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Abstract: Message forwarding (e.g., retweeting on Twitter.com) is one of the most popular functions in many
existing microblogs, and a large number of users participate in the propagation of information, for any given
messages. While this large number can generate notable diversity and not all users have the same ability to diffuse
the messages, this also makes it challenging to find the true users with higher spreadability, those generally rated as
interesting and authoritative to diffuse the messages. In this paper, a novel method called SpreadRank is proposed
to measure the spreadability of users in microblogs, considering both the time interval of retweets and the location
of users in information cascades. Experiments were conducted on a real dataset from Twitter containing about 0.26
million users and 10 million tweets, and the results showed that our method is consistently better than the PageRank
method with the network of retweets and the method of retweetNum which measures the spreadability according to
the number of retweets. Moreover, we find that a user with more tweets or followers does not always have stronger
spreadability in microblogs.
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1 Introduction

Microblogs such as Twitter have rapidly become
significant means for people to communicate with
the world and each other. Message forwarding (e.g.,
retweeting on Twitter.com) is one of the most popu-
lar functions in many existing microblogs. For exam-
ple, people can choose to retweet messages on their
blog space in twitter. In this way, the information
carried by the message can be quickly spread in mi-
croblogs. There have been a large number of studies
about information spread surrounding microblogs,
focusing on areas such as inferring and modeling in-
formation diffusion (Yang and Leskovec, 2010), find-
ing patterns of spread (Romero et al., 2011b), and
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various centrality measures (Bakshy et al., 2011).
However, one area that has not received much

attention is trying to better understand the spread-
ability of users. Traditional methods to measure the
spreadability of users consider only the link out such
as the number of retweets, and neglect the time in-
terval of retweets and the location of users in infor-
mation cascades.

The time interval of retweets, which stands for
the diffused rate of each user, is an important feature
to measure the spreadability of users. The lower is
the time interval of retweets, the higher is the dif-
fused rate. Fig. 1 shows an example of the impor-
tance of the time interval of retweets. Although the
numbers of users who are activated by user C and
user D are the same, user C spreads the information
much faster than user D and we can infer that the
spreadability of user C is higher.

Also, the location of users in information cas-
cades, which stands for the ability to drive the prop-
agation of information, is an important feature to
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measure the spreadability of users. The earlier is the
time of users in information cascades, the higher is
the ability to drive the propagation of information.
The assumption is reasonable, as the source of infor-
mation cascades is actually important in microblogs
and usually plays an important role in spreading the
information. Fig. 2 shows an example of an informa-
tion cascade whose depth is four. The spreadability
of upper nodes is higher than that of lower nodes in
information cascades.
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Fig. 1 An example of the importance of the time
interval—user C spreads the information much faster
than user D

0

1 2

3 4 5

6 7 8 9

Spreadability

Fig. 2 An example of the information cascade

Moreover, there is a transitive relation of the
spreadability. If a user with high spreadability
retweets user B, we can infer that user B also has
a high spreadability. The transitive relation of the
spreadability is similar to the method of PageRank.
The factor of restart in PageRank is 1/n, on the as-
sumption that each node has the same probability of
being visited by all other nodes. However, in prac-
tice, if a user usually receives the information late,
other users will have a lower probability of retweeting
the information of this user. So, we cannot take ad-
vantage of the traditional Markov processes to mea-
sure the spreadability of users.

In this paper, we propose a novel variant
PageRank method, SpreadRank, to measure the
spreadability of users in microblogs, taking advan-
tage of both the time interval of retweets and the
location of users in information cascades. Experi-

mental results indicate that the method of Spread-
Rank is consistently better than other methods for
measuring the spreadability of users in microblogs.

2 Related work

With the popularity of microblogs, there have
been a large number of studies about microblogs,
focusing on the influence of users and the information
diffusion.

Tunkelang (2009) originally proposed a method
analog to PageRank, later named TunkRank, to
measure the influence of users in microblogs. Weng
et al. (2010) proposed an algorithm called Twitter-
Rank to measure the influence taking both the top-
ical similarity between users and the link structure
into account. Cha et al. (2010) presented an in-depth
comparison of three measures of influence: indegree,
retweets, and mentions. Lee et al. (2010) found in-
fluential individuals based on the temporal order of
information adoption in Twitter. Pal and Counts
(2011) categorized tweets into three categories—
original tweet (OT), conversational tweet (CT), and
repeated tweet (RT)—to identify topical authorities
in microblogs. Bakshy et al. (2011) referred nar-
rowly to the influencer as the ability to consistently
seed the cascades that spread further than others, in
which seed nodes had higher influence. Romero et al.
(2011a) proposed an algorithm that determines the
influence and passivity of users based on their infor-
mation forwarding activity; however, they neglected
the time interval of retweets and the location of users
in information cascades.

Yang and Counts (2010) constructed a novel
model to capture the three major properties of infor-
mation diffusion—speed, scale, and range—by an-
alyzing information diffusion on Twitter, via users’
ongoing social interactions as denoted by mentions.
Yang and Leskovec (2010) developed a linear influ-
ence model to model information diffusion on Twit-
ter. Ye and Wu (2010) analyzed the propagation pat-
terns of general messages and showed how breaking
news (e.g., Michael Jackson’s death) spread through
Twitter. Furthermore, they evaluated different so-
cial influences by examining their stabilities, assess-
ments, and correlations. Romero et al. (2011b) an-
alyzed the ways in which tokens known as hash-
tags spread on a network defined by the interac-
tions among Twitter users. They found significant
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variation in the ways in which widely-used hashtags
on different topics spread. Wu et al. (2011) studied
several longstanding questions in media communica-
tions research, in the context of the microblogging
service Twitter, regarding the production, flow, and
consumption of information. Sadikov et al. (2011)
addressed the problem of missing data in information
cascades on Twitter. Yang and Leskovec (2011) stud-
ied temporal patterns associated with online content
and how the content’s popularity grew and faded
over time. Macskassy and Michelson (2011) devel-
oped retweet behavior models with the sign ‘RT
@user’ and analyzed what information was being
spread and why it was being spread. Kwak et al.
(2010) constructed retweet trees with the sign ‘RT
@user’ and demonstrated how retweets spread and
how many got involved. Zaman et al. (2010) found
retweets by looking for the string ‘RT @’ in the body
of the tweet and presented a new methodology for
predicting the spread of information in microblogs.
Letierce et al. (2010) conducted a preliminary anal-
ysis of the retweets with the sign ‘RT @user’ to fig-
ure out how messages were spread. Myers et al.
(2012) presented a model in which information could
reach a node via the links of the social network or
through the influence of external sources. ver Steeg
and Galstyan (2012) studied information transfer in
microblogs. Tsur and Rappoport (2012) presented
an efficient hybrid approach based on a linear regres-
sion for predicting the spread of an idea in a given
time frame on Twitter. Ding et al. (2013) proposed
a novel method to mine topical influencers based on
the multi-relational network in micro-blogging sites.
However, how to measure the spreadability of users
was neglected in their works.

Another interesting line of related research aims
to combine PageRank with the temporal informa-
tion. Berberich et al. (2004) developed the T-Rank
algorithm, a link analysis method that takes into ac-
count the temporal aspects: freshness and activity
of pages and links. Yu et al. (2005) proposed a time-
weighted PageRank, in which the inlinks of a page
are weighted according to their timestamps. Liu
et al. (2008) proposed a method called BrowseRank
to compute the page importance, considering the
lengths of staying time spent on the pages by users.
However, the aims of their methods were to mea-
sure the page importance, whereas the location of
nodes in information cascades was neglected in their

works. We combine the time interval of retweets and
the location of users in information cascades.

3 Methods

3.1 Data collection

For the purpose of this study, a set of Twit-
ter data about Chinese-based twitters who have
published at least one Chinese tweet was prepared.
About 0.26 million users and 10 million tweets were
collected through the application programming in-
terface (API) of Twitter.com. The method of getting
the dataset is described in detail as follows:

1. We first get the top 100 Chinese-based twit-
ters and their tweets from Twitter.com, and denote
the aggregate of these users as seed set Set0.

2. We then crawl all followers and friends of
each seed twitter s ∈ Set0. At the same time, all
tweets of these users are crawled.

3. If followers and friends are Chinese users and
they were not processed before, we add them to the
new seed set Setseed.

4. Loop 1–3.
We first extract from the dataset information

cascades which correspond to distinct diffusion mes-
sages, where each message comprises a single initia-
tor, or ‘seed’ retweeted by other users. Then we begin
by describing the information cascades that we are
trying to mine. As illustrated in Fig. 3, the distribu-
tion of information cascades’ sizes is approximately
power-law, implying that the vast majority of infor-
mation does not spread at all, while a small fraction
is retweeted many times. The depth of the infor-
mation cascades is right skewed, where the deepest
information cascades can propagate as far as nine
generations from their origin.

Then we combine all information cas-
cades to construct a directed weighted graph
G=(V,E,W (E)) and measure the spreadability in
graph G according to our method named Spread-
Rank.

3.2 Weight computation

The weights of the diffused graph represent how
frequently the information is diffused from a user to
another user. The naive method to determine the
weights is to count the total number of retweets.
However, the number of tweets published by users is
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ignored. For example, in Fig. 4, although the number
of retweets from user B is larger than that from user
C, user A retweeted most of the tweets of user C and
only a small number of the tweets of user B. We can
infer that it is easier to spread the information from
user C to user A.
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Fig. 3 Distribution of information cascades’ size (a)
and depth (b)
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Fig. 4 An example of retweets and tweets. The num-
ber of retweets from user B is larger than that from
user C ; however, user A retweets most of the tweets
of user C and only a small proportion of the tweets
of user B

Next, we consider the weights measure r/T ,
called DivT, where r stands for the number of
retweets and T stands for the number of tweets. The
rationale behind this measure is that it counts the
proportion (rather than the actual number) of one’s
tweets which are retweeted. Intuitively, the higher
the proportion of a user’s tweets which are retweeted,
the higher the spreadability of the user. In practice,
however, we find that in general this measure over-
penalizes users with a large number of tweets, un-
derpenalizes users with a small quantity of tweets,
and is overly sensitive to spuriously large values of r
when T is small. Then, to strike a balance, we con-
sider the weights measure r/ logT , called DivLogT,
to measure the spreadability from a user to another
user in microblogs.

3.3 Analysis of location of users in informa-
tion cascades

In this subsection, we analyze the impact of the
location of users in information cascades. Two key
factors may be explored:

1. The spreadability of different users in an
information cascade is different. We refer to the
spreadability of user A in an information cascade as
the size of the cascaded subtree whose root node is
user A, i.e., spA=|setA|, where setA ∈ children(A)
(i.e., setA is the set of user A’s children).

2. A user may be in many information cascades.
Intuitively, the more often a user is in information
cascades, the higher the spreadability of the user.

However, it is difficult to combine these two
factors to synthetically measure the spreadability of
each user. For example, in Fig. 5, user A is in three
information cascades and user B only in one infor-
mation cascade, but the information of user B is
diffused to more users.

A A

A

Cascade 1 Cascade 2

Cascade 3
(a)

B

(b)

Fig. 5 A sample of information cascades of user A
(a) and user B (b). User A is in three information
cascades and user B only in one information cascade,
but the information of user B is diffused to more users

To combine these two factors to measure the
spreadability of each user synthetically, we count all
children nodes in each information cascade for the
user who is the root node of each cascaded subtree.
Thus, the impact of the location of users in informa-
tion cascades can be defined as follows:

scorelA=
∑

0<a≤n
|setaA|, setaA∈children(Aa), (1)

where n is the number of cascaded subtrees whose
root node is user A.

3.4 Analysis of the time interval of retweets

The lower is the time interval of retweets, the
higher is the diffused rate. In this subsection, we ana-
lyze the impact of the time interval of retweets. First,
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we analyze the distribution of sample time intervals
of retweets with sizesample=71000 (Figs. 6a and 6b).
Experimental results indicate that the distribution
of time intervals of retweets is approximately power-
law, implying that the vast majority of information
is retweeted in a short duration, while a small frac-
tion is retweeted for a long time (We can estimate the
parameter ∂=1.63 of the power-law distribution).

However, the tail of this distribution is smaller
than those of traditional power-law distributions, be-
cause a topic does not usually go on for a long time.
Fig. 7 shows the distribution of five topics’ durations,
implying that a topic generally was discussed ac-
tively for 10 days at most, and then died out rapidly
or gradually. In Fig. 7, if the topics went on for a
very long time, we will ignore these timestamps. So,
we can infer that if a user spreads the information
after 10 days, it will have few contributions for the
propagation of the information and this diffusion will
be ignored.

After removing the time intervals that are longer
than 10 days (1230 sample time intervals are re-
moved), we find that the time intervals satisfy a nega-
tive exponential distribution (Figs. 6c and 6d). Then
we can infer the parameter of the negative exponen-
tial distribution λ=1.9768×104 according to the rest
of the sample time intervals. We give the probability
density function of the negative exponential distri-
bution as follows:

f(x) =

{ 1

19 768
e−x/19 768,

0,

0 ≤ x ≤ 192 h,
x > 192 h.

(2)
Next, we can measure the impact of the time

interval of retweets according to the probability den-
sity function of the negative exponential distribution.
The lower is the time interval of retweets, the higher
the diffused rate becomes.

f(Δt) =

{ 1

λ
e−Δt/λ,

0,

0 ≤ Δt ≤ 192 h,
Δt > 192 h,

(3)

where Δt is the time interval of retweets.

3.5 SpreadRank

In this subsection, we combine the time inter-
val of retweets and the location of users in informa-
tion cascades to measure the spreadability of users.
We propose a novel variant PageRank method called
SpreadRank.

P
r

N

Fig. 6 Negative exponential distribution: (a) distri-
bution of time intervals; (b) histogram of data; (c)
fitting empirical distribution of sample S(x); (d) the-
oretical distribution of hypothesis testing F(x)

Two key steps in the technique described above
may be explored. One is, for each user who retweets
the tweets of his/her friends, how to divide his/her
score to his/her friends. The other is, how to measure
the factor of restart in our method, that is, how to
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Fig. 7 The distribution of topics’ durations

give a jump probability to each user not considering
the web part.

For the first step, we compute the transition
probability of each user. Two features need to be
considered in this process: (1) the weight of retweets,
and (2) the time interval of retweets. The higher the
weight of retweets and the shorter the time interval
of retweets, the higher the transition probability. We
combine these two features to compute the transition
probability of each user.

The transition ability from user ui to his/her
friend uj is defined as follows:

p(uj|ui) =

∑
rij

f(Δtij)

logTj
, (4)

where Δtij is the time interval of retweets, and Tj

stands for the number of user uj’s tweets.
In the above formula, we treat all retweets re-

spectively considering the time interval, and then
sum up all scores to synthetically measure the
spreadability.

Next, we take advantage of all transition proba-
bilities from user ui to all his/her friends u ∈ out(ui)

who are retweeted by user ui to divide his/her score
to a friend uj .

Given the transition matrix P , the transition
probability of a random walk from user ui to user uj

is defined as follows:

P (uj|ui) =
(
∑

rij
f(Δtij))/ logTj∑

u∈out(ui)

(
∑

riu
f(Δtiu))/ logTu

. (5)

For the second step, we compute the factor of
restart in a random walk. The factor of restart in
traditional PageRank is 1/n, on the assumption that
each node has the same probability to be visited by
all other nodes. However, in practice, if a user usu-
ally receives the information late, other users will

have a lower probability to retweet the information
of this user.

We take advantage of the location of users in
information cascades to measure the factor of restart,
to ensure that users receiving the information earlier
have higher scores.

Given teleport vector (the factor of restart) e,
each element ei can be defined as

ei =
scoreli + μ∑

A∈V

(scorelA + μ)
, (6)

where μ is a smoothing factor to avoid the zero of
the scorel. If a user has never been retweeted by
others, the location of users’ scorel in information
cascades will be equal to 0. Also, it will ensure the
convergence of the Markov processes; that is, each
node in graph G can be visited by a random walk.

Finally, we can measure the spreadability of user
uj according to the web-graph part and the teleport
vector:

SR(uj) = α
∑

ui∈in(uj)

P (uj |ui)SR(ui)+(1−α)ej , (7)

where in(uj) represents all followers of user uj, α is a
jump factor, and SR(ui) stands for the spreadability
of user ui.

Given the score vector r which measures the
spreadability of all users and the transition matrix
P which measures the random walk in graph G, the
above expression can be rewritten as

r = αPr + (1− α)e. (8)

Although the above expression is similar to
PageRank, the transition probabilities and the tele-
port vector are different from those of PageRank. In
the above expression named SpreadRank, we take
advantage of the time interval of retweets and the
location of users in information cascades, and the
spreadability of users can be measured more accu-
rately.

SpreadRank can be formulated in matrix nota-
tion as follows:

rk = rk−1 ·M . (9)

The SpreadRank matrix M is computed as

M = α · P + (1− α) · e · 1, (10)

where 1 is a vector with each element being 1.
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Because the smoothing factor μ ensures that
each node in graph G can be visited by a random
walk, we can infer that the SpreadRank matrix M is
a stochastic matrix, aperiodic and irreducible. Thus,
it is also easy to see that this Markov chain is er-
godic, and the stationary probabilities can be found
as rni (n → ∞), for any initial vector r0.

4 Experiments

4.1 Parameter setting

This subsection evaluates the choice of parame-
ter α in SpreadRank. Usually, the damping factor α
is set to 0.85 and experimental results (Boldi et al.,
2005) have proven that any minor change of α does
not have a huge impact on final results in traditional
PageRank. However, how the damping factor α in-
fluences the results of SpreadRank is unknown.

4.1.1 Influence on the rankings

First, we rank users according to the scores of
SpreadRank. Next, we evaluate the impact of the
damping factor α by comparing the rankings of users
with different damping factors α. The Spearman
rank correlation, denoted as ρ, is used to analyze the
correlation of two rankings:

ρ = 1− 6

n3 − n

n−1∑

i=1

(r1i − r2i )
2
. (11)

r1 and r2 are two rankings of SpreadRank under dif-
ferent damping factors α. The higher is the score of
the Spearman rank correlation, the more correlative
are the two rankings with different damping factors
α.

Given a damping factor α and the correspond-
ing ranking r, as well as its four neighboring damp-
ing factors α1=α−0.01, α2=α−0.02, α3=α+0.01,
α4=α+0.02 and the corresponding rankings r1, r2,
r3, r4, we compute the Spearman rank correlation
between the ranking r and the rankings r1, r2, r3,
r4:

ρ̄ =
ρ1 + ρ2 + ρ3 + ρ4

4
. (12)

The higher is the score of the Spearman rank
correlation ρ̄, the more correlative are the ranking r

and its neighboring rankings r1, r2, r3, r4. Fig. 8
gives the experimental results.
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Fig. 8 The impact of the damping factor on the cor-
relation of two rankings

Experimental results also show that any minor
change of α does not have a huge impact on final
results. With the increase of α, the Spearman rank
correlation drops first, then goes up, next drops, and
finally goes up. Because the impact of the web-graph
part and the location of users are determined by α,
when α is 0, the web-graph part of the process is
annihilated, resulting in the final results dominated
by the location of users scorel. As α approaches
1, the web part becomes more and more important,
leading to the final results dominated by the network
of retweets.

So, we can infer that it is more reasonable to set
α as 0.85. Fig. 8 indicates that the corresponding
ranking r is more correlative with α=0.85 than with
the four neighboring damping factors.

4.1.2 Influence on time cost

We analyze how the damping factor α influences
the time cost of the SpreadRank. Fig. 9 gives the
experimental results.
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Fig. 9 The time cost at different damping factors

With the increase of α, the time cost of Spread-
Rank increases. Because the web-graph part of
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the process becomes more and more important, the
speed of convergence becomes slow with the increase
of α. However, the time cost of SpreadRank is not
too high. Only about 1 min is spent with α = 0.85

by SpreadRank.

4.2 Methods for comparison

We compare the following methods for measur-
ing the spreadability of users:

1. The spreadability of user A is measured by
the number of users who retweet the tweets of user
A. We call this method retweetNum.

2. The spreadability of users is measured by the
method of PageRank in the network of retweets. We
call this method retweetRank.

r = αWr + (1− α)i, (13)

where the transition matrix W is computed consid-
ering only the weights of the network and i is a vector
with each element being 1/n.

3. The spreadability of users is measured by
the method of variant PageRank in the network
of retweets, also considering the time interval of
retweets. We call this method retweetRank+T .

r = αPr + (1− α)i. (14)

4. The spreadability of users is measured by
the method of variant PageRank in the network of
retweets, also considering the impact of the locations
of users in information cascades. We call this method
retweetRank+L.

r = αWr + (1− α)e. (15)

5. Our method is called SpreadRank.

4.3 Effectiveness verificatinon

To evaluate the effectiveness of our algorithm
SpreadRank from the perspectives of the link struc-
ture and the time interval, we introduce the metric of
coverage. Since users in microblogs affect the propa-
gation of information, given a seed user and a period
of time, the number of users who can be activated
by the seed user should be a good indicator of how
good the spreadability is. We introduce the concept
of ‘coverage’ due to this intuition.
Definition (Coverage) Given a seed node in a net-
work and a period of time, the coverage is defined as

the number of nodes that are either directly or in-
directly activated by this seed node, i.e., how many
users are influenced in a period of time by a seed
node in the propagation of information.

Fig. 10 gives an example of computing the cov-
erage of seed node 0.

t=0.5 h

t=1 h

t=12 h

t=24 h

Coverage=2

Coverage=6

Coverage=16

Coverage=11

The process of information propagation

Fig. 10 An example of computing the coverage

In the experiments, we set up periods of time
as follows: Δt1=0.2 h, Δt2=0.5 h, Δt3=1 h,
Δt4=3 h, Δt5=6 h, Δt6=12 h, Δt7=18 h, Δt8=24 h,
Δt9=36 h, Δt10=48 h, Δt11=72 h, and Δt12=96 h.
Also, we obtain the top-k users according to each
method ranking based on the spreadability of users,
where k=7, 9, 15, and 18. The coverage of the top-k
users is defined as the sum of all top-k users’ cover-
age. Fig. 11 gives the experimental results.

Experimental results indicate that the method
of SpreadRank is consistently better than other
methods for measuring the spreadability of users in
microblogs. For the method of SpreadRank, the
spreadability of users is consistently stronger than
other methods and more users are activated in the
appointed periods of time with top-k seed users. The
methods of retweetRank+T and retweetRank+L are
better than the methods of retweetRank and retweet-
Num, and the method of retweetNum is the worst.

Moreover, we find that the spreadability of users
for the method of retweetRank+T is stronger than
that for the method of retweetRank+L with lower
periods of time, but weaker with higher periods of
time. Because the time interval is considered in the
method of retweetRank+T , the information is dif-
fused faster and more users are activated in lower
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Fig. 11 The coverage with different periods of time
for the top-7 (a), top-9 (b), top-15 (c), and top-18 (d)
users, at the 12 periods of time of 0.2, 0.5, 1, 3, 6, 12,
18, 24, 36, 48, 72, and 96 h

periods of time. However, the location of users in
information cascades is considered in the method of
retweetRank+L; the information is diffused further
and more users are activated in higher periods of
time.

4.4 Characteristics of users with higher
spreadability

Here we analyze the characteristics of users with
higher spreadability, including a large number of

tweets and a large number of followers. We try to
answer two questions: (1) Does a user with higher
spreadability publish more tweets? (2) Does a user
with higher spreadability have more followers?

We get the top-k users according to rankings
by the spreadability of users, and then obtain the
numbers of tweets or followers of these users. Fig. 12
gives the correlation between the number of tweets or
followers and the ranking based on the spreadability
of users.
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Fig. 12 The correlation between the ranking of
SpreadRank and the number of tweets (a) or between
the ranking of SpreadRank and the number of follow-
ers (b)

The general trend of spreadability and the num-
ber of tweets or followers is correlative; moreover,
the general trend of spreadability and the number
of followers is more correlative. However, users
with higher spreadability do not always publish more
tweets or have more followers in the local part. So,
we can infer that a user with more tweets or follow-
ers does not always have stronger spreadability in
microblogs.

5 Conclusions

A novel method called SpreadRank is proposed
to measure the spreadability of users in microblogs,
considering both the time interval of retweets and the
location of users in information cascades. Experi-
mental results indicate that this method is consis-
tently better than other methods. Moreover, we find
that a user with more tweets or followers does not
always have stronger spreadability in microblogs.

In future work, we will combine the spreadabil-
ity and features of users to measure the influence of
users more accurately in microblogs.
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