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Abstract:    Network-on-chip (NoC) communication architectures present promising solutions for scalable communication re-
quests in large system-on-chip (SoC) designs. Intellectual property (IP) core assignment and mapping are two key steps in NoC 
design, significantly affecting the quality of NoC systems. Both are NP-hard problems, so it is necessary to apply intelligent 
algorithms. In this paper, we propose improved intelligent algorithms for NoC assignment and mapping to overcome the draw-
backs of traditional intelligent algorithms. The aim of our proposed algorithms is to minimize power consumption, time, area, and 
load balance. This work involves multiple conflicting objectives, so we combine multiple objective optimization with intelligent 
algorithms. In addition, we design a fault-tolerant routing algorithm and take account of reliability using comprehensive perfor-
mance indices. The proposed algorithms were implemented on embedded system synthesis benchmarks suite (E3S). Experimental 
results show the improved algorithms achieve good performance in NoC designs, with high reliability. 
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1  Introduction 
 

The increasing number of components on a sin-
gle chip leads to continuous saturation problems for 
buses on systems-on-chips (SoCs). Network-on-chip 
(NoC) is a new SoC paradigm for solving scalable 
communication requests, separating the processing 
units and communication infrastructures. In this way, 
complex communication problems between multi-

processors are solved effectively (Bjerregaard and 
Mahadevan, 2006; Marculescu et al., 2009).  

An NoC application usually consists of a few 
subtasks. These subtasks are accomplished by a set of 
intellectual property (IP) cores. IP core assignment, 
mapping, and routing play key roles in the design and 
implementation of NoC platforms (Orgas et al., 2005; 
Cheng et al., 2011). The purpose of IP core assign-
ment is to select proper IP cores for the subtasks. IP 
core mapping is used to arrange suitable locations for 
the IP cores in NoC topologies. They significantly 
affect the performance of NoC systems. Power con-
sumption, delay, and area are important indices used 
to evaluate the quality of NoCs. Many studies have 
focused on this field (Tang and Kumar, 2003; Jena 
and Sharma, 2007; Sepulveda et al., 2011). With  
the increasing scale of integrated circuits, more and 
more complex designs are integrated on-chip, where 
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fault-tolerant communication and reliability are 
drawing increasing attention. The reliability of NoC 
architectures has been studied widely (Refan et al., 
2008; Yu and Ampadu, 2010). 

In this paper, we take account of reliability using 
comprehensive performance indices in NoC design. 
We adopt different evaluation indices and models for 
assignment and mapping, in accordance with different 
application requirements. We also design a fault- 
tolerant routing to improve system reliability.  

Both IP core assignment and mapping are highly 
complex problems. If there are N subtasks and M 
candidate IP cores, MN assignment solutions exist. If 
there are M IP cores and N mapping locations, 
N!/(N−M)! mapping designs exist. Both problems are 
NP-hard problems (Liu et al., 2011). The size of the 
solution space increases quickly as the problem scales 
up. At present, the methods used usually obtain near 
optimal solutions by employing optimization algo-
rithms. Tang and Kumar (2003) used a two-step ge-
netic algorithm to optimize NoC layout. Hu and 
Marculescu (2003) used a branch and bound method. 
Jena and Sharma (2007) used the non-dominated 
sorting genetic algorithm version II (NSGA-II). 
Sepulveda et al. (2011) applied an immune algorithm 
(IA). da Silva et al. (2010) used NSGA-II and micro- 
genetic algorithm (micro-GA).  

The algorithms mentioned above are traditional 
intelligent algorithms which generally have some 
drawbacks. For example, they easily converge on 
local optima. Furthermore, both IP core assignment 
and mapping have multiple optimization objectives. 
So, based on NoC application requirements and con-
straints, we have designed improved multi-objective 
optimization algorithms: PSOGA, PSOSA, and scat-
ter search. PSOGA combines particle swarm optimi-
zation (PSO) with the genetic algorithm (GA), 
PSOSA combines PSO with simulated annealing 
(SA), and scatter search (SS) is efficient for searching 
for optimal solutions and is different from other in-
telligent algorithms (Rao and Arvind, 2005). 

 
 

2  Preliminaries 

2.1  Problem description 

The purpose of IP core assignment is to select a 
set of IP cores according to every subtask type, from 

an IP core repository. IP core mapping is used to map 
the selected IP cores onto proper processing elements 
(PEs) in the NoC architecture based on communica-
tion traffic between subtasks. The process is shown in 
Fig. 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We employ a task graph (TG) to describe sub-

tasks and communication relationships for NoC ap-
plications. An example of TG is shown in Fig. 1a. It is 
a directed acyclic graph G(V, E), where V represents 
the subtask set and E represents the set of connections 
between subtasks. A vertex viV represents a subtask, 
and an edge eijE represents the connection between 
subtasks i and j. The weight of eij represents the traffic 
between vi and vj.  

Tile-based mesh topology (Fig. 1b) is used 
widely for its high bandwidth, simple structure, and 
convenience of implementation. A tile-based mesh 

Fig. 1  Process of IP core assignment and mapping 
(a) Task graph; (b) Tile-based mesh topology 
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consists mainly of processing elements (PE) and 
switches (S). 

2.2  Elitist non-dominated sorting 

In practical applications of NoC, there are mul-
tiple optimization objectives such as delay, area, and 
power consumption. Some of these objectives con-
flict with each other, and no method can improve one 
objective without degrading another. In evaluation, if 
using single objective optimization, taking reliability 
as an example, the solutions with the highest reliabil-
ity may need long communication times. Thus, the 
overall performance of the system is not high. So, we 
have adopted multiple objective optimization to re-
alize good tradeoffs between multiple objectives. 

Taking the mapping phase as an example, 
communication time, link load variance, and reliabil-
ity are three optimization objectives. We want to ac-
quire solutions with less communication time, small 
link load variance, and high reliability. We modify 
reliability to 1-reliability to change the maximization 
problem to a minimization problem. Suppose that 
there are five solutions, and that the three optimiza-
tion objectives of the five solutions are denoted as: 
A(5, 9, 0.8), B(8, 5, 0.9), C(7, 9, 0.5), D(5, 4, 0.5), and 
E(5, 5, 0.4). In each solution, the digits from left to 
right represent, respectively, communication time, 
link load variance, and reliability. We omit the units to 
facilitate the analysis below.  

For single objective optimization, supposing the 
objective is to minimize communication time, we just 
compare the communication time of the five solutions. 
The time values of solutions A, D, and E are the same, 
and are the minimum, so these three solutions are the 
optimal. But obviously in solution A, although the 
communication time is the lowest, the link load var-
iance is too large and the reliability is too low; thus, 
the overall performance of the system is poor.  

For multiple objective optimization, we compare 
all three optimization objectives of the five solutions 
and rank them using a non-dominated sorting method. 
According to the values of evaluation indices, each 
index value of the solutions D and E is less than or 
equal to the corresponding values of other solutions. 
Comparing solution D with E, we can observe that 
some index values of solution D are larger than those 
of E, but the others are smaller. So, solution D is 
ranked as 1. Among solutions A, B, and C, there is no 

solution whose three indices are all superior to those 
of the other solutions, so they are ranked as 2. From 
these evaluation results, we can see that the overall 
performance of the solutions of rank 1 is superior to 
that of rank 2. So, we make the solutions in rank 1 our 
first choice. The solutions in the same rank are pro-
vided together to deciders for reference. 

Given the above, in evaluation, single objective 
optimization considers only one objective and cannot 
achieve overall performance optimization. Multiple 
objective optimization considers all objectives to-
gether as a whole to achieve overall performance 
goals. So, we need to coordinate each objective and 
search for Pareto optimal solutions.  

Here, the solutions are sorted by an elitist non- 
dominated sorting method, and assigned a rank. Fur-
thermore, we select a predetermined number of solu-
tions into an elite archive. The elites are chosen based 
on their non-dominated rank. If candidate solutions 
belong to the same rank, the solutions are selected 
based on their crowding distances. The crowding 
distance of the ith solution is described as 

 

1 1

1 1 0

( ) ( )
crowd ,

( ) ( )

N
m i m i

i
m m n m

f C f C

f C f C
 

 




           (1) 

 
where Ci (i=0, 1, …, n−1) denotes the ith solution in a 
given non-dominated rank, fm(·) is the evaluation 
function of the mth optimization objective, and N is 
the number of evaluation objectives. To avoid the 
impact of different dimensions of the multiple evalu-
ation objectives, the distance between the (i−1)th and 
(i+1)th solutions is divided by the distance between 
the (n−1)th and 0th solutions.  

 
 

3  Multiple objective optimization model 

3.1  Evaluation models of IP core assignment 

IP core assignment does not involve the layout of 
IP cores and communication between IP cores. So, the 
evaluation indices are computing power consumption, 
execution time, and area. 

3.1.1  Computing power consumption 

Computing power consumption is the power 
consumption when IP cores are executing the tasks: 
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computing
TG

Power ,t
t

P


                      (2) 

 
where t represents subtask t in the task graph, and Pt is 
the power consumed when an IP core executes sub-
task t.  

3.1.2  Execution time 

The total execution time consists of critical task 
time and parallel task time. The critical tasks are the 
tasks in the longest-duration path through the task 
graph, and parallel tasks are the tasks which can be 
executed at the same time. If parallel tasks share the 
same IP core and some of them are the critical tasks, 
the parallel execution time is considered. The formula 
is given by  

 

execution
critical-task critical-task

Time Time TimePara ,t p
t p 

    

Time , if task is executed in

parallel and shares the same
TimePara

IP core with critical tasks,

0, otherwise,

p

p

p

 



 

(3) 
 
where critical-task is the set of critical tasks, t is a 
critical task, and Timet is the execution time of task t. 
p represents a task which does not belong to the crit-
ical task set and Timep is the execution time of task p. 

3.1.3  IP core area 

The formula for the IP core area is given by 
 

computing
1

Area ,
N

i
i

A


                      (4) 

 
where Ai is the area of IP core i and N is the number of 
IP cores in a given NoC assignment. 

3.2  Evaluation models of IP core mapping 

3.2.1  Reliability 

When a switch fault occurs, the IP core linked 
with the faulty switch cannot communicate with other 
IP cores, which affects the entire system communi-
cation. Thus, the system reliability decreases. We 
propose a fault-tolerant mechanism which can re-

cover the communication and balance the load. We 
first build several redundant paths by replacing the 
faulty switch with its neighboring switches. To ensure 
system performance, we evaluate the performance of 
redundant paths and select the best one. In this way, 
communication is restored with good performance. In 
our algorithm, we divide switch faults into end- and 
mid-switch faults according to the position of the 
faulty switch. On this basis, we design a rerouting 
algorithm which can automatically switch between 
X-Y and Y-X routings, aiming to avoid deadlock and 
obtain the shortest path. The rerouting decision tree is 
shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reliability model in this paper is traditional 

and is based on probabilistic methods. According to 
the reliability of the system components, the system 
overall reliability is computed using probabilistic 
methods. The reliability of an NoC system is equal to 
the product of the reliabilities of all the communica-
tion paths. The reliability of a path between a pair of 
IP cores is computed by the product of the probabili-
ties of all the switches working properly in the path: 

 

aPath
1

,
N

i
i

R R


                          (5) 

 

where Ri denotes the probability of the ith switch 
working properly, and N is the number of switches in 
this path. 

On this basis, redundant structures are intro-
duced. We consider both the shortest and redundant 

Fig. 2  Decision tree of the rerouting algorithm
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paths. If the switches in the shortest path fail to work 
properly, we replace the shortest path with a redundant 
path which can bypass the faulty switch between this 
pair of IP cores. The reliability of the paths between 
the pairs of communication IP cores is  

 

paths
1 1

+(1 ) ,
N M

i j i
i i ,i j

R R R R
  

               (6) 

 

where the first term represents the shortest path with 
all switches working properly, and the second term 
represents a redundant path bypassing the jth faulty 
switch. N and M, respectively, represent the numbers 
of switches in the shortest path and redundant path. 
This model is similar to the one proposed by Refan et 
al. (2008). 

For example, there are two communication paths 
between IP cores 1 and 5, denoted as (1, 3, 5) and (1, 2, 
4, 5). At first we select the shortest path (1, 3, 5). If 
switch 3 breaks down, we will use the redundant path 
(1, 2, 4, 5). So, the reliability of the path between IP 
cores 1 and 5 is equal to R1R3R5+R1R2R4R5(1−R3).  

The reliability model in this paper is based on the 
above description. Therefore, the computation of 
reliability is related to the shortest and redundant 
communication paths, and obviously the communi-
cation path is related to the IP core mapping locations 
and routing methods. If there are multiple redundant 
paths, we select the one with the best performance 
which has lower communication power consumption 
and communication time. Thus, system reliability is 
improved, and at the same time, system performance 
is taken into account. 

The reliabilities of NoCs involve many issues. 
We focus on the optimal design reliability, which is 
the premise and basis for ensuring system reliability. 
The problem we expect to solve is improving the 
connectedness probability of the surviving NoCs in 
the presence of failures. This problem is important in 
an NoC with nodes having fault probability. We ex-
pect to improve system reliability using optimal to-
pologies and redundant paths to a certain extent. The 
topologies are the bases of reliability and the redun-
dant paths are important means for achieving it. 

3.2.2  Communication load balance 

Balancing link load helps to relieve congestion 
points and queuing delay. It is evaluated by 

2

1 1

1 1
Load load load ,

L L

i i
i iL L 

   
 

          (7) 

 
where loadi is the ith link load, and L is the number of 
communication links in the mapping layout. A 
smaller variance means a more balanced load. 

3.2.3  Communication power consumption 

We sum up the power consumption of each 
communication IP core. The power consumption of a 
pair of IP cores can be computed by 

 
,

comm link , , switchPower = hop +(hop +1) ,i j
i j i jP P        (8) 

 
where Plink and Pswitch are the power consumed 
through a link and a switch, respectively. These pa-
rameters were provided by Muralimanohar et al. 
(2007) and Das et al. (2009). hopi,j is the number of 
links between IP cores i and j.  

3.2.4  Communication time 

Because several parallel tasks may share the 
same link, additional time should be considered for 
the congestion caused by parallel subtasks. So, we 
build the communication time model as 

 

comm para link ,
, Critpath

Time hopi j
i j

T T


    

, switch(hop 1) ,i j T                 (9) 

 
where i and j denote the IP cores which execute the 
critical subtasks. Tlink is the time spent on a link, as 
proposed by Muralimanohar et al. (2007) and Das et 
al. (2009). Tswitch is the queuing time in switch buffers, 
computed using the method proposed by Saxena et al. 
(2003). Tpara is the additional time for parallel sub-
tasks when they share the same link. Critpath is the set 
of critical paths.  

 
 

4  Intelligent algorithm design 
 
Based on the prescribed NoC design and plat-

form constraints, we propose multi-objective intelli-
gent optimization algorithms and apply them to NoC 
design. 
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4.1  Solution representation  

4.1.1 Representation of the solution to IP core  
assignment 

An IP core assignment solution is expressed as 
an array of genes. Each gene represents an IP core 
assigned to a subtask. For example, a solution is de-
scribed as C=(g1, g2, …, gt), where gene gi represents 
the IP core assigned to the ith subtask, and t is the total 
number of subtasks in a task graph. Some subtasks 
must be completed by some specific IP cores. So, the 
generation of the initial solutions is partially random. 
Each gene is selected randomly from the candidate IP 
cores which can execute this type of task. 

4.1.2  Representation of the solution to IP core mapping 

An IP core mapping layout is expressed as a 
sequence p=(p1, p2, …, pd), where pi (i=1, 2, …, d) 
represents the tile assigned to IP core i. For example, 
in p=(4, 6, 5, 3, 2, 8, 7, 0, 1), the first digit is 4, which 
denotes that the first IP core maps to tile 4. d repre-
sents the number of tiles in an NoC topology. 

4.2  Hybrid PSOGA algorithm 

PSO is an algorithm of swarm intelligence, 
which is often applied to solving complex optimiza-
tion problems because of its fast convergence 
(Masehian and Sedighizadeh, 2010). However, the 
standard PSO is weak in local search. We propose two 
efficient solutions to remedy this problem using the 
evolutionary operator of GA and the local search 
strategy of SA.  

PSOGA combines PSO with GA. We first update 
the standard PSO formula to meet NoC application 
characteristics, and then use two genetic operators, 
mutation, and selection, to improve PSO. Mutation 
helps to increase particle diversity and selection is 
used to select the higher fitness particles for use in the 
next step. The steps are as follows: 

1. Generating and updating populations 
A particle in PSO is a solution which represents 

an IP core assignment or mapping design. The posi-
tions of particles are represented in Section 4.1. The 
initial particles are generated partially randomly. The 
updating formulas of particles are given by 

 

1 1 1 pBest 2 2 gBest

1 1

rand replace rand replace ,

,

t t

t t t

V V c c

P P V



 

  


 


(10)

where Vt is the velocity of a particle at time instant t, 
and Pt is the position.  represents a replacement 
operation. ω controls the amount of current velocity, 
and the relative influence of the self and global 
knowledge is determined by positive constants c1 and 
c2, respectively. rand1 and rand2 are random real 
numbers in the range [0, 1]. replacepBest is the re-
placement number with reference to the personal 
optimal solution. The process of replacement is 
shown in Fig. 3. replacegBest represents the number of 
replacements with reference to the global optimal 
solution.  
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Diversifying updated populations 
In the assignment phase, the mutation position is 

selected randomly. The mutation value is selected 
only from the candidate IP core set of the corre-
sponding subtask. In the mapping phase, to ensure the 
validity of solutions, the elements swap with other 
elements of the same particle if their mutation prob-
abilities are higher than the preset value Pm.  

3. Calculating fitness 
The fitness of updated particles is computed 

according to evaluation indices, and the new personal 
and global best particles are selected. If reaching a 
preset number of iterations, iteration terminates. 
Otherwise, these particles are sorted, and the high 
fitness particles are selected for the next iteration. 

4.3  Hybrid PSOSA algorithm 

The algorithm proposed in this section is based 
on PSO and simulated annealing (SA). SA is a search 
algorithm capable of escaping from local optimal 
solutions. The initial solutions are obtained by PSO, 
and then SA executes a neighborhood search. In this 
method, a solution with worse performance is allowed 

Fig. 3  Process of replacement 
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with a probability function described in Eq. (12). This 
method helps escape from local optima and guides to 
a better solution. The pseudocode of the PSOSA al-
gorithm is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The neighbors are particles in which the order of 

a few elements is different from that in the current 
particle. The formula for differences between the 
particle and its neighbor is given by 

 

   (neighbor) (current),i i id f f             (11) 

 
where di (i=1, 2,…, N) represents the difference of the 
ith evaluation index, and fi(·) represents the ith eval-
uation function. N is the number of valuation indices. 
If three or more index differences are less than 0, the 
neighbor is accepted. Otherwise, the neighbor is ac-
cepted with probability p0, defined as  

  
0

1

exp( Δ / ),

max abs / (current) ,i i
i N

p f T

f d f
 

 
 

        (12) 

 
where T is the temperature,  and abs is the function of 
absolute value. 

4.4  SS algorithm 

Scatter search (SS) is an evolutionary optimiza-
tion algorithm. Compared with other evolutionary 
algorithms, its main characteristics are as follows: the 
size of the population is small; the evolution of the 
population is controlled partly by deterministic rules 
and is not totally random; a local search procedure is 
integral to SS (Hung and Song, 2001). The search 
rules of the algorithms deeply influence their search 
capability (Wang et al., 2012b). Based on standard SS, 
we propose an improved multi-objective SS algo-
rithm for IP core assignment and mapping. The main 
methods of our improved SS are as follows: 

1. Individual generation method  
Each IP core assignment solution is represented 

by an array of genes as described in Section 4.1.1. The 
initial population of assignment not only is diverse 
but also can execute corresponding subtasks. So, each 
gene is generated by selecting an IP core randomly 
from the candidate IP cores. Improving solutions is an 
important step in SS. Optimal training sequences 
contribute to better performance (Wang et al., 2012a). 
A threshold, whose value is determined by the dead-
lines of NoC applications, is used to improve solu-
tions. The IP cores under the threshold have oppor-
tunities to become solutions.  

In the mapping phase, each layout of IP core 
mapping is represented by a sequence as described in 
Section 4.1.2. The initial populations are generated 
randomly. The method of improving mapping solu-
tions is local search. We select the IP core with 
maximum degree and then place the IP cores con-
nected with it onto its adjacent tiles.  

2. Reference set and subset generation method  
The reference set consists of high performance 

solutions and diverse solutions. The solutions are 
sorted and ranked. We compare the values of the same 
dimension between two solutions, and the number of 
the same values of two solutions is taken as the dis-
tance between these two solutions. We adopt 2- 
element subsets (Hung and Song, 2001), pairing each 

PSOSA algorithm 
1  Begin 

2    Generate the initial particle swam; 

3    Compute multi-objective evaluation indices for  
particles; 

4    Select initial pBest and gBest; 

5    Repeat 

6      Update particles; 

7      Repeat  // starting local searching by SA 

8        Set the initial and final temperatures; 

9        Repeat 

10         Select a particle as the current particle; 

11         Repeat 

12           Generate the particle’s neighbors; 

13           If (d1<0)+(d2<0)+…+(dN<0)≥N  
// di represents the difference of the ith evaluation 
// index, and N represents the number of evaluation 
// indices 

14             Accept the neighbor particle; 

15           Else 

16             If p<exp(−Δf/T) 

17               Accept the neighbor particle; 

18             End if 

19           End if 

20         Until (reach the preset number of iterations) 

21         Decrease the temperature; 

22       Until (reach the preset temperature) 

23     Until (all particles finish local searching)  

24     Update local and global best particles; 

25   Until (reach the termination condition) 

26 End 
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solution in the reference set with another solution 
randomly. 

3. Solution combination method  
Solution combination operates on every subset. 

In the assignment phase, the crossover position is 
selected randomly, and the genes of two solutions 
from the crossover position to the last position are 
exchanged. In the mapping phase, we design a new 
crossover operator to avoid generating invalid solu-
tions. The crossover process is described in Fig. 4. 
The mutation operator we use here is swap mutation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Reference set update method 
Compute the evaluation indices of new solutions 

and the distances between new solutions and the ref-
erence set. The new solutions with high performance 
and long distance replace the old solutions at the 
lowest Pareto optimal rank. 

 
 

5  Experimental results 
 

To illustrate the performance of the proposed 
algorithms, we performed tests on the embedded 
system synthesis benchmarks suite (E3S) (http:// 
ziyang.eecs.umich.edu/~dickrp/e3s/) and NIRGAM 
(http://nirgam.ecs.soton.ac.uk/home.php). E3S provides 
a set of task graphs of NoC applications and an IP core 
repository. The task graphs in E3S represent real ap-
plications. The results were compared with those 
from NSGA-II and micro-GA (da Silva et al., 2010). 

5.1  IP core assignment experimental results 
 

We tried to obtain more solutions under the 
constraints of power consumption and time (da Silva 
et al., 2010). Tables 1 and 2 show the numbers of 
potential solutions of IP core assignment and mapping 
obtained from different algorithms, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We obtained more solutions from our algorithms 

PSOGA, PSOSA, and SS than from NSGA-II and 
micro-GA because PSOGA and PSOSA adopt im-
proving methods which decrease the possibility of 
local optimal solutions, searching for more potential 
solutions. SS constructs a reference set which in-
cludes high quality solutions and diverse solutions. 
Diverse solutions also decrease the chance of being 
trapped in local optima.  

AutoTg2 is an NoC application with the largest 
number of possible solutions, and thus is the most 
represented case. We compared its top seven best 
solutions obtained from different algorithms (Fig. 5). 
The times obtained from our improved algorithms are 
better than those from NSGA-II and micro-GA. The  

Table 1  Numbers of potential solutions of IP core assign-
ment under different algorithms in various applications 

Application 
Number of potential solutions 

NSGA-II Micro-GA PSOGA PSOSA SS

AutoTg0 2 4 12 9 10
AutoTg2 17 23 29 35 40
ConsumerTg0 9 6 10 10 12
ConsumerTg1 3 9 15 11 14
NetworkingTg2 2 6 9 7 10
OfficeTg0 8 18 22 22 23
TelecomTg1 2 2 6 6 13

Table 2  Numbers of potential solutions of IP core map-
ping under different algorithms in various applications 

Application 
Number of potential solutions 

NSGA-II Micro-GA PSOGA PSOSA SS

AutoTg0 2 7 9 8 19

AutoTg2 11 47 48 46 54

ConsumerTg0 3 10 12 11 21

ConsumerTg1 7 18 23 18 23

NetworkingTg2 3 7 10 11 19

OfficeTg0 8 25 28 25 33

TelecomTg1 1 4 8 8 13

Fig. 4  Process of crossover 
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areas obtained from NSGA-II and micro-GA are 
similar to those from our improved algorithms. 

5.2  IP core mapping experimental results 

Table 2 shows the numbers of mapping solutions 
obtained from different algorithms. The numbers 
obtained from our improved algorithms are greater 
than those from NSGA-II and micro-GA. The intel-
ligent algorithms proposed in this paper are based on 
random search, and thus the solutions have a certain 
randomicity. To analyze the stable performance of the 
algorithms, for each evaluation index, we accumu-
lated the best values of 10 calculations. The experi-
mental results are shown in Fig. 6.  

Fig. 6a shows that the SS algorithm obtains the 
minimum time values in all test cases. The values of 
PSOGA and PSOSA are closest to those of SS. 
PSOSA is superior to PSOGA in some test cases, but  
inferior in others. These two methods are PSO- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Performance comparison for AutoTg2 
(a) NSGA-II; (b) Micro-GA; (c) PSOGA; (d) PSOSA; (e)SS
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Fig. 6  Performance obtained from our improved algo-
rithms in various applications 
(a) Communication time; (b) Power consumption; (c) Load
variance; (d) Reliability 
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based algorithms and have some similarities. The 
time values obtained by NSGA-II are larger than 
those of the other algorithms.  

Fig. 6b shows that the power consumption ob-
tained by SS is the lowest. It is a nip and tuck between 
PSOGA and PSOSA. The results of NSGA-II are the 
worst. Fig. 6c shows the variances of link load. A 
smaller load variance means a better balance. The 
load variance obtained by SS is the best and those 
obtained by NSGA-II are the worst.  

High reliability is important to NoC mapping. 
We adopted redundant links to improve system relia-
bility. The reliability of each switch Rs was set to 0.94. 
In Fig. 6d, the reliability obtained by SS is higher than 
that of the other algorithms. This is because strategies 
of SS can allow more reliable paths to be explored. 
NSGA-II gives the lowest reliability. 

To evaluate further the performance of the 
mapping topology generated by our proposed algo-
rithms, we performed simulations using NIRGAM, 
which is a cycle accurate simulator targeted at NoC 
research. The application AutoTg2, which has the 
most subtasks in E3S test cases, is the most repre-
sentative case. We show its mapping and simulation 
results in detail. 

This test application consists of nine subtasks, 
and the traffic between the subtasks is generated 
randomly (Fig. 7). To avoid generating hotspots 
which may degrade the NoC performance, we assume  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that a tile is assigned to, at most, two subtasks in a 
given NoC application. For example, in Fig. 7a, there 
are circles 6 and 8 in square 5, which represent sub-
tasks 6 and 8 executed by the PE in tile 5. We simu-
lated mapping results obtained from four algorithms 
on NIRGAM. The simulated structure was a 2D mesh 
topology of size 3×3. Traffic generation began after 5 
clock cycles, and continued until 500 clock cycles. 
The interval between flits was 2 clock cycles. The 
traffic load of each link was set to a different value 
according to the communication traffic between PEs. 
The simulation stopped after 3000 clock cycles. 
NIRGAM measures NoC performance on a per-link 
basis. Fig. 8 shows the average latencies for different 
mapping results. 

The numbers 0–8 show the placements of tiles. 
The bar between tiles represents the average latency 
per flit in different direction links. For example, there 
are two bars between tiles 0 and 1: the left one rep-
resents the eastward link from tile 0 to 1, and the right 
one represents the westward link from tile 1 to 0. Fig. 8 
shows that SS obtained the lowest average latency. 
PSOGA and PSOSA were the next lowest. NSGA-II 
gave the highest latency. The simulation results of 
other test applications are shown in Table 3 (the  
corresponding mapping topologies and average la-
tencies obtained by different algorithms are referred 
to supplementaries Figs. S1–S12). The overall aver-
age latencies of mapping results obtained from SS are 
the lowest, and those of PSOGA and PSOSA come 
second. 

 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 

We studied two important phases in NoC design: 
IP core assignment and mapping. Based on the  

Table 3  Comparison of overall average latencies of map-
ping results from different algorithms 

Application 
Average latency (clock cycle per flit) 

NSGA-II PSOGA PSOSA SS 

AutoTg0 1.867 1.533 1.533 1.200

ConsumerTg0 2.057 1.719 1.667 1.500

ConsumerTg1 3.731 2.417 2.417 1.917

NetworkingTg2 1.333 1.333 1.333 1.333

OfficeTg0 1.581 1.533 1.581 1.533

TelecomTg1 1.889 1.025 1.025 1.009

 

Fig. 7  Mapping topologies in AutoTg2 obtained by NSGA-
II (a), PSOGA (b), PSOSA (c), and SS (d)  
Each small square represents a tile in the NoC topology, and
circles in the square represent subtasks assigned to this tile 
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characteristics of each phase, we designed different 
evaluation models and algorithms, giving a more 
comprehensive evaluation of NoC design. To over-
come the drawbacks of traditional intelligent algo-
rithms, we designed improved multi-objective intel-
ligent algorithms based on the requirements and con-
straints of NoC design. PSOGA and PSOSA algo-
rithms not only take the advantages of traditional 
intelligent algorithms, but also avoid being trapped in 
local optima. The search process of the improved SS 
algorithm is based on strategies instead of total ran-
domness, leading to better solutions. The proposed 
rerouting algorithm based on a fault-tolerant mecha-
nism can rebuild a shortest communication path for 
switch faults, improving the reliability of systems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The experimental results show that our proposed 
algorithms obtain more solutions with high reliability 
and performance. In the future, we will extend our 
intelligent algorithms to other NoC architectures 
based on different topologies and develop dynamic 
analysis models to attain more accurate evaluation. 
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