMO $o$ were randomly generated between 0 and 90
$\mathrm{m} / \mathrm{s}$. For the moving direction of FMO $o$, the minimum angle $\theta_{o}$ was randomly generated within $[0,2 \pi]$, and the maximum angle $\Theta_{o}=\theta_{o}+\theta^{\prime}$, where $\theta^{\prime}=\pi / 6, \pi / 3$, or $\pi / 2$. The initial speed (resp. angle) of an FMO was randomly assigned a value bounded by $s_{o}$ and $S_{o}$ (resp. $\theta_{o}$ and $\Theta_{o}$ ). To evaluate the performance of NCOUS, we used two road maps and generated 100k NCOs using the generator proposed by Brinkhoff (2002). The first road map was Oldenburg, a city in Germany, consisting of about 6000 nodes and 7000 edges, and the second was the San Joaquin County with about 18200 nodes and 23800 edges. The minimum speed $s_{o}$ and maximum speed $S_{o}$ of each NCO were uniformly distributed between 0 and $40 \mathrm{~m} / \mathrm{s}$. Then, the initial speed of each NCO was set to a value within $\left[s_{o}, S_{o}\right.$ ]. When an NCO $o$ reached a node $n$ in the network, the next edge on which $o$ moved was randomly chosen among the edges connecting $n$. In the experimental space, a percentage $P_{o}$ of FMOs (resp. NCOs) would change the moving speed and/or direction (resp. moving speed only) every $T_{o}$ time units, where $P_{o}$ and $T_{o}$ were equal to $5 \%$ and 10 , respectively, unless otherwise specified. The assignment of the new speed and angle was the same as that of the initial speed and angle. In this simulation, the evaluation time interval had a default value of 100 time units, the default $A_{\text {max }}$ for FMO was set to $0.1 \%$ of the entire space, and the default $L_{\text {max }}$ for NCO was set to $0.1 \%$ of the entire network.

The performance was measured by the number of object updates and the processing overhead for the proposed update strategies FMOUS and NCOUS. We compared FMOUS and NCOUS against the fixed time interval update strategy (FIUS for short) in which the location information of each object (including FMO and NCO) was updated every $T_{o}$ time units, and the circular region update strategy (CRUS for short) in which an update occurred if the location of FMO was not inside the circle $C_{T}$ whose size was the same as $A_{\text {max }}$ or if the location of NCO was not inside the segment $S_{T}$ whose size was the same as $L_{\text {max }}$.

### 5.2 Efficiency of FMOUS

We first compared the proposed FMOUS with FIUS and CRUS using the synthetic dataset and CA dataset. Four sets of experiments were conducted to investigate the effects of two important factors, $P_{o}$ and
$T_{o}$, on the number of object updates and the processing overhead for these update strategies.

Fig. 8 shows the number of object updates for FMOUS and its competitors under various $P_{o}$. Note that hereafter a logarithmic scale is used for the $y$-axis of all figures. Figs. 8 a and 8 b illustrate the number of updates for the synthetic dataset and CA dataset, respectively, by varying $P_{o}$ from $5 \%$ to $30 \%$. FMOUS significantly outperformed FIUS, even for a large value of $P_{o}$ (e.g., $30 \%$ ), which indicates that many of FMOs have changed their speeds and directions. The reason is that for FIUS each object has to update its location information every 10 time units even if its speed or direction does not change, whereas for FMOUS unnecessary updates can be avoided by allowing each object to move within the sector-like region. Similarly, the performance gap between FMOUS and CRUS increased with the increase of $P_{o}$. This is mainly due to the fact that, for CRUS some objects with varying speeds and directions could easily move out of the circle $C_{T}$ whose size is fixed and thus object update occurs while for FMOUS such objects are still inside their sector-like regions and thus object updates are not needed.


Fig. 8 Number of object updates vs. $P_{\boldsymbol{o}}$ : (a) synthetic dataset; (b) CA dataset

Fig. 9 shows the impact of $T_{o}$ on the performances of FMOUS, FIUS, and CRUS. In these experiments, we varied the value of $T_{o}$ from 5 to 50 time units and measured the number of object updates for FMOUS, FIUS, and CRUS. Figs. 9a and 9b show that for all update strategies, the number of object updates decreased with the increase of $T_{o}$. This is because a greater $T_{o}$ (i.e., a longer time interval within which FMO does not change speed or direction) would allow more FMOs to delay their updates to the location server so that the total number of updates decreases.

In both sets of experiments, FMOUS outperformed FIUS and CRUS in the entire range of $T_{o}$. The experiments confirmed again that using FMOUS can dramatically reduce the number of object updates.


Fig. 9 Number of object updates vs. $T_{o}$ : (a) synthetic dataset; (b) CA dataset

The following two sets of experiments demonstrated the effectiveness of FMOUS by studying the effects of the number of objects changing their speeds or directions (i.e., $P_{o}$ ) and the time interval within which the object's speed and direction remained unchanged (i.e., $T_{o}$ ) on the processing overhead of FMOUS, FIUS, and CRUS. For FIUS, the processing overhead is the number of time units of the time interval within which the FMO needs to update its location information. For FMOUS and CRUS, the processing overhead is the number of time units of the time interval within which the FMO has to check whether its real location is out of sector-like region $R(t)$ and circle $C_{T}$, respectively.

Fig. 10 shows the processing overhead of FMOUS, CRUS, and FIUS as a function of $P_{o}$ varying from $5 \%$ to $30 \%$. CRUS had the worst performance among the three update strategies and its processing overhead remained constant for different values of $P_{o}$. The main reason is that in CRUS each FMO does not know when to update its location and thus it has to check its location at each time instant, regardless of whether the moving speed or direction changes. Similarly, FIUS had a constant overhead under various $P_{o}$ for both the synthetic dataset and CA dataset. This is because for FIUS all objects would process location updates every 10 time units. In both experiments, FMOUS outperformed its competitors significantly as using FMOUS to give each object a time point at which to update its location can effectively reduce the processing overhead.


Fig. 10 Processing overhead vs. $\boldsymbol{P}_{\boldsymbol{o}}$ : (a) synthetic dataset; (b) CA dataset

The last set of experiments shows the processing overhead of FMOUS, CRUS, and FIUS under various $T_{o}$ (Fig. 11). Similar to the experiments demonstrated by Fig. 9, we varied the value of $T_{o}$ from 5 to 50 time units to investigate the effect of the time interval within which FMO does not change speed or direction. When each FMO changed speed or direction frequently (e.g., $T_{o}=5$ ), FMOUS outperformed CRUS or FIUS by a factor of about 100 or 20 , respectively. When $T_{o}>5$, FMOUS reduced the processing overhead by a factor of up to 200 compared to CRUS and a factor of 20 compared to FIUS.


Fig. 11 Processing overhead vs. $T_{o}$ : (a) synthetic dataset; (b) CA dataset

### 5.3 Efficiency of NCOUS

To demonstrate the efficiency of NCOUS, we compared it with FIUS and CRUS in terms of the number of object updates and the processing overhead. We studied the impacts of $P_{o}$ and $T_{o}$ on the performances of NCOUS, FIUS, and CRUS.

Fig. 12 shows the number of object updates for NCOUS, FIUS, and CRUS under various $P_{o}$ and $T_{o}$. As shown in Fig. 12a, FIUS had the worst performance in all cases because of its simple update strategy in which the object reports the location in-
formation periodically. When $P_{o}$ increased, the number of object updates for NCOUS and CRUS increased, because (1) for NCOUS more NCOs could reach the network nodes or move out of the segmentbounded region $R(t)$ and (2) for CRUS more NCOs are not inside their corresponding segment $S_{T}$ so that more updates occur. Fig. 12b shows the number of object updates under different values of $T_{o}$. The curves for all update strategies showed decreasing trend, following a similar reasoning for the experiment demonstrated by Fig. 9.


Fig. 12 Number of object updates with varying $P_{o}(a)$ and varying $T_{o}(b)$

Fig. 13 shows how the varying $P_{o}$ and $T_{o}$ affect the processing overhead of NCOUS, FIUS, and CRUS. For CRUS, the processing overhead remained $10^{7}$. The reason for this high processing cost is that at each time unit, each NCO inevitably checks whether its real location is inside the segment $S_{T}$. As for FIUS, its processing overhead is dominated by $T_{o}$ and is insensitive to $P_{o}$, because the processing cost is required only when NCO updates its location information. The experimental results showed that NCOUS has a significantly better performance in terms of processing overhead compared to CRUS and FIUS.


Fig. 13 Processing overhead with varying $P_{o}($ a) and varying $T_{o}(\mathrm{~b})$

The last experiment was aimed to study how well NCOUS, FIUS, and CRUS work for a larger transportation network, San Joaquin County. Figs. 14 a and 14 b show the number of object updates for the three strategies under various $P_{o}$ and $T_{o}$, respectively. Compared to the experimental results in Fig. 12 for a small transportation network, Oldenburg, the number of object updates for NCOUS slightly increased. The reason for the higher update number is that the road connectivity of the larger network is more complicated so that more time points $t_{\delta}$ at which NCO reaches a network node exist. Nevertheless, NCOUS still significantly outperformed FIUS and CRUS in all cases. Figs. 14 c and 14 d show that NCOUS had almost the same processing overhead in comparison with Fig. 13. From the experimental results, we know that NCOUS is also suitable for a transportation network with more complicated road connectivity.


Fig. 14 The performances of the three strategies for a larger network, San Joaquin County
(a) Update number vs. $P_{o}$;
(b) Update number vs. $T_{o}$; (c)
Processing overhead vs. $P_{o}$; (d) Processing overhead vs. $T_{o}$

## 6 Conclusions

This paper focuses on developing efficient update strategies to process the location updates issued from moving objects (including FMOs and NCOs) with varying speeds and directions. Previous work
shifted the workload of processing updates to each object whose CPU and battery capacity are limited, which would result in a tremendous processing overhead. To efficiently process object updates, for FMOs we designed FMOUS to explicitly give each FMO a time point at which to update its location information. In addition, FMOUP was used to process object updates. Similarly, for NCOs, we proposed NCOUS and NCOUP to inform each object when and how to update location information. Experimental results showed that the proposed update strategies can greatly reduce the processing overhead for each object while maintaining the location information.

There are several interesting avenues for future extensions of this work. Our next step is to properly represent the transportation network and conduct more experiments investigating the performances of different update strategies. An important research direction is how to efficiently answer the spatiotemporal queries, such as the range query and $K$-nearest neighbor query, on FMOs with sector-like regions and NCOs with segment-bounded regions. A further extension is to develop a specialized index structure for managing FMOs and NCOs.

## References

Brinkhoff, T., 2002. A framework for generating networkbased moving objects. GeoInformatica, 6(2):153-180. [doi:10.1023/A:1015231126594]
Chen, S., Ooi, B.C., Zhang, Z., 2010. An adaptive updating protocol for reducing moving object database workload. Int. Conf. on Very Large Data Bases, p.735-746.
Cheng, R., Kalashnikov, D.V., Prabhakar, S., 2004. Querying imprecise data in moving object environments. IEEE Trans. Knowl. Data Eng., 16(9):1112-1127. [doi:10.1109/ TKDE.2004.46]
Chung, B.S.E., Lee, W.C., Chen, A.L.P., 2009. Processing probabilistic spatio-temporal range queries over moving objects with uncertainty. Int. Conf. on Extending Database Technology, p.60-71.
Forlizzi, L., Güting, R.H., Nardelli, E., et al., 2000. A data model and data structures for moving objects databases. Int. Conf. on ACM Management of Data, p.319-330.
Güting, R.H., Bohlen, M.H., Erwig, M., et al., 2000. A foundation for representing and querying moving objects. ACM Trans. Database Syst., 25(1):1-42. [doi:10.1145/ 352958.352963]

Huang, Y.K., Lee, C., 2010. Efficient evaluation of continuous spatio-temporal queries on moving objects with uncertain velocity. GeoInformatica, 14(2):163-200. [doi:10.1007/ s10707-009-0081-8]

Huang, Y.K., Liao, S.J., Lee, C., 2009. Evaluating continuous K-nearest neighbor query on moving objects with uncertainty. Inform. Syst., 34(4-5):415-437. [doi:10.1016/j.is. 2009.01.001]

Huang, Y.K., Su, I.F., Lin, L.F., et al., 2013. Efficient processing of updates for moving objects with varying speed and direction. Int. Conf. on Advanced Information Networking and Applications, p.854-861.
Sistla, A.P., Wolfson, O., Chamberlain, S., et al., 1997. Modeling and querying moving objects. Int. Conf. on Data Engineering, p.422-432.
Song, Z., Roussopoulos, N., 2001. K-nearest neighbor search for moving query point. Int. Conf. on Spatial and Temporal Databases, p.79-96.
Tao, Y., Papadias, D., 2002. Time parameterized queries in spatio-temporal databases. Int. Conf. on ACM Management of Data, p.334-345.
Tao, Y., Faloutsos, C., Papadias, D., et al., 2004. Prediction and indexing of moving objects with unknown motion patterns. Int. Conf. on ACM Management of Data, p.611-622.

Wolfson, O., Yin, H., 2003. Accuracy and resource consumption in tracking and location prediction. $L N C S, 2750: 325-$ 343. [doi:10.1007/978-3-540-45072-6_19]

Wolfson, O., Sistla, A.P., Chamberlain, S., et al., 1999. Updating and querying databases that track mobile units. Distr. Parall. Databases, 7(3):257-387. [doi:10.1023/A: 1008782710752]
Xiong, X., Mokbel, M.F., Aref, W.G., 2005. SEA-CNN: scalable processing of continuous K-nearest neighbor queries in spatio-temporal databases. Int. Conf. on Data Engineering, p. 643-654.
Xiong, X., Mokbel, M.F., Aref, W.G., 2006. LUGrid: updatetolerant grid-based indexing for moving object. Int. Conf. on Mobile Data Management, p.13-20. [doi:10.1109/ MDM.2006.102]
Yu, X., Pu, K.Q., Koudas, N., 2005. Monitoring K-nearest neighbor queries over moving objects. Int. Conf. on Data Engineering, p.631-642.


[^0]:    * Project supported by the National Science Council of Taiwan (Nos. NSC-102-2119-M-244-001 and MOST-103-2119-M-244-001)
    \# A preliminary version was presented at AINA, March 25-28, 2013, Barcelona, Spain
    © Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

