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Abstract: Despite the availability of garbage collectors, programmers must manually manage non-memory finite
system resources such as file descriptors. Resource leaks can gradually consume all available resources and cause
programs to raise resource exhaustion exceptions. However, programmers commonly provide no effective recovery
approach for resource exhaustion exceptions, which often causes programs to halt without completing their tasks. In
this paper, we propose to automatically recover programs from resource exhaustion exceptions caused by resource
leaks. We transform programs to catch resource exhaustion exceptions, collect leaked resources, and then retry the
failure code. A resource collector is designed to identify leaked resources and safely release them. We implement
our approach for Java programs. Experimental results show that our approach can successfully handle resource
exhaustion exceptions caused by reported resource leaks and allow programs to complete their tasks with an average
execution time increase of 2.52% and negligible bytecode size increase.
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1 Introduction

Automatic garbage collection has gained con-
siderable success in many mainstream programming
languages, such as Java and C#. A garbage col-
lector relieves programmers from manual memory
management and improves productivity and pro-
gram reliability (Dybvig et al., 1993). However,
there are many other non-memory finite system re-
sources that programmers must manage manually,
e.g., file descriptors and database connections. For
programs written in Java-like languages, once ac-
quired, a resource must be released by explicitly call-
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ing a cleanup method. Resource leak is a software
bug that occurs when the resource cleanup method is
not invoked after its last use. Resource leaks are com-
mon in Java programs (Torlak and Chandra, 2010).
Growing resource leaks can degrade application per-
formance and even result in system crashes due to
resource exhaustion.

A large majority of modern programs rely on
exception handling constructs to notify abnormal
situations and allow customized recoveries from ex-
ceptions. When a semantic error occurs or an ex-
ceptional situation is encountered, an exception is
thrown (e.g., throw in Java). This exception causes
the control flow to transfer from the point where the
exception occurs to a point where the exception is
caught (e.g., try and catch in Java). If an exception
is not caught within the method where it occurs, it
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is implicitly propagated to the caller of this method.
If all available resources are consumed (or leaked), a
further request for such resources will typically cause
the program to throw a resource exhaustion excep-
tion (REE). For example, a Java program will throw
a FileNotFoundException saying “Too many open
files” when no more available file descriptors can be
used to open a file.

Programmers can catch exceptions and provide
their recovery code. However, the recovery code
provided by the programmer is often unsatisfactory.
The Java code in Fig. 1a is such an example. This
code snippet comes from an old version of Ant (In
current version of Ant, the opened file is closed
within a ‘finally’ statement at the end of this method.
However, the handling code for IOException, super-
class of FileNotFoundException, remains) and is the
running example used throughout this paper. The
programmer opens a pattern file in line 5 but forgets
to close it. If this method is repeatedly called in
cases where there are many pattern files for a task,
the available file descriptors can be exhausted. The
file open (line 3) may fail with a thrown FileNot-
FoundException that is caught (line 6). The recovery
code for this exception provided by the programmer
is disappointing because the programmer just logs
this exception, rethrows another exception, and ter-
minates the execution of this method (line 9), with-
out any recoveries. The further the exception prop-
agates from this method, the less likely the program
can be successfully recovered from it. This usually
causes the entire program to halt without complet-
ing the task. Instead of an exceptional case, this
logging-rethrowing-terminating strategy is common
for exception handling according to recent studies
(Cabral and Marques, 2007; Shah et al., 2010).

Designing effective recovery strategies for excep-
tions (i.e., recovering from exceptional states and

continuing the execution of the program to complete
its task) is difficult. When encountering a resource
exhaustion exception, programmers typically do not
know where to find available resources. Existing
exception recovery approaches (Chang et al., 2009;
Carzaniga et al., 2013) cannot avoid failures being
manifested as REEs. Even if they can fix the causal
resource leak, there are no available resources to com-
plete the task without collecting leaked resources.
Considering the abundance of resource leaks and the
poor quality of exceptional handling, REEs pose a
great threat to the reliability of programs.

This paper presents an approach for automat-
ically recovering from REEs caused by resource
leaks by collecting leaked resources and enabling
the program execution to proceed to complete its
task. Our approach has two key components: (1)
The program transformer that analyzes the pro-
gram, finds method calls where REEs can be thrown,
and transforms the program by adding recovery
code for REEs. The recovery strategy consists of
collecting leaked resources first and then retrying
the exception-throwing method calls. We require
the REE-throwing method be failure atomic (Fet-
zer et al., 2004); i.e., the program is left in a con-
sistent state before exceptions are propagated to
its caller. For example, the transformation result
for the exception-throwing code in lines 2 and 3 in
Fig. 1a is presented in Fig. 1b. Our approach actually
transforms the method FileInputStream(File) that is
called by FileReader(File). We transform calls only
to the source methods of REEs. See Section 2 for
details. The transformation in Fig. 1b is for illus-
tration. Unless explicitly stated, classes used in this
paper come from the Java system library. With no
confusion we omit the package name for brevity. (2)
The resource collector (called by System.rc() in line
6 in Fig. 1b) that collects leaked resources. First,

(a) (b)

Fig. 1 (a) An example code snippet from Ant; (b) Transformation result for lines 2 and 3 from (a)
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the resource collector identifies leaked resources as
unreleased and unreachable resources. For garbage-
collected languages, we adapt the garbage collec-
tor to retain leaked resources during garbage collec-
tions. Second, corresponding cleanup methods such
as ‘close of BufferedReader’ for the code in Fig. 1a
are invoked to safely release these leaked resources
in right order. We ensure the safety of the resource
collector by guaranteeing that when a resource is re-
leased no objects depend on it or have some actions
(e.g., close and finalize) to perform in the future, and
this resource does not refer to resources that may be
manipulated later by the program.

We implement our approach based on Soot
(Vallée-Rai et al., 1999) and Jikes RVM (Arnold
et al., 2000) for Java programs. The input to our
approach includes REEs and their corresponding re-
source specifications. We conduct a series of exper-
iments to evaluate the effectiveness and overhead of
our approach on standard benchmarks in the liter-
ature and reported resource leaks from real-world
programs. Experimental results show that our ap-
proach can successfully recover from REEs caused by
these reported resource leaks and make the programs
able to continue to complete their tasks. The run-
time overhead for benchmark programs is very low,
around 3%, and the average execution time increase
is 2.56%. The increase of bytecode size caused by
the program transformer is negligible.

2 Proposed approach

We aim to recover from REEs and then retry
the failure code to make the program able to con-
tinue its execution. Our approach is fully automatic
by transforming programs. The transformation is
source-to-source/bytecode-to-bytecode, requiring no
user annotations. The architecture of this approach
is presented in Fig. 2. There are two working stages.
The first stage is pre-deployment transformation. In
this stage, we transform the program to add the
recovery code for method calls possibly throwing
REEs. The second stage is runtime recovery by
collecting leaked resources. A resource collector is
developed and deployed into the underlying virtual
machine/execution system, on top of which the hard-
ened program from the first stage runs. If some types
of resources have been exhausted during runtime and
the corresponding exception is thrown by the pro-
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Fig. 2 Overview of our approach (REE: resource ex-
haustion exception)

gram, the REE will be caught by the transformation
program. Then, the resource collector begins to col-
lect leaked resources and the method call that failed
is retried. If the recovery succeeds, the program
continues to execute. Otherwise, the REE will be
thrown again and propagated to the caller as in the
original program.

Most garbage collectors adopt the finalization
mechanism that allows a ‘finalize’ method to be asso-
ciated with an object. The garbage collector invokes
the ‘finalize’ method to do some cleanup work before
its associated object is garbage collected. Our re-
source collector and the finalization mechanism both
aim at reclaiming leak resources. However, finaliza-
tion is unqualified to perform resource collections for
various reasons. In contrast, our resource collector
improves the situation by its several design decisions.
Refer to Section 7.2 for details.

The input to our approach includes program
and resource specifications. Resource specification
〈e,M〉 is a tuple, where e is the REE and M is the
set of methods that should be called to release the
exhausted resources. A method m ∈ M is fully qual-
ified with all its parameters being specified, includ-
ing the type of receiver ‘this’ which we consider as a
special parameter for object-oriented programs. We
use m.this to denote the type of the receiver of m

and use S to denote the set of all input resource
specifications. The resource collector calls the meth-
ods in M to release leaked resources in response to
the exception e. An example resource specification
for Java programs is 〈FileNotFoundException say-
ing “Too many open files”, {BufferedReader: void
close(), FileReader: void close(), · · · }〉. The resource
management API method pairs for acquiring and
releasing resources are sometimes called resource-
releasing specifications (Wu et al., 2011). How to
gain resource-releasing specifications has been well
studied (Weimer and Necula, 2005; Wu et al., 2011)
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and we consider it orthogonal to our work. Con-
verting such resource-releasing specifications to the
resource specifications for our approach is straight-
forward. For an REE e, we find all resources R whose
exhaustion can cause programs to throw e. We use
M to denote the set of resource-releasing methods of
each r ∈ R in resource-releasing specifications. Then
we obtain the resource specification 〈e,M〉.

Besides common system-level resources, there
are other application-specific resources that have a
limited amount available to programs for their own
purposes. We expect that our approach can man-
age not only common system resources but also
application-specific ones. Catching REEs directly
by the runtime system is an alternative, but here
we choose to transform application code and/or li-
braries, which enables our approach to easily scale to
new application-specific resources without modifica-
tions to the underlying runtime system. We analyze
and transform the program by adding recovery code
for REEs. It consists of two steps. The first step
is to identify the REE-throwing method calls. The
second step is to augment the program with recovery
code for these REE-throwing method calls.

2.1 Finding REE-throwing method calls

To identify REE-throwing method calls, there
are three aspects to be considered. First, every REE
raised during runtime must be handled. Second,
a thrown REE should not be handled more than
once. Consider the fact that an exception can prop-
agate across multiple methods along the stack up
and exceptions thrown by different method calls can
be the same one. If the program is not recovered
from an REE and this exception propagates to the
calling method (our approach can guarantee this),
recovery of calls to the calling method typically does
not succeed. Such a second recovery should not
be performed to avoid extra overhead. Third, the
closer the recovery code is from the source of ex-
ception, the more likely the recovery succeeds. We
require that REE-throwing methods should be fail-
ure atomic (Fetzer et al., 2004). If the recovery code
is far from the source of the exception, side effects
produced by failure code become nontrivial because
the program may have performed many actions and
state reversion to keep failure atomicity be costly. It
is desirable to recover REEs at program points as
close as possible to the source of REEs.

We first introduce the concept of ‘source meth-
ods’ of REE. A method m is the source of an REE if
this REE can propagate to m’s caller and this REE
is created by m; i.e., it is not propagated from m’s
callees. For the example code in Fig. 1a, readPat-
terns is the source method of BuildException. It is
desirable to handle REEs at the points of calls to the
source methods of these REEs.

We identify all source methods by analyzing ev-
ery method of the program. We analyze each REE
created by this method and decide whether they can
escape from (not caught by) the method. If there is
one such REE, this method is the source of the REE.
We use an intraprocedural points-to analysis to de-
termine the ‘may’ aliases of an exception. Within
the body of a method, an invocation of the construc-
tor of an REE class returns an REE and we do not
need to process invocations of other methods. Our
analysis forwardly propagates information along the
control flow edges. At control flow join points, we
merge the incoming sets of REEs for each variable.
For assignment statement ‘v1 = v2’, the set of REEs
to which v1 can point is updated to the set of REEs
to which v2 can point. This analysis to identify the
source methods is sound. However, it can produce
false positives. After identifying the source methods
of REEs, we scan the program to find all the calls to
these source methods. These calls are targets of our
transformation.

2.2 Exception handling transformation

The transformation is performed on the byte-
code. However, we discuss the approach here at
the source code level for convenience. The calls to
source methods of REEs are targets for which we
augment the recovery code. There are two cases: (1)
The call to the source method is a separate state-
ment. We simply surround this call with the ex-
ception handling statement (try and catch in Java).
The handling code (within the catch statement in
Java) consists of the call to the resource collec-
tor with the REE thrown by the source method
as the parameter, and then the call to the source
method. (2) The called source method has a re-
turn and the call is involved within some expres-
sion; e.g., in Fig. 1a, new FileReader(patternfile) is
involved in the expression new BufferedReader(new
FileReader(patternfile)). The program transformer
first adds a few lines of code just before the state-
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ment involving the source method call. The first line
of code added is the introduction of a local variable
of the return type of the source method with a ‘null’
initial value (e.g., line 1 in Fig. 1b). The second
line of code added is assigning the call to the source
method (exactly the copy of its call in the original
program) to the local variable (e.g., line 3 in Fig. 1b).
This added line of code is augmented with the recov-
ery code in the same way as in the first case. Finally,
the call to the source method within the expression
is replaced with the local variable (e.g., line 11 in
Fig. 1b). Each REE is handled separately if multiple
REEs are raised by a source method call.

3 Resource collector

We recover the program from REEs by collect-
ing leaked resources. We assume that the execution
environment has been reasonably configured to pro-
vide adequate resources for a normal execution of
the program. During runtime when an REE occurs,
a typical cause is that the activated resource leak
bugs of the program lead to too many leaked re-
sources. To collect leaked resources, we adapt the
garbage collector, if any, to leave leaked resources
alone during garbage collections. When an REE oc-
curs, we first identify corresponding leaked resources
and then release these resources by invoking releas-
ing methods provided in the resource specifications.

We identify two requirements of the resource
collector. The first and most important is safety.
The aim of the resource collector is to recover the pro-
gram from exceptions. Hence, it is obligated to cause
no unexpected side effects, and the program should
not be left in inconsistent states such as those that
may crash the program. The second requirement is
that the resource collector should be able to release
all leaked resources. More collected leaked resources
means higher likelihood that the recovery succeeds.
To coordinate these two conflicting requirements, we
design the following strategy: A leaked resource r is
released by the resource collector if and only if (1)
no objects depend on r or have some actions (e.g.,
close or finalize) to perform in the future, and (2)
resource-releasing methods for r do not have access
to resources that may be manipulated later by the
program.

3.1 Retaining leaked resources during
garbage collections

Managed languages such as Java are often
equipped with garbage collectors. For such lan-
guages, the garbage collector and our resource col-
lector coexist. The garbage collector is triggered by
large memory consumption and the resource collec-
tor by REEs caused by exhaustion of non-memory
system resources. Consider cases in which some
leaked resources have not yet been released by the
resource collector. If the garbage collector begins
to work, the objects of these leaked resources will
be destroyed and their occupied resources perma-
nently leaked; that is, resource collections in the fu-
ture cannot release them. To avoid this, we adapt
the garbage collector to retain leaked resources dur-
ing garbage collections. The set R = {m.this | m ∈
M ∧ ∃e.(〈e,M〉 ∈ S)} denotes all types of interest-
ing resources whose exhaustion will trigger the re-
source collector. Before destroying a garbage (typi-
cally unreachable) object whose type belongs to R,
the garbage collector first checks whether this re-
source has been released. If so, the garbage collector
retains it.

We require that a resource should have a field
that indicates whether it has been released, such as
the boolean field ‘closed’ in Socket. If there is no such
field, we can easily instrument the code of the re-
source to add one. The instrumentation is as follows.
We first add a boolean field ‘closed’ with the initial
value as ‘true’ to the code of the resource. Then, at
each exit point of each releasing (acquiring) method
for the resource, we insert this statement ‘closed =
true;’ (‘closed = false;’).

3.2 Identifying leaked resources

The issue of determining whether an object is
live or not is undecidable in general. Garbage col-
lectors and most resource leak detection approaches
conservatively consider leaked resources as unreach-
able ones (Martin et al., 2005; Weimer and Necula,
2008; Torlak and Chandra, 2010). We employ the
same idea and identify leaked resources as those un-
reachable ones among all unreleased resources. To
identify leaked resources that can be safely released,
we traverse the heap three times. The first pass is
to determine whether objects in the heap are reach-
able from the root objects of the program by tracing
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the references between objects in the heap, just like
a common tracing garbage collector. The output of
the first pass consists of three sets:

1. Ru as the set of unreleased and unreachable
resources whose exhaustion causes the thrown REE;

2. Rr as the set of reachable resources whose
exhaustion causes the thrown REE;

3. Fu as the set of unreachable objects with ac-
tions to perform in the future, such as finalization-
ready objects. These actions are required by other
mechanisms such as the finalization of the garbage
collector (Ru ∩ Fu = ∅).

The second pass is to determine whether objects
in Ru are reachable from objects in Fu. If Fu is
empty, this pass is not necessary. The output of the
second pass is Rrf , as the set of objects in Ru that
are reachable from objects in Fu.

The third pass is performed as in Algorithms 1
and 2. The output of Algorithm 1 includes S as the
set of leaked resources that can be safely released,
and Sb ⊆ S which contains leaked resources that
can be released immediately. The function visited()
records whether an object has been visited during the
traverse. The function reached() records whether an
object can be reached from root objects in Ru −Rrf .
The function refer() records whether an object or its
reference objects (objects directly or indirectly refer-
ring to it) can directly or indirectly refer to an object
in Rr. The algorithm performs depth-first search to
traverse the heap by following references between
objects. It first performs initialization (lines 1 to 7
in Algorithm 1). Then, it traverses the heap from
objects in Ru − Rrf (lines 8 to 12). Finally, it iden-
tifies objects from Ru −Rrf that belong to S and/or
Sb (lines 13 to 20). An object o ∈ S is safe to be
released because (1) it is not reachable from the pro-
gram (o ∈ Ru), (2) it is independent of objects with
actions to perform in the future (o /∈ Rrf), and (3) o
and its reference objects do not refer to any reach-
able resources (refer(o) = false). An object in Sb

can be safely released immediately because it is in-
dependent of objects in Ru − Rrf . The procedure
DFT(o) (Algorithm 2) performs depth-first search
from o. Algorithm 2 is a variant of the classical
depth-first search algorithm. Its complexity is the
same as that of the classical depth-first search al-
gorithm. To illustrate Algorithm 1, Fig. 3 presents
an example heap. Assume Ru = {r1,r2,r3,r4,r5},
of ∈ Fu and r0 ∈ Rr. r0 is reachable from a local

variable. If taking this heap as input, Algorithm 1
will produce S = {r4, r5} and Sb = {r4}. Note that
r1 ∈ Rrf and refer(r2) = refer(r3) = true.

Algorithm 1 Identifying leaked resources
Require: H,Ru, Rrf , Rr

Ensure: S, Sb

1: S ← ∅

2: Sb ← ∅

3: for o ∈ H do
4: visited(o)← false

5: reached(o)← false

6: refer(o)← false

7: end for
8: for o ∈ Ru −Rrf do
9: if visited(o) = false then

10: DFT(o)
11: end if
12: end for
13: for o ∈ Ru −Rrf do
14: if refer(o) = false then
15: S ← S ∪ {o}
16: if reached(o) = false then
17: Sb = Sb ∪ {o}
18: end if
19: end if
20: end for

Algorithm 2 Depth-first traversal of the heap
Require: o, the current object
1: visited(o)← true

2: for o′ referred to by o do
3: if o′ ∈ Rr then
4: refer(o)← true

5: continue
6: end if
7: if refer(o) = true then
8: refer(o′)← true

9: end if
10: reached(o′) = true

11: if visited(o′) = false then
12: DFS(o′)
13: end if
14: if refer(o′) = true then
15: refer(o)← true

16: end if
17: end for

3.3 Releasing leaked resources

Assume that resource-releasing methods just
perform the work related to releasing the occupied
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Fig. 3 Example heap reference graph. Circles repre-
sent objects, and arrows represent references which
originate from reference objects (variables) and point
to the referents

resources and do nothing else. For example, a
resource-releasing method typically nullifies a field
referring to a resource, and there are rarely cases
in which a resource-releasing method assigns a re-
source to fields of other accessible resources. This
assumption is reasonable for existing resources and
we believe that it should be obeyed when designing
new resources considering that low coupling is one of
the key principles of software engineering.

Under such an assumption, we can deduce that
resource-releasing methods destruct existing refer-
ences among resources but do not construct new ref-
erences among them. Leaked resources are not guar-
anteed to be independent. The ordering of releasing
of leaked resources is important. The general rule
is that reference resources should be released before
their referent resources. The algorithm to decide the
ordering of resource releases and then release leaked
resources in order is presented in Algorithm 3. The
input includes the reference graph H of the heap
whose edge 〈o,o′〉 represents that o directly refers to
o′, and two sets S and Sb that are outputs of Al-
gorithm 1. The procedure Release(o) calls releasing
methods for o to release it. The function c records the
number of references from objects in S to an object
in S. The main idea of this algorithm is to release
a leaked resource in S when there is no reference to
it from leaked resources in S. Leaked resources in
the input Sb can be released immediately (lines 9 to
16). After a leaked resource o is released (line 11),
decrease c(o′) by 1 for each leaked resource o′ in S

that o directly refers to (lines 12 to 15). These ob-
jects referred to by released resources are candidates
for the next iteration of resource collections (lines 18
to 22). For each released resource, the cost of the
algorithm to update c and choose leaked resources
for the next iteration of resource collection (lines 12
to 15 and 18 to 22) is no more than twice the number
of references from the released resource to objects in

Algorithm 3 Collecting leaked resources
Require: H = 〈V,E〉, S, Sb

1: for o ∈ S do
2: c(o)← 0

3: end for
4: for 〈o, o′〉 ∈ E s.t. o ∈ S ∧ o′ ∈ S do
5: c(o′) = c(o′) + 1

6: end for
7: O ← ∅

8: while Sb �= ∅ do
9: for o ∈ Sb do

10: S ← S − {o}
11: Release(o)
12: for 〈o, o′〉 ∈ E ∧ o′ ∈ S do
13: O ← O ∪ {o′}
14: c(o′) = c(o′)− 1

15: end for
16: end for
17: Sb ← ∅

18: for o ∈ O do
19: if c(o) = 0 then
20: Sb ← Sb ∪ {o}
21: end if
22: end for
23: end while

S. If the reference graph of leaked resources in S

is denoted as 〈S,E′〉, then the complexity of Algo-
rithm 3 is O(|S| ·O(Release)+2|E′|). The algorithm
avoids traversing the heap multiple times and obtains
low complexity linear with the scale of the reference
graph of leaked resources.

The procedure Release(o) calls releasing meth-
ods for o specified in the resource specifications.
Dynamically calling a method is not easy in gen-
eral. The most difficult task is to decide the pa-
rameter values used in the method. Fortunately,
we observe that in practice resource-releasing meth-
ods are simple in terms of the way of their invoca-
tions. Formally, we make the following assumption
on resource-releasing methods: there is only one re-
leasing method for each resource type and this re-
leasing method has no parameters. This assumption
holds for all non-memory resources in the Java sys-
tem library and we believe that programmers should
obey it when designing new resources. For example,
all resources in the java.io package and some other
resources implement the interface Closeable intro-
duced since Java 1.5 to release resources. This inter-
face includes only one method ‘close’ without param-
eters. Socket, ServerSocket, and Connection have a
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similar releasing method ‘close’. The interface Auto-
Closable (http://jdk7.java.net/), newly introduced
into Java 1.7, also meets the assumption. Under this
assumption, the procedure Release(o) is as simple as
calling the single releasing method on o. To avoid
possible dead locks, we employ a separate thread to
perform Release(o). This thread is given the privi-
lege to run immediately. All application threads are
blocked until this thread terminates or it is blocked
by some locks.

4 Discussions

If the original program would not raise REEs,
our transformation guarantees that the transforma-
tion program behaves exactly in the same way as the
original program. If an REE would be thrown, our
recovery code first collects leaked resources and then
retries to execute the REE-throwing method call. If
the REE is raised not because of resource exhaustion
but for some intended reasons such as non-local con-
trol transfers, the transformation program retains
this intended behavior; that is, the retrial of the exe-
cution of the REE-throwing method call should raise
the REE as before, provided that the resource col-
lector does not cause unexpected side effects. This
kind of special use of REEs is rare. We did not
observe such cases in our experiments. Other ex-
ception handling approaches (Dobolyi and Weimer,
2008) explicitly assume that programs do not employ
exceptions for such special purposes.

It can be seen that the soundness of our ap-
proach depends on the safety of the resource collec-
tor. The resource collector is safe provided that the
assumptions above hold. In practice, these assump-
tions are reasonable. However, we admit that there
may be some exceptional resources in poorly de-
signed programs that contradict these assumptions.
In such cases, we can manually refactor resource-
releasing methods such that they just release re-
sources and do nothing else. Although we cannot
provide a general solution for all such cases, we be-
lieve that it is worthy to perform recovery because
otherwise the task will be inevitably aborted and the
entire program may possibly halt or even crash. If
a resource-releasing method does not meet the as-
sumption in Section 3.3 that is intended to simplify
its invocation, the resource collector does not re-
lease corresponding leaked resources. In our current

implementation, we do not consider reflection when
finding REE source methods. This may lead to some
REEs being raised that cannot be handled by our
approach. In future work, we plan to dynamically
capture calls of these methods.

In addition, we do not claim that our approach
can collect all leaked resources. There are two
reasons for the incompleteness. First, there may
be some leaked resources that are still reachable.
Our resource collector cannot release such leaked re-
sources. This is a limitation to all existing leak de-
tection approaches that approximate the liveness of
resources by their reachability, such as Martin et al.
(2005), Weimer and Necula (2008), and Torlak and
Chandra (2010). Second, in resource collection (Al-
gorithm 3) some leaked resources may not be re-
leased. The release of a leaked resource o may de-
stroy references indirectly reachable from o besides
these references directly reachable from o, and thus
the algorithm may omit some leaked resources. To
release all leaked resources in such cases, we have
to traverse the heap once more after each leaked re-
source has been released. Our algorithm traverses
the heap only once and works well in practice with
low complexity.

5 Implementation

We employ the Soot (Vallée-Rai et al., 1999)
program analysis framework to implement a pro-
totype tool for Java programs to find REE source
methods and transform the original program to add
recovery code. This tool statically analyzes and
transforms a standard intermediate representation
of Java bytecode and no source code of the target
program is needed. We implement the resource col-
lector on Jikes RVM v3.1.1, a production-level, open-
source Java-in-Java virtual machine (Arnold et al.,
2000). The resource collector is based on the MMTK
memory management toolkit (Blackburn et al., 2004)
that Jikes RVM employs to perform memory man-
agement. We mainly use the full-heap tracing func-
tionality of MMTK to decide unreachable resources.
We employ Java’s reflection utility to dynamically
call resource-releasing methods to collect leaked re-
sources. The design and implementation of the re-
source collector are independent of the garbage col-
lector, so the resource collector can work with any
garbage collectors of Jikes RVM. Currently, we use
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the Mark-Sweep garbage collector and straightfor-
wardly adapt it to retain leaked resources during its
collections. The interface of the resource collector is
a method ‘rc’ added to the class ‘System’ with the
caught REE as the parameter. The resource specifi-
cations are provided to the resource collector through
a configuration file.

6 Experimental results

We have conducted several experiments to eval-
uate our approach. The main issues include (1) the
effectiveness of our approach in recovering real-world
programs from REEs, and (2) the overhead of our
approach in terms of running time and the size of
class files. In the experiments, we use the default
configuration of Jikes RVM. This configuration has
the highest performance. Each running time given
here is the geometric mean of results of 10 trials. We
conduct all experiments on a PC with 3.0 GHz Intel
Core i5-2320 CPU and 4 GB RAM, running Linux
2.6.38.6.

6.1 Examples of recoveries from REEs

Our approach successfully recovers two real-
world programs, Ant (http://ant.apache.org/)
and BIRT (http://www.eclipse.org/birt/phoenix/),
from REEs. We find that resource leaks are common
in bug repositories and forums. However, there are
few resource leaks that have attached reproducible
test cases to cause corresponding REEs to be thrown.
We analyze resource leaks and write by ourselves re-
producible test cases, which is very time-consuming,
or we use the attached test cases if they can reliably
reproduce the leak and trigger corresponding REEs.
We then transform the program and run it under the
modified Jikes RVM with the resource collector. We
guarantee that the REEs raised are successfully re-
covered. In these two examples, we try to evaluate
the overhead of the resource collector. The overhead
is computed as the ratio of the time spent on iden-
tifying and collecting leaked resources to the time
spent during the whole run.

The first example is from Apache Ant, which
is a famous Java project building tool. There is a
file descriptor leak numbered 4008 in Ant v1.4 in the
bug database of Ant. The code snippet of this bug
is presented in Fig. 1a. The readPatterns method
opens a file, reads its content, but does not close it

at the end. Each call of this method will leak one
file descriptor. Because there is no attached repro-
ducible test case in the bug report, we analyze the
leak and then write one by ourselves. We have 10
copies of the 515 files in the src directory of the Ant
v1.4 source distribution. The test case is an Ant
task that copies all these 5150 files to another direc-
tory. To trigger the FileNotFoundException, we use
one pattern file for each of the 5150 files. The me-
dian 256 MB memory is used to run programs here.
The per-process limit of the file descriptor is 1024,
which is the default value on our experimental ma-
chine. The details to transform programs to handle
FileNotFoundException are presented in Section 6.2.

We first run the original Ant under the unmodi-
fied Jikes RVM. Ant raises the FileNotFoundExcep-
tion saying “Too many open files” and none of the
5150 files is copied. We then transform Ant and
run it under the modified Jikes RVM with the re-
source collector. Ant successfully copies all the 5150
files this time and normally stops. During this run,
the resource collector is triggered five times and it
releases in total 5120 leaked file descriptors. The
overhead of the resource collector is 5.37%.

The second example is from BIRT, which
is an open source Eclipse-based reporting sys-
tem. There is a database connection leak num-
bered 237 190 in BIRT v2.3.1 in the BIRT bug
database. The connection leak occurs when there
is more than one data source in the report de-
sign. The method dataEngineShutdown of the
class DataSource$ShutdownListener in the package
org.eclipse.birt.data.engine.executor closes only con-
nections of the current data source, which will lead
to serious resource leaks. The experimental environ-
ment is set up by deploying BIRT v2.3.1 into Tom-
cat (http://tomcat.apache.org/) v5.5.26. MySQL
(http://www.mysql.com/) v5.0.67 is used as the
database. We use the default configuration of Tom-
cat. We configure the maximum number of con-
current connections of MySQL to be 100, which
is also the default value. The reproducible test
case used here is the one provided by the bug re-
porters. This test case is a report design that con-
tains a single JDBC data source and a single scripted
data source. The JDBC data source selects a sin-
gle column from a simple table. The scripted data
source simply prints “Hello World.” We use Firefox
(http://www.getfirefox.net/) to display the report
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on the local machine. To reproduce the bug, we
write a Firefox plugin to repeatedly open the same
web page, that is, iteratively run the test report. The
plugin also records the time spent on each page load-
ing to evaluate the overhead of the resource collector.

It is shown that each iteration of page dis-
play leaks one database connection. We first run
the original programs under the unmodified Jikes
RVM. The first 100 iterations all complete success-
fully. However, the 101st iteration halts abnormally
with the exception message “Cannot open the con-
nection for the driver ... Too many connections.”
The “Hello World.” is not displayed. Then we trans-
form the programs. We confine the transformation to
BIRT. The REE is the JDBCException in the pack-
age org.eclipse.birt.report.data.oda.jdbc saying “Too
many connections.” A few of the source methods of
this REE are failure nonatomic. We ensure their fail-
ure atomicity by simply adding several lines of code
to revert values of several variables before the REE
is thrown. We run the hardened programs under
the modified Jikes RVM with the resource collector.
This time we successfully run the report for more
than half an hour until we terminate it. The report
is repeated for about 4000 iterations. Each iteration
completes its task and correctly prints “Hello World.”
The time spent on page display for each of the first
1001 iterations is presented in Fig. 4. The ‘Base’ se-
ries represents times of runs of the original programs
under the unmodified Jikes RVM. The resource col-
lector is triggered 10 times. It releases in total 1000
leaked connections. It can be seen that our approach
has little overhead in an iteration except when the
limit of the maximum number of connections is vi-
olated and the resource collector is triggered. The
performance of our approach is stable. For the total
1001 iterations, the resource collector has an over-
head of 0.92%. For single iterations, the resource
collector poses an average time increase of 32.45%
on iterations triggering the resource collector over
other iterations. The bytecode size increase in this
experiment is negligible.

6.2 Performance and overhead

Our approach modifies both the program and
the Java virtual machine (JVM). To validate the
usefulness of our approach, we must evaluate its
impact on the execution time and the size of class
files. We use programs from the DaCapo benchmark
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Fig. 4 Time for each page display of the first 1001
iterations of the BIRT example (the x-axis is loga-
rithmic)

suite (Blackburn et al., 2006) of both version 2006-
10-MR2 and version 9.12-bach, and SPECjvm98. We
run each benchmark program with available memory
fixed at twice the minimum with which it can exe-
cute. The default workload is used for the DaCapo
benchmark suite. Programs from SPECjvm98 are
run with a large input size (-s100).

In these experiments, we consider the system
resource ‘file descriptor’ and the corresponding REE
is the FileNotFoundException saying “Too many
open files.” Resources whose exhaustion can throw
this REE include file input/output streams, file
reader/writer, and sockets in the Java system li-
brary. Specifications for these resources are simple
and we refer mainly to Java API documentation and
the source code if necessary to create these specifi-
cations. The per-process limit of the file descriptor
is 1024, which is the default value on our experimen-
tal machine. There are four source methods for this
exception: private native void open(String name)
of FileInputStream, private native void open(String
name) and private native void openAppend(String
name) of FileOutputStream, and private native void
open(String name, int mode) of RandomAccessFile.
They are all failure atomic. There are only four calls
of these source methods and these four calls are all
in the Java system library. The effect of our trans-
former on the size of class files is negligible.

We find that the resource collector has never
been triggered in these experiments. However, many
of these benchmarks leak some file descriptors dur-
ing runtime. To evaluate our approach, we write a
callback to intentionally run the resource collector
once for each benchmark just before it exits. The
runtime overhead of the resource collector has been
evaluated in Section 6.1 against two known resource
leak bugs. The runtime overhead of benchmark pro-
grams is presented in Fig. 5. Because many programs
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Fig. 5 Runtime overhead on the DaCapo and SPECjvm98 benchmarks. The time is normalized so that the
time of running untransformed benchmarks on the unmodified Jikes RVM (Base series) is 100. The thin error
bars represent the ranges of the 10 trials. To avoid name collisions, we append names of benchmark programs
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from DaCapo 9.12-bach cannot run under Jikes RVM
v3.3.1, we present only results of those that can be
successfully executed (Fig. 5). The runtime over-
head of our approach is low, typically around 3%.
The geometric mean of overhead for all programs
is 2.52%. Two large runtime increases come from
‘bloat’ with 6.89% and ‘lusearch’ with 10.04% from
DaCapo 2006-10-MR2. Time increases for all other
programs are below 4%.

7 Related work

Our approach targets REEs caused by leaks of
non-memory system resources such as file descriptors
and database connections. There is much work that
addresses memory leaks (Guyer et al., 2006; Bond
and McKinley, 2008). General automatic approaches
to localizing bugs (Lei et al., 2012) and fixing bugs
(Qi et al., 2012) have also been proposed. The work
closely related to our approach falls into two cate-
gories: recovery from exceptions and resource leaks.

7.1 Recovery from exceptions

Carzaniga et al. (2013) recovered from runtime
exceptions in Java programs by automatically ap-
plying workarounds. Chang et al. (2009) proposed a
self-healing approach to mask manifestation of faults
derived from the integration of COTS components
into applications. The healing connectors derived
from already experienced integration faults are in-

jected into applications to respond to exceptions.
These two approaches may fix the resource leak that
causes the REE, but they cannot successfully recover
from the REE because all resources have been ex-
hausted. Dobolyi and Weimer (2008) transformed
Java programs to insert ‘null’ checks and recovery
actions guarding every dereference that is potentially
‘null’. Friedrich et al. (2010) proposed to automati-
cally handle exceptions in service-based processes in
a self-healing manner and to repair errors through
a model-based approach. Sinha et al. (2009) pre-
sented an approach to locating and repairing faults
in the form of incorrect assignments in Java pro-
grams. Such a fault manifests as a flow of incorrect
values, which finally leads to an exception. Excep-
tions originating from these types of faults typically
exclude REEs.

Based on their survey in Cabral and Marques
(2007), Cabral and Marques (2008) claimed that
there is something wrong with current exception
handling models, and proposed the automatic ex-
ception handling model. Benign recovery actions are
predefined for platform-level exceptions and shipped
directly with the runtime system. When an excep-
tion occurs inside a ‘try’ block, the system will exe-
cute one or more corresponding recovery actions, and
then the code inside the ‘try’ block is retried. This
approach applies only to platform-level exceptions
while ours transforms application programs and has
no such limitations. It has more reflexibility and
can handle both platform-level and application-level



Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):622-635 633

REEs.
Fetzer et al. (2004) introduced the concept of

‘failure atomicity’. A method is failure atomic if its
failed executions due to occurring exceptions leave
the program in a consistent state. This state consis-
tency can be guaranteed through reverting all mod-
ifications performed by the method before the ex-
ception propagates to its calling method. Failure
atomicity is necessary for all retry based recoveries
to succeed. Fetzer et al. (2004) implemented failure
atomicity using checkpointing. Cabral and Marques
(2008) implemented failure atomicity through soft-
ware transactional memory (STM) (Herlihy et al.,
2006). These techniques can be used to implement
failure atomicity for our approach.

7.2 Language features to facilitate resource
management

Most garbage collectors allow a ‘finalize’ method
to be associated with an object. The ‘finalize’
method is intended to do some cleanup work be-
fore its associated object is garbage collected. Our
approach is analogous to the finalization mechanism
since both aim at reclaiming unreachable resources.
However, the execution of ‘finalize’ methods may
be arbitrarily delayed in an indeterminate manner
(Boehm, 2003), which makes it a known fact that
finalization is unqualified to perform resource collec-
tions. There are two main reasons: (1) The ‘final-
ize’ methods are bound to the garbage collector that
may not run until the application is about to run out
of memory. However, the application may already
exhaust some non-memory resources or may suffer
from performance degradation due to huge resource
consumption while there is still a large amount of
memory available. (2) Various finalization imple-
mentations do not always execute ‘finalize’ meth-
ods immediately when they are ready to be called
(Boehm, 2003). Asynchronous finalization is a nec-
essary feature for the correct implementation, but
the situation becomes worse because of delayed in-
vocations of ready ‘finalize’ methods. Besides this
delayed execution, another main drawback of Java’s
finalization is that the ordering of invocations of dif-
ferent ‘finalize’ methods cannot be guaranteed. As
dependencies between resources are common, Java’s
finalization is not safe.

Our approach improves the situation by three
design decisions. First, our approach separates non-

memory resource collections from memory collec-
tions. Resource collections are triggered in response
to REEs, independent of memory usage. Second, the
separate thread to release leaked resources is given
the privilege to run immediately. Third, while we re-
lease as many leaked resources as possible, we guar-
antee the ordering of leaked resource releases and
the safety of the resource collector, by the design
strategy that a leaked resource r is released by the
resource collector if and only if (1) no objects depend
on r or have some actions (e.g., ‘close’ and ‘finalize’)
to perform in the future, and (2) resource-releasing
methods for r do not have access to resources that
may be manipulated later by the program.

Many languages provide the mechanism of auto-
matic releases of scoped resources. When a resource
is out of its lexical scope, its releasing method is
automatically invoked. Examples include destruc-
tors of C++ and the ‘using’ statement of C# (Hejls-
berg et al., 2003). Java 7 introduces the ‘try-with-
resource’ statement called automatic resource man-
agement (ARM). Resources declared in this state-
ment will be automatically closed once the program
runs out of the ‘try’ block. The declared resource
should implement the java.lang.AutoCloseable in-
terface. When resources are used in the local
scope, these mechanisms can automatically release
resources in time. However, there are situations in
which resources are not confined to a convenient lex-
ical scope. Our approach can collect leaked resources
no matter whether they are used locally or globally.

To cope with resource leaks, Weimer and Necula
(2008) proposed a language extension called ‘com-
pensation stack’, which allows programmers to an-
notate resource-acquiring methods with compensa-
tions such as resource-releasing method invocations.
These compensations are put into stacks that guar-
antee compensations included to be executed in last-
in-first-out order. If compensations are within a
heap-allocated stack, they will be executed auto-
matically when the stack is finalized. In such cases,
this approach cannot guarantee the timely releases
of leaked resources. The Furm (Park and Rice, 2006)
groups resources into a resource tree in which a
single ‘release’ call can close all these resources in
deterministic order. Resource trees can be closed
automatically when the thread that uses it dies.
Similar to compensation stacks (Weimer and Nec-
ula, 2008), Furm cannot guarantee timely releases of
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leaked resources to avoid REEs. The type system of
the Vault programming language (DeLine and Fäh-
ndrich, 2001) allows function post-conditions to be
specified to guarantee that annotated functions can-
not allocate or leak resources.

7.3 Dynamic resource leak detection and
collection

Our previous work (Dai et al., 2013) presents the
Resco tool to collect leaked non-memory resources.
Resco counts the consumption of resources and en-
sures that the limits of resources are not violated.
When the limit of resources is about to be reached
(i.e., when 90% of available resources are consumed),
Resco identifies unreachable resources and then re-
leases them. In this study, the improvement over
Resco mainly lies in two aspects:

First, our approach aims to recover from REEs.
Even if all available resources are consumed, it is
not necessarily obligatory to collect leaked resources
considering cases in which the program does not ac-
quire such resources any more. Our approach collects
leaked resources in response to REEs to avoid fail-
ures caused by resource leaks and meanwhile it does
not perform unnecessary collections to avoid unnec-
essary overhead. In addition, Resco’s requirement
of counting resource consumptions compromises its
applicability. To perform such resource consump-
tion counting, the specific quantities of resources ac-
quired by resource-acquiring methods and released
by resource-releasing methods must be specified in
the resource collection configuration. Limits of re-
sources must also be specified in resource monitors
before program deployment. However, in dynam-
ically reconfigurable systems (Walsh et al., 2007),
resource limits may not be fixed but change as the
program runs.

Second, our approach can release more leaked
sources that are omitted by Resco. For Resco, ob-
jects of leaked resources may be destroyed by the
garbage collector and their occupied resources will
be permanently leaked. In contrast, our approach
retains leaked resources during garbage collections
and can release them later by the resource collec-
tor if necessary. In addition, Resco releases only
leaked resources that can be safely released imme-
diately (Sb), while our approach tries to release all
leaked resources in S (details are given in Section
3.3). As would be expected, our approach imposes

more runtime overhead than Resco. However, this
overhead is low enough to be acceptable.

QVM (Arnold et al., 2011) is based on a Java
virtual machine that detects and helps diagnose de-
fects as violations of specified correctness proper-
ties. The PQL (Martin et al., 2005) approach is
shown to be effective in finding mismatched method
pairs which typically include resource leaks. As mis-
matched method pairs are liveness queries that de-
pend on the absence of the second method call, pat-
tern matches are found at the end of an execution.
Performing resource releasing is then too late and
makes no sense. Other approaches based on Aspects,
e.g., Allan et al. (2005) and Chen and Roşu (2007),
cannot precisely capture object death due to the lack
of direct support from garbage collectors. So, they
are not suitable for detecting resource leaks. There
are several techniques that explore the staleness of
objects to aggressively collect leaked memory (Bond
and McKinley, 2008). However, as cleanup of non-
memory resources is not reversible, object staleness
cannot be easily applied to non-memory resource
collections.

8 Conclusions

This paper presents an approach to automat-
ically recovering programs from REEs caused by
leaks of non-memory system resources. We trans-
form the program to add recovery code only for calls
to source methods of REEs. This avoids handling
many methods that are possibly failure nonatomic
and significantly reduces the amount of transforma-
tion needed. In response to REEs, the recovery code
first triggers the resource collector to safely collect
leaked resources and then retries the method call
that failed. We design a linear algorithm to try to
collect all leaked resources. Meanwhile, it avoids
traversing the heap multiple times. Our approach
improves the resilience of the program to resource
leaks and its reliability by enabling it to continue to
complete its task after REEs occur.
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