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Abstract: This paper is concerned with the problem of estimating the relative orientation between an inertial
measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this
paper is that the information output from the IMU is incomplete. For example, only two tilt information can be
read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions
between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-
camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First,
the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective
IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM)
algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic
and real data show the validity and robustness of our algorithm.

Key words: Calibration, Computer vision, Inertial sensor, Smart phone, Incomplete information
doi:10.1631/jzus.C1400038 Document code: A CLC number: TP391

1 Introduction

The fusion of inertial and visual data plays an
important role in applications such as the inertial
measurement unit (IMU) aided visual simultane-
ous localization and mapping (SLAM) (Nützi et al.,
2011; Gu and Dong, 2012). To achieve data fusion,
the information output from the IMU or the camera
should be translated into the camera or the IMU
coordinate system. Therefore, it is important to
calibrate the translation between the camera coor-
dinate system and the IMU coordinate system. A
‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61340046, 60875050, and 60675025), the National
High-Tech R&D Program (863) of China (No. 2006AA04Z247),
the Science and Technology Innovation Commission of Shenzhen
Municipality (Nos. JCYJ20120614152234873, CXC20110421001
0A, JCYJ20130331144631730, and JCYJ20130331144716089),
and the Specialized Research Fund for the Doctoral Programme
of Higher Education of China (No. 20130001110011)
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

lot of work has been done on IMU-camera calibra-
tion (Lobo and Dias, 2007; Mirzaei and Roumeliotis,
2008).

Mathematically, this calibration is essentially
the same as the hand-eye calibration problem in
robotics, but regarding the IMU as the hand. To
calibrate the transformation X, the robot arm is
laid up at two positions with the camera looking
at a calibration target (Fig. 1). The relative trans-
formation A between the camera in the two poses
can be calculated by the camera calibration methods
(Zhang, 2000; Hartley and Zisserman, 2003). The
relative transformation B of the hand can be easily
computed through the data read from its controller.
As a result, the IMU-camera calibration problem is
equal to solving the well-known hand-eye calibration
equation:

AX = XB. (1)
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Fig. 1 Converting IMU-camera calibration to hand-
eye calibration by mathematically solving AX = XB

Most early methods were proposed with linear
solutions. The hand-eye calibration equation was
first proposed by Shiu and Ahmad (1989) in the con-
text of robot sensor calibration, and a closed-form
solution and conditions for its uniqueness were also
provided. Similarly, Tsai and Lenz (1989) put for-
ward an efficient linear algorithm and stated that at
least two rotations containing motions with nonpar-
allel rotation axes are required. Chou and Kamel
(1991) estimated the rotational part by introducing
the quaternion representation and gave a linear solu-
tion based on singular value decomposition (SVD).
Lu and Chou (1995) used the least-squares method
by introducing the eight-space quaternion approach.
Chen (1991) applied screw motion theory and ana-
lyzed the restrictions of hand-eye geometry. Zhao
and Liu (2009) suggested a method in which the ro-
tation and translation are calculated simultaneously
using dual quaternions with an SVD approach.

Researchers increasingly concentrate on opti-
mization methods due to random noises. Most of the
work applied the L2 nonlinear optimization. Fassi
and Legnani (2005) presented an optimization strat-
egy using a similar formulation to Frobenius norms
as the cost function. Park and Martin (1994) simpli-
fied the parameters in optimization by importing the
canonical coordinates. Horaud and Dornaika (1995)
formulated the rotational parameters in quaternions
and simultaneously solved the robot-world transfor-
mation. A new metric on rigid transformations in
SE(3) for nonlinear optimization was proposed by
Strobl and Hirzinger (2006) with the ability for au-
tomatic optimal weighting. Recently, global linear
optimization has been applied without the need for

initial values. Zhao (2011) proposed new calibration
algorithms using convex optimization. Heller et al.
(2012) presented a technique which recovers the rota-
tion and translation simultaneously and guarantees
that the solution will be globally optimal using L∞
norm. Vicentini et al. (2011) obtained better results
in terms of accuracy by importing manifolds.

One common point in existing IMU-camera cali-
bration is that the information output from the IMU
is complete. However, high-precision IMU may be
expensive, and the cheap low-end IMU can output
high-precision roll angle and pitch angle, while the
yaw angle is exported with a relatively large error
(Gu, 2011; Gu and Dong, 2012). In this circum-
stance, the yaw angle is neglected and this paper
is concerned with IMU-camera calibration with only
two angles output from the IMU; i.e., the IMU in-
formation B in Eq. (1) is partially known. As far
as we know, no publication has dealt with this prob-
lem. This calibration may have significant applica-
tions besides the IMU-aided visual SLAM, such as
the currently popular smart phone. A smart phone
(Fig. 2) has a gravity sensor which can output only
two tilt angles of the phone but has no idea when
the phone is rotated around the axis perpendicular
to the ground plane.
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Fig. 2 IMU-aided visual SLAM system (left) and a
smart phone with a gravity sensor (right). The co-
ordinate frames with subscripts ‘c’ and ‘m’ represent
the camera frame and sensor frame, respectively

2 Problem statement

2.1 Original IMU-camera calibration

A 3D rigid transformation X in SE(3) can be
expressed by a rotation matrix R and a translation
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vector t, written as a 4× 4 matrix:

X =

[
R t

0T 1

]
. (2)

In the IMU-camera system shown in Fig. 3
where the system is measured in two different poses,
the relative transformation X between the camera
frame and the robot IMU frame is constant since
the camera and the IMU are fixed together. Let A1

and A2 denote the transformations from the cali-
bration frame to the camera frame in poses 1 and
2, respectively. Then transformation A between the
camera frames in the two poses can be obtained as
A = A1A

−1
2 . Let B1 and B2 be the transforma-

tions from the world frame to the IMU frames. Then
the corresponding transformation of the two poses is
B = B1B

−1
2 . Similarly, A and B can be expressed

as follows:

A =

[
RA tA
0T 1

]
, B =

[
RB tB
0T 1

]
, (3)

where RA and RB are rotation matrices, and tA and
tB are translation vectors. Therefore, the calibration
Eq. (1) can be expanded as

RAR = RRB, (4)

RAt+ tA = RtB + t. (5)

A=A1A2

B=B1B2

−1

−1

A2A1
Cworld

Cc1 Cc2

X X

Cm1 Cm2

CbaseB1 B2

Fig. 3 Coordinate transformations among camera co-
ordinate frames in two poses, IMU coordinate frames
in the two poses, and their reference frames

2.2 Formulation of RB

Unlike traditional IMU-camera calibration
where Bi (i = 1, 2) can be easily calculated from

the data output from the IMU, here only two tilt an-
gles for the rotation part RBi of Bi can be obtained.
The rotation matrix RBi can be decomposed into
three rotations around three coordinate axes by Eu-
ler angle representation (Bajd et al., 2013):

RBi = Rot(z, γi)Rot(y, βi)Rot(x, αi), (6)

where Rot(v, θ) denotes rotation θ around the v axis.
Here, as is the case with most inertial devices, it just
follows the Z-Y-X form without loss of generality.

Assume the roll angle γi and pitch angle βi can
be gained from the auxiliary sensor while the yaw
angle αi remains unknown. Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Oi=roll(γi)=

⎡
⎣ cos γi − sin γi 0

sin γi cos γi 0

0 0 1

⎤
⎦ ,

P i=pitch(βi)=

⎡
⎣ cosβi 0 sinβi

0 1 0

− sinβi 0 cosβi

⎤
⎦ ,

Y i=yaw(αi)=

⎡
⎣ 1 0 0

0 cosαi − sinαi

0 sinαi cosαi

⎤
⎦ .

(7)

Therefore, RBi = OiP iYi can be decomposed by the
Euler angle representations. A result RB is

RB = RB1R
−1
B2

= O1P 1Y 1(O2P 2Y 2)
−1. (8)

2.3 Problem with incomplete IMU informa-
tion

As stated before, the rotational part R of X

can be calibrated while the translation vector t is
omitted. A similar omission of t was presented by
Seo et al. (2009) where the rotational part is solved
optimally, but all the translations are assumed to
be zeros. To sum up, the goal of this study is to
calibrate a new IMU-camera system with incomplete
IMU information, and the problem can be simplified
and started as follows:
Problem: Given RA from the camera and four
Euler angles β1, β2, γ1, and γ2 from the sensor with
the following equation established:

RAR = RO1P 1Y 1(O2P 2Y 2)
−1, (9)

calculate the relative orientation transform R be-
tween the camera frame and sensor frame.
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3 Theoretical solution

To deal with the newly formulated IMU-camera
calibration problem, we will analyze the formula. Al-
though RB is partially known, the equation is well
structured since all the matrices are 3D orthogonal
matrices. The problem can be solved in three steps:
(1) Restore RB by applying the matrix similarity;
(2) CalculateR with a linear solution; (3) Implement
Levenberg-Marquardt (LM) optimization to obtain
the optimal calibration result R.

3.1 Recovery of RB

There is only one parameter unknown in RB

as formulated in the previous section. Through the
constraint of the orthogonal matrix, it is expected
that the unknown parameter can be solved. Make
a little change to Eq. (4) giving RA = RRBR

T.
Therefore, RA is similar to RB sinceR is orthogonal,
written as

RA ∼ RB. (10)

Reform RB in a more appropriate way on the
basis of Eq. (8):

RB = O1P 1Y 1(O2P 2Y 2)
−1

= O1P 1(Y 1Y
T
2 )P

T
2 O

T
2 O1P 1(O1P 1)

T

= O1P 1R̃B(O1P 1)
T. (11)

Note that all the matrices in Eq. (11) are orthog-
onal and that the inverse of an orthogonal matrix is
equal to the transpose of this matrix. Let⎧⎪⎨

⎪⎩
Y = Y 1Y

T
2 ,

T = PT
2 O

T
2 O1P 1,

R̃B = (Y 1Y
T
2 )P

T
2 O

T
2 O1P 1.

(12)

Here, T can be directly calculated since Oi and P i

(i=1, 2) are known while Y can be written as

Y = Y 1Y
T
2

=

⎡
⎣ 1 0 0

0 cos(α1 − α2) − sin(α1 − α2)

0 sin(α1 − α2) cos(α1 − α2)

⎤
⎦ . (13)

Assuming α = α1 − α2, RB and R̃B are formu-
lated with only one parameter α to be determined.
R̃B can be expressed in the following form:

R̃B =

⎡
⎣ t1

cosα · t2 − sinα · t3
sinα · t2 + cosα · t3

⎤
⎦ , (14)

where ti represents the ith row vector of T . Since
O1P 1 is orthogonal in Eq. (11), we obtain

RB ∼ R̃B. (15)

As the similarity relation is an equivalence rela-
tion, combining Eq. (15) with Eq. (10), we obtain

RA ∼ R̃B. (16)

The trace of a square matrix is defined as the
sum of the diagonal elements of the matrix. Note
that the trace of a matrix is similarity invariant, that
is, matrices have the same trace if they are similar.
Therefore,

tr(RA) = tr(R̃B)

= T11 + (T22 + T33) cosα

+ (T23 − T32) sinα, (17)

where Tij is the (i, j)th entry of T .
It is easy to prove that the following inequalities

are always true with the restriction of orthogonality
of T : {

T22 + T33 �= 0,

T23 − T32 �= 0.
(18)

Therefore, Eq. (17) can be reduced to the following
form:

v1 · (cosα, sinα) = c. (19)

Here, v1 and v2 = (cosα, sinα) are both unit vec-
tors and their inner product is c. As shown in Fig. 4,
there will be two solutions of α if −1 < c < 1 while
there is a unique solution of α if c = ±1.

As a result, one or two solutions of α will be ob-
tained by solving Eq. (17). Putting α into Eq. (11),

Fig. 4 Geometric interpretation of solving α. Gener-
ally two solutions will be obtained
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RB can be computed with one or two candidate val-
ues between which only one solution is correct. The
final determination of the unique RB will be pro-
cessed in the following subsection. Note that the
yaw angles α1 and α2 cannot be recovered but their
difference α can be recovered, which conforms with
the physical phenomenon that a single yaw angle is
undetermined but their relation in accordance with
the relative camera frame is thus restricted. The
whole recovery of RB is summarized in Algorithm 1.

Algorithm 1 Recovery of RB

1: Input: RA and four Euler angles β1, β2, γ1, γ2
2: Output: RB

3: Begin
4: Calculate Oi and P i, i=1, 2

5: Calculate T

6: Formulate ˜RB = yaw(α)T

7: Compute tr(RA) and tr(˜RB)

8: Solve α from Eq. (17)
9: Recover RB = O1P 1yaw(α)P

T
2 O

T
2

10: End

3.2 Calculation of R

Assume kA and kB are unit rotation vectors of
RA and RB, respectively, while θ is the common
rotation angle of both RA and RB . kA and kB are
also the eigenvectors of RA and RB corresponding
to eigenvalue 1, since every orthogonal matrix has
three eigenvalues, one of which is 1 and the other two
are a pair of conjugate complex numbers. Ma and
Zhang (1998) showed that the relationship between
kA and kB is kA = RkB. Given two different such
equivalents

{
k1
A = Rk1

B,

k2
A = Rk2

B,
(20)

we obtain

(k1
A,k

2
A,k

1
A × k2

A) = R(k1
B,k

2
B,k

1
B × k2

B). (21)

As long as k1
B is not parallel to k2

B , R can be
calculated from Eq. (21):

R = (k1
A,k

2
A,k

1
A×k2

A) · (k1
B,k

2
B,k

1
B×k2

B)
−1. (22)

As stated in Section 3.1, there may be two can-
didate values for RB . Therefore, there are two can-
didates for each of k1

B and k2
B. As a result, four can-

didates of R may be obtained with only one correct

solution. To obtain the correct R, an additional pair
of Eq. (20) is needed and another four candidates
of R may be obtained. Comparing the two pairs of
solutions of R, the correct one appears (because R

is fixed, the same R in both candidate groups is the
correct one). Then the correct version of the corre-
sponding RB can be obtained with a backtrace.

3.3 Optimization method

The theoretical solution to the IMU-camera cal-
ibration with incomplete IMU information has been
obtained in previous sections. However, the Eu-
ler angles βi and γi output from the sensor con-
tain measurement noise. Also, RA computed from
two images of the camera is not accurate due to
the computational error and image noise. This sec-
tion deals with the optimal solution of R in noisy
environments. In practice, a set of m measure-
ments {βi

1, β
i
2, γ

i
1, γ

i
2,R

i
A}, will be provided, where

i = 1, 2, · · · ,m.
For each measurement, Ri

B can be expressed
with one parameter free, Ri

B(α
i), according to

Eqs. (11) and (14). So, the residual matrix can be
expressed as

Zi(R, αi) = Ri
AR −RRi

B(α
i). (23)

The rotation matrix R can be expressed in the
form of a quaternion q (Bajd et al., 2013):

q = (λ0, λ1, λ2, λ3). (24)

The relationship between the rotation matrix R

and the quaternion q is as follows:

R=

⎡
⎣ 1−2(λ2

2 + λ2
3) 2(λ1λ2−λ0λ3) 2(λ1λ3+λ0λ2)

2(λ1λ2+λ0λ3) 1−2(λ2
1 + λ2

3) 2(λ2λ3−λ0λ1)

2(λ1λ3−λ0λ2) 2(λ2λ3+λ0λ1) 1−2(λ2
1 + λ2

2)

⎤
⎦.

(25)

Writing Zi in its column order as a 9D column
vector zi(R, αi), and letting the argument

x = (q, α1, α2, · · · , αm), (26)

we obtain the cost function:

E(x) =

m∑
i=1

(zi(x))Tzi(x). (27)
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Considering the quaternion restriction, the optimiz-
ing model is

min

m∑
i=1

(zi(x))Tzi(x)

s.t. ‖q‖2 = 1.

(28)

The optimal solution of R can be obtained by
minimizing the nonlinear cost function (27). Non-
linear optimization can achieve good results; how-
ever, a good initial value is needed. Note that a
set of Ri have already been obtained and they can
be used as the initial value. The classic method
for solving nonlinear least squares problems is the
Gauss-Newton method which has the advantage of
being rapidly convergent in the neighborhood of a
solution. A modification of this algorithm is the
Levenberg-Marquardt (LM) algorithm (Marquardt,
1963), which is more robust than the Gauss-Newton
procedure. Applying the LM algorithm, the optimal
solution R is obtained. The whole IMU-camera cal-
ibration using incomplete IMU information is sum-
marized in Fig. 5.

Recovery of RB

Calculating Ri

Comparison

LM optimization

Input

Output

Obtain the correct
solution

Cost function

Initial value

{β1, γ1, β2, γ2, RA}, i=1, 2,…, m  

Optimal solution R

ii i i i

i

Fig. 5 Flow chat of the whole method for solving
IMU-camera calibration with incomplete IMU infor-
mation

4 Simulations

To verify the performance of IMU-camera cali-
bration with incomplete IMU information, a simula-
tion with synthetic data is given. An overview of the
simulation is summarized as follows:

1. Generate real data to obtain the ground truth.
2. Add Gaussian noise to the real data.
3. Solve the IMU-camera calibration with dif-

ferent noise variances and different numbers of mea-
surements using the proposed method.

4. Compare the solutions in different conditions
to the ground truth.

The ground truth means the exact value of
R,RA, and RB .

4.1 Preliminaries for simulations

For each measurement, six real Euler angles of
the sensor (i.e., α1, β1, γ1, α2, β2, and γ2) are gener-
ated. To produce the real rotation matrix R, three
Euler angles α, β, and γ are also generated to rep-
resent R, which is the same as αi, βi, and γi for
representing RBi . Now the ground truth of RA is
obtained as

RA = RO1P 1Y 1(O2P 2Y 2)
TRT. (29)

Note the inputs are β1, γ1, β2, γ2, and RA. We
add Gaussian noise to these data. In reality, the
Euler angle output from an IMU has an error at
about 0.5◦ (0.008 rad). As a consequence, the simu-
lation is carried out in different Gaussian noise envi-
ronments with standard derivation (SD) σ = 0.002,
0.005, 0.01, and 0.02. For RA, the Gaussian noise
with a similar standard derivation is appended to
each element of RA.

To evaluate the performance of the recovery of
RB, the calculated α̂ will be compared to the real
value α1 − α2:

eα = |α1 − α2 − α̂|. (30)

Here, the generated α1 and α2 are between −π/2

and π/2. The calculated α̂ is between −π and π.
According to Euler’s rotation theorem (Bajd et

al., 2013), R can be expressed as a single rotation θ

about some axis n = (n1, n2, n3), written as

r = (n1, n2, n3, θ). (31)

Here, the rotation angle θ is in its radian measure.
The calibration result R̂ will be compared to the
ground truth R using their rotation vector represen-
tations r̂ and r, respectively:

eR = ‖r̂ − r‖2. (32)

The rotation vector representation is used to
measure the rotation matrix because this is geomet-
rically more meaningful.
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4.2 Test on accurate data

Before showing the results in noisy environ-
ments, the calibration using accurate synthetic data
is evaluated. The three Euler angles of the real R
are assigned as α = π/4, β = π/4, and γ = π/6.

The calibration does not contain the optimiza-
tion step since there is no noise added to the in-
put data. Calculation with different measurements
shows that the error is of the order of magnitude of
about 10−15. The error is not zero due to the trun-
cation error and computational error such as com-
putation of the eigenvector. Such an error level is
considered acceptable, which thus verifies the cor-
rectness of the proposed method.

4.3 Test in noisy environments

Considering Gaussian noise, multiple measure-
ments are necessary for an optimal solution. In the
linear method (i.e., the algebraic method), a pair of

two measurements is required to calculate R.
First, 100 measurements were generated with

Gaussian noise. The 100 measurements were divided
into 50 pairs, and a solution Ri (i=1, 2, . . . , 50) was
calculated for each pair by the algebraic method.
The simulations were repeated four times in four
Gaussian noise environments with SD σ = 0.002,
0.005, 0.01, and 0.02, respectively. In these simula-
tions, the ground truth of R was assigned with three
Euler angles α = π/4, β = π/4, and γ = π/6.

The error of the calculated Ri for every single
pair is exhibited in Fig. 6. In the process of the cal-
culation, 100 values of α were also recovered for each
measurement. We are also interested in the error
of the recovered α. For comparison, the mean of the
two eα is regarded as the error of α for each pair since
there are two measurements in each pair. Therefore,
the two errors for a single pair are obtained and the
error curves of the 50 pairs are drawn in Fig. 6.

From Fig. 6, it can be observed that most errors
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Fig. 6 Calculation errors of α and R in different Gaussian noise environments with σ = 0.002 (a), 0.005 (b),
0.01 (c), and 0.02 (d)
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of R are within the limit of 20σ whereas a few errors
are relatively large, which is not surprising due to the
strong noise there. By carefully analyzing the two
curves in each plot, it is found that the two curves
generally follow the same trends. Inconsistencies of
the two curves may result from the error of RA or
other computational errors.

The calibration result is very rough despite some
relatively accurate results. In practice, it is unclear
which solution is more accurate than the others. As
a result, LM optimization is used to estimate the op-
timal calibration solution based on the above work.
The number of measurements m was assigned from 1
to 50 in the cost function; as a consequence, the LM
algorithm was called 200 times in four Gaussian noise
environments. The estimation errors are plotted in
Fig. 7. Each error curve expresses the estimation
error over the number of measurements in the cost
function in a Gaussian noise environment.

Gaussian noise with σ=0.02
Gaussian noise with σ=0.01
Gaussian noise with σ=0.005
Gaussian noise with σ=0.002
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Fig. 7 A comparison of the LM estimation errors
using different Gaussian noise with σ = 0.002, 0.005,
0.01, and 0.02

Fig. 7 also shows the influence of the standard
derivation σ on the estimation error. It is seen that
the error curves converge as m increases and the
converged error value is almost the same as σ. As
a result, the calibration result R using optimization
is much more accurate than the calculated R before
optimization, demonstrating that the calibration re-
sult is robust to random noise. On the whole, by
employing additional measurements, estimation er-
rors decrease gradually but this trend slows down
significantly when m > 10.

To better tell how the errors of the estimates
grow with the Gaussian noise, we carried out simu-

lations in 19 Gaussian noise environments with stan-
dard derivation ranging from 0.002 to 0.02 using both
the theoretical method and LM optimization. The
results are shown in Fig. 8. The figure plots the aver-
age error against the Gaussian noise standard deriva-
tion. The average error of the theoretical method is
about 5σ − 10σ and the error of LM optimization is
about σ.

Theoretical solution

LM optimization
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Fig. 8 A comparison of the theoretical solution and
LM optimization with different Gaussian noises (m =

50 under the theoretical method and m = 10 under
LM optimization)

5 Experiments

The IMU-camera calibration was also applied in
a real system where an IMU was attached to a camera
(Fig. 9). The system can achieve IMU-aided visual
tasks such as the SLAM system. A fixed chessboard
with 7×8 squares was used as the calibration target.
In every pose, an image containing the chessboard
taken by the camera and the pitch angle and roll an-
gle output from the IMU were obtained. Combining
every two data in two different poses, a measurement
was obtained. All the images containing the fixed
chessboard were used to calculate the rotation trans-
formation from the chessboard frame to the camera
frame. Currently, the GML C++ calibration toolbox
(http://graphics.cs.msu.ru/en/node/909) (Fig. 10)
was used here to compute camera external param-
eters. Ten measurements were used to estimate the
calibration result and the calibrated rotation trans-
formation from the camera frame to the IMU frame
was
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Fig. 9 A real IMU-camera system to be calibrated.
The IMU is fixed on the camera which is connected
to a computer. The IMU consists of an MPU-6050
IMU, an Arduino Mini microcontroller, and a USB
serial converter in order, and then is connected to the
computer

Fig. 10 GML C++ calibration toolbox for calibration
of the camera external parameters

R̂ =

⎡
⎣ −0.1478 0.9836 −0.1029

−0.9890 −0.1464 0.0205

0.0051 0.1048 0.9945

⎤
⎦ .

The ground truth of R was not known. How-
ever, when fixing the IMU to the camera we try hard
to let R be approximately

⎡
⎣ 0 1 0

−1 0 0

0 0 1

⎤
⎦ .

Therefore, it can be inferred that the calibration re-
sult for the IMU-camera pair is basically correct.

This demonstrates the validity of IMU-camera cali-
bration with incomplete IMU information in a real
system.

6 Conclusions

This paper introduces a new IMU-camera sys-
tem to be calibrated which is widely applied in
vision-inertial systems. Unlike the traditional IMU-
camera calibration, the motion information B is in-
complete. To solve the new calibration problem, we
firstly recover the rotational part RB by utilizing
the property of similar matrices. Then the problem
is converted to the traditional calibration problem,
and the LM algorithm is applied to estimate the op-
timal calibration result. Experiments on both syn-
thetic data and real data confirm the validity of the
IMU-camera calibration with incomplete IMU infor-
mation. Also, the experimental results using an opti-
mization method show that the calibration is robust
to noise. This paper shows that the calibration can
be achieved even without enough information, and
the result can be accurate by using an optimization
algorithm. Future work could include reducing the
running time of the algorithm and use of different
optimization methods.
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